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Abstract

Background

Kidney transplantation is the most effective treatment for end-stage kidney disease. Sensiti-
zation, the formation of human leukocyte antigen (HLA) antibodies, remains a major barrier
to successful kidney transplantation. Despite the implementation of desensitization strate-
gies, many candidates fail to respond. Current progress is hindered by the lack of biomark-
ers to predict response and to guide therapy. Our objective was to determine whether
differences in immune and gene profiles may help identify which candidates will respond to
desensitization therapy.

Methods and Findings

Single-cell mass cytometry by time-of-flight (CyTOF) phenotyping, gene arrays, and phos-
phoepitope flow cytometry were performed in a study of 20 highly sensitized kidney trans-
plant candidates undergoing desensitization therapy. Responders to desensitization
therapy were defined as 5% or greater decrease in cumulative calculated panel reactive
antibody (cPRA) levels, and non-responders had 0% decrease in cPRA. Using a decision
tree analysis, we found that a combination of transitional B cell and regulatory T cell (Treg)
frequencies at baseline before initiation of desensitization therapy could distinguish
responders from non-responders. Using a support vector machine (SVM) and longitudinal
data, TRAF3IP3 transcripts and HLA-DR-CD38+CD4+ T cells could also distinguish
responders from non-responders. Combining all assays in a multivariate analysis and elas-
tic net regression model with 72 analytes, we identified seven that were highly interrelated
and eleven that predicted response to desensitization therapy.

Conclusions

Measuring baseline and longitudinal immune and gene profiles could provide a useful strat-
egy to distinguish responders from non-responders to desensitization therapy. This study
presents the integration of novel translational studies including CyTOF immunophenotyping
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in a multivariate analysis model that has potential applications to predict response to desen-
sitization, select candidates, and personalize medicine to ultimately improve overall out-
comes in highly sensitized kidney transplant candidates.

Introduction

Kidney transplantation is the most effective treatment for end-stage kidney disease (ESRD) in
terms of mortality, quality of life, and health care savings [1]. Sensitization, the formation of
human leukocyte antigen (HLA) antibodies against a transplant, remains a major barrier to suc-
cessful kidney transplantation. HLA antibodies are acquired through exposure to foreign HLA
antigens, most commonly from previous transplants, pregnancies, and transfusions. After
implementation of the new kidney allocation system one year ago, the number of transplants
increased six-fold from 2-3% transplantation rate for the highly sensitized patients with cumu-
lative calculated panel reactive antibody (cPRA) 99-100% (http://optn.transplant.hrsa.gov).
However, the majority of highly sensitized patients fail to find a compatible donor and remain
on dialysis. Desensitization strategies that utilize medications to nonspecifically target both
HLA antibodies and underlying immune cells have allowed successful transplantation in only a
relatively small proportion of highly sensitized candidates.

One limitation of desensitization therapy is that a significant number of candidates do not
respond. Current progress is hindered by lack of in-depth immune monitoring strategies that
can predict which candidates respond to therapy and can guide tailored desensitization strate-
gies based on individual immune profiles. Furthermore, detailed mechanisms of how desensiti-
zation therapy modulates specific immune cell subpopulations and intracellular signaling
pathways are poorly understood.

Our objective was to determine whether baseline differences in immune profiles could help
identify those candidates that will respond to desensitization therapy. We report the applica-
tion of single-cell mass cytometry time-of-flight (CyTOF) phenotyping, gene arrays, and phos-
phoepitope flow cytometry to study immune and gene expression profiles in a cohort of highly
sensitized candidates undergoing desensitization therapy. The CyTOF platform, which uses
antibodies labeled with heavy metal isotopes, allows the ability to simultaneously measure
numerous parameters per cell at one time [2].

In this study, we used baseline and serial longitudinal samples of peripheral blood to pro-
spectively follow immune profiles, gene expression, and key intracellular signaling pathways
before and during desensitization therapy. We hypothesized that candidates who responded to
desensitization therapy as measured by HLA antibodies would have a different immune and
gene expression profile from those candidates who failed to respond.

Materials and Methods

Participants

20 participants with ESRD and cumulative cPRA 93-100% were treated with desensitization
therapy. Participants were offered the protocol based on waiting time on the deceased donor
kidney transplant list or availability of an incompatible living donor. All candidates voluntarily
participated in the protocol. Written informed consent was obtained from all participants. The
consent included HIPPAA authorization for access to medical records. The Institutional
Review Board at Stanford University approved this protocol (numbers 15267 and 17997). Data
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from 138 age-matched healthy control samples (age range 25-66 years) were obtained from a
previously performed flu vaccine study [3].

Desensitization protocol

A modified version of the high-dose intravenous immunoglobulin (IVIG) and rituximab pro-
tocol previously reported by Vo and Jordan was used [4]. All candidates were treated with
monthly IVIG at 2 gm/kg, maximum dose 140 gm, prior to single-dose rituximab 375 mg/m?
intravenously for at least six months. After 6-12 months, candidates were treated with bortezo-
mib 1.3 mg/m? intravenously every 72 hours for 4 doses and plasmapheresis for 1-2 cycles if
there was lack of response to IVIG and rituximab per a modified version of a protocol previ-
ously reported by Woodle [5]. All candidates who underwent transplantation received the last
dose of desensitization within one month of transplantation. After transplantation, all candi-
dates were treated with anti-thymocyte globulin (ATG) induction therapy and mycophenolate
mofetil (MMF), tacrolimus, and prednisone for maintenance immunosuppression.

HLA antibody measurements

The response to therapy was assessed by decrease in cumulative cPRA, which represents a
composite of HLA antibody levels and is an estimate of the probability of receiving a compati-
ble transplant. HLA antibody screening was performed before and after IVIG therapy. Lumi-
nex HLA Class I and II single-antigen beads and Fusion analysis (LabScreen, One Lambda,
Canoga Park, CA, USA) were used to determine HLA antibody specificities. HLA antibodies
with >1000 normalized mean fluorescence intensity (MFI) were considered positive. cPRA
was determined using HLA frequencies from United Network of Organ Sharing (UNOS)
based on a recent cohort of deceased donors.

An acceptable cross match to proceed with transplantation after desensitization at our center
was T-cell and B-cell flow cross match (FXM) with a median flow-channel shift (MCS) of < 200
after adjusting for presence of autoantibodies (normal range MCS T-cell FXM < 88 MCS and
B-cell FXM < 100 MCS). HLA antibodies were considered positive with normalized mean fluo-
rescence intensity (MFI) of >1000 and “possible” with MFI 500-999. Our center threshold for
listing unacceptable HLA antigens was 1000 MFI. However, in participants undergoing desensi-
tization, we raised the threshold and listed HLA antigens as unacceptable with MFI strength
3000 or higher. All participants had post-transplant donor specific antibody (DSA) monitoring
and protocol kidney biopsies at implantation and 3 and 12 months post-transplant.

Outcome measures

The response to therapy was assessed by a predefined decrease of 5% or greater in cumulative
cPRA. HLA antibody screening was performed before and after IVIG therapy or monthly.
Non-response was defined as no decrease in HLA antibodies as measured by cPRA after all
therapies were completed.

Sample collection and processing

Serial samples of peripheral blood were collected to prospectively follow immune and gene
expression profiles of candidates before and during desensitization therapy. Healthy control sam-
ples were previously obtained. Peripheral blood mononuclear cells (PBMC) for CyTOF pheno-
typing and phosphoepitope flow cytometry assays were isolated by Ficoll gradient centrifugation
and cryopreservation as previously described [6]. For gene arrays, blood was collected directly
into PAXgene Blood RNA Tubes (BD PreAnalytix) using a 21-gauge butterfly needle and
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catheter to ensure that tubes could be held low and vertical to maintain the vacuum on top of the
stabilization solution. Tubes were inverted 10 times after drawing. Samples were incubated in
collection tubes at room temperature for at least 2 hours, then stored at -80°C within 4 hours.

CyTOF immunophenotyping

This assay was performed in the Human Immune Monitoring Center (HIMC) at Stanford Uni-
versity as previously described [2]. PBMC were thawed in warm media, washed twice, resus-
pended in CyFACS buffer (PBS supplemented with 2% BSA, 2 mM EDTA, and 0.1% sodium
azide), and viable cells were counted by Vicell. Cells were added to a V-bottom microtiter plate
at 1.5 million viable cells/well, washed once by pelleting, and resuspended in fresh CyFACS
buffer. The cells were stained for 60 minutes on ice with 50 pL of the following antibody-poly-
mer conjugate cocktail (Table in SI Table). All antibodies were from purified unconjugated,
carrier-protein-free stocks from BD Biosciences, Biolegend, or R&D Systems. The polymer and
metal isotopes were from Fluidigm. The cells were washed twice by pelleting and resuspended
with 250 pL FACS buffer. The cells were resuspended in 100 uL PBS buffer containing 2 ug/mL
Live-Dead (DOTA-maleimide (Macrocyclics) containing natural-abundance indium). The
cells were washed twice by pelleting and resuspended with 250 uL PBS. The cells were resus-
pended in 100 pL 2% PFA in PBS and placed at 4°C overnight. The next day the cells were pel-
leted and washed by resuspension in fresh PBS. The cells were resuspended in 100 pL
eBiosciences permeabilization buffer (1x in PBS) and placed on ice for 45 minutes before wash-
ing twice with 250 uL PBS. The cells were resuspended in 100 uL iridium-containing DNA
intercalator (1:2000 dilution in PBS; Fluidigm) and incubated at room temperature for 20 min-
utes. The cells were washed twice in 250 pL MilliQ water. The cells were diluted in a total vol-
ume of 700 pL in MilliQ water before injection into the CyTOF system (Fluidigm). Data
analysis was performed using FlowJo v9.3 (CyTOF settings) by gating on intact cells based on
the iridium isotopes from the intercalator, then on singlets by Ir191 versus cell length, then on
live cells (Indium-Live-Dead minus population), followed by cell subset-specific gating.

Gene expression profiling

Work was performed in the HIMC at Stanford University. Total RNA was isolated according
to the manufacturer’s instructions by using a PAXgene RNA blood kit (Qiagen). The entire
procedure was carried out at room temperature with the QIAcube automated robot (Qiagen).
Total RNA yield was assessed using the Thermo Scientific NanoDrop 1000 micro-volume spec-
trophotometer (absorbance at 260 nm and the ratio of 260/280 and 260/230). RNA integrity
was assessed using the Agilent’s Bioanalyzer NANO Lab-on-Chip instrument (Agilent).

Cy3-labeled, amplified antisense complementary RNA (cRNA) targets were prepared from
20 to 500 ng of the total RNA using the QuickAmp Labeling kit or the Low Input Quick Amp
Labeling Kit (Agilent). 850 ug of labeled cRNA was hybridized overnight to Agilent Whole
Human Genome 4 x 44 K slides, which contain 44,000 probes, including 19,596 Entrez Gene
RNAs. The arrays were then washed, blocked, stained, and scanned on the Agilent microarray
scanner following the manufacturer’s protocols.

Phosphoepitope flow cytometry

This assay was performed in the HIMC at Stanford University. PBMC were thawed in warm
media, washed twice, and resuspended at 0.5x10° viable cells/ml. 200 uL of cells were plated
per well in 96-well deep well plates. After resting for 1 hour at 37°C, cells were stimulated by
adding 50 pl of cytokine (IFN-alpha, IFN-gamma, IL-6, IL-7, IL-10, IL-2, or IL-21) and incu-
bated at 37°C for 15 minutes. PBMC were then fixed with paraformaldehyde, permeabilized
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with methanol, and kept at -80°C overnight. Each well was barcoded using a combination of
Pacific Orange and Alexa-750 dyes (Invitrogen, Carlsbad, CA) and pooled in tubes. The cells
were washed with FACS buffer (PBS supplemented with 2% FBS and 0.1% sodium azide) and
stained with the following antibodies (all from BD Biosciences, San Jose, CA): CD3 Pacific
Blue, CD4 PerCP-Cy5.5, CD20 PerCp-Cy5.5, CD33 PE-Cy7, CD45RA Qdot 605, pSTAT-1
AlexaFluor488, pSTAT-3 AlexaFluor647, and pSTAT-5 PE. The samples were then washed
and resuspended in FACS buffer. 100,000 cells per stimulation condition were collected using
DIV A 6.0 software on an LSRII flow cytometer (BD Biosciences). Data analysis was performed
using FlowJo v9.3 by gating on live cells based on forward versus side scatter profiles, then on
singlets using forward scatter area versus height, followed by cell subset-specific gating. 90"
percentile fluorescence values for each pSTAT readout/cytokine/cell subset combination were
used to derive fold-change relative to the unstimulated pSTAT readout for that cell subset.

Informatics

Baseline immunophenotypes. Differences in 48 immunophenotypes between responders
and non-responders prior to treatment were compared using ¢-tests. Support vector machines
(SVMs) were built using the e1071 package in R (type = C-classification, kernel = linear). A
decision tree was built using the J48 decision tree algorithm in Weka [7].

Gene expression pre-processing. Data was processed with the R packages affyPLM and
limma [8]. Expression levels were background corrected with RMA, normalized with quantile
normalization, and summarized using the average log2 value across all probes in the probe set.
Hereafter, all probe sets are called probes. Next, we fit a linear model for each probe using
duplicateCorrelation and ImFit, estimating and accounting for the correlation between
repeated measurements for each person. Then, we removed promiscuous probes that mapped
to more than one gene and limited the analysis to the probe with the highest average expression
for each gene (n = 18,566). Finally, we used the empirical Bayes method to smooth the standard
errors (eBayes) and estimate the significance of the difference in expression between respond-
ers and non-responders using a moderated ¢-test [9]. The top 100 genes were retained for sub-
sequent analysis.

Longitudinal analysis. Linear mixed models (analyte ~ response + sequence + response x
sequence, with a random effect for each patient) were created for the top 100 genes, 48 CyTOF
immunophenotypes, and 189 phosphoepitope flow cytometry analytes (which are a combina-
tion of cell population and cytokine stimulation, e.g. CD8+: pSTAT3.IFNg), using the nlme
package in R [10]. Models were then ranked by the p-value on the response coefficient within
assay to identify the two best models for each assay. P-values were adjusted with the false dis-
covery rate (FDR) method.

Cross-assay analysis. To explore cross-assay relationships, we looked for significant asso-
ciations between pairs of analytes, while accounting for response status. Data from all pre-
transplant samples (n = 56) for which we had any combination of CyTOF phenotyping, gene
expression, or phosphoepitope flow cytometry data was included. Analytes were the same as
described in the longitudinal analysis. We built a total of 56,616 linear models of the form ana-
lytel ~ analyte2 + response. These regression models did not account for the repeated measure-
ments from each patient. Forty-two percent of these were comprised of analyte pairs from
different assays. We then filtered this data to those in which both the association between the
analytes and the difference between responders and non-responders were statistically signifi-
cant (p<0.001). To remove outliers, phosphoepitope flow cytometry data were limited to those
analytes for which the mean fold change was >2 and the maximum fold change was <7. This
yielded 93 cross-assay analyte pairs.
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To search for classifiers, we attempted to classify the responders and the non-responders
based on each analyte pair using a SVM algorithm. We built a total of 93 SVMs, as described
above. The 93 analyte pairs spanned 72 unique analytes. We illustrated the resulting network
and computed network statistics using the arc diagram package in R. Starting with these 72
analytes identified above, we built an elastic net logistic regression model to predict response
status (non-responder = 0, responder = 1), using the glmnet package in R [11]. Data was scaled
prior to the computation of the elastic net.

Results

We analyzed immune and gene expression profiles from peripheral blood drawn from 20 can-
didates who underwent desensitization therapy, 10 responders and 10 non-responders. Demo-
graphic, clinical characteristics, histocompatibility data, immunosuppression and clinical
outcomes of the participants are summarized in Table 1.

For ten responders, FXM were positive (T-cell 88-200 MCS and B-cell 100-200 MCS) with
DSAs present (500-1500 MFI). Two non-responders received 0 HLA-mismatched deceased
donor kidney transplants with negative FXM. One non-responder received a living donor

Table 1. Participant demographic, histocompatibility data, immunosuppression and clinical outcomes.

Responders (n = 10) Non-responders (n = 10)
Age (yr) 40+ 13 44 7
Male sex (%) 6 (60) 3 (30)
Transfusions (%) 10 (100) 10 (100)
Pregnancies (%) 4 (100) 4 (57)
Previous transplant (%) 6 (60) 6 (60)
Cause of ESRD
Diabetes 1 1
Glomerulonephritis 0 1
SLE 0 2
PKD 3 1
Other 1 5
Cumulative cPRA (%) 97127 100+ 0
Class | cPRA (%) 80.3+23.8 98+2.6
Class Il cPRA (%) 70 £22.8 83.3+27.6
Cumulative cPRA (%) after desensitization 87.7+3.9 1000
FXM positive (%) 10 (100) 1(33)
DSA positive (%) 10 (100) 1(33)
IVIG (%) 1(10) 0
IVIG/Rituximab (%) 4 (40) 5 (50)
IVIG/Rituximab/Bortezomib and Plasmapheresis (%) 5 (50) 5 (50)
Transplanted (%) 10 (100) 3(30)
Donor type: DD:LUR:LRD 8:1:1 2:1:0
Borderline acute rejection 3 (30) 1(33)
Cell mediated rejection 0 0
Antibody mediated rejection 0 0
Graft loss (%) 0 0
Death-censored graft survival (1 yr) 100% 100%

SLE = systemic lupus erythematosus; PKD = polycystic kidney disease; FXM = flow cross match; DSA = donor specific antibody; MFI = mean fluorescent
intensity; DD = deceased donor; LUR = living unrelated; LRD = living related donor

doi:10.1371/journal.pone.0153355.t001
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through paired donor exchange with a positive FXM. Seven non-responders failed to receive
transplants. Strength of DSA was between 500-1500 MFIL. Although the incidence of borderline
rejection and graft outcomes were similar in responders and non-responders, only 30% of the
non-responders were transplanted as a result of compatible, HLA-matched donors (two from 0
HLA-mismatched kidney transplants and one from paired donor exchange).

Baseline immunophenotyping

Our initial analyses focused on immunophenotyping at baseline prior to the start of desensitiza-
tion therapy. We performed CyTOF phenotyping using a panel of 33 antibodies (Table in S1
Table) to cover a broad spectrum of immune cell subsets as well as markers of activation and
differentiation/exhaustion. Analysis for a total of 48 cell subsets (Table in S2 Table) yielded only
two immune phenotypes with significant differences between responders and non-responders
(data in S1 Fig). The cell subsets, CD94+CD8+ T cells and HLA-DR-CD38+CD8+ T cells, were
significant at p<0.02 and p<0.05, respectively, without correction for multiple comparisons.
These findings were not statistically significant after multiple comparison correction. Further-
more, by inspection, neither subset could be used to classify responders and non-responders.
Thus, we applied machine learning to determine whether combinations of analytes could better
segregate responders and non-responders.

We first used a support vector machine (SVM) algorithm to identify pairs of analytes that
could classify responders and non-responders. Three of twenty classification errors were iden-
tified in all of the best resulting pairs from the SVM algorithm. A representative example (of
six) is shown in data in S2 Fig. We next used a different machine-learning algorithm that gen-
erated a decision tree based on sequential cutoffs to classify samples according to outcome.
Using this algorithm, two cell subsets, transitional B cells (CD14-CD33-/CD3-/CD19+CD20
+/CD24+CD38+) and regulatory T cells (Tregs; CD14-CD33-/CD3+/CD4+/CD25hiC-
D127low), could classify with 100% accuracy (Fig 1).

Given the small sample size, one possibility is that the decision tree outcome could be an
artifact of this particular data set. In order to overcome the sample size and gain confidence in
the biological significance of these two analytes, we compared the distribution of transitional B
cells and Tregs in the transplant candidates to age-matched healthy controls. Data from 138
age-matched controls analyzed with the same CyTOF assay were compared in Fig 2. These
results showed that the values for both transitional B cells and Tregs for all transplant candi-
dates (responders and non-responders) tended to be skewed toward the extremes of the healthy
control population. In fact, the threshold values chosen by the decision tree are at the extremes
of the healthy control population.

Longitudinal analyses

We next asked whether longitudinal analyses could improve the predictive power of immuno-
phenotypes to classify responders and non-responders. In addition, we wanted to study the sta-
bility of the baseline findings over the course of therapy. We therefore performed CyTOF
phenotyping, gene expression arrays, and phosphoepitope flow cytometry (abbreviated
“Pheno,” “G,” and “Phospho,” respectively) on up to eight serial samples from baseline, pre-
treatment, to 12 months during desensitization therapy on 10 candidates (five responders and
five non-responders). We report here the two analytes with the lowest p-values for each assay.
For CyTOF phenotyping, HLADR-CD38+CD8+ T cells and CD94+CD8+ T cells, on aver-
age, were lower in responders versus non-responders (Fig 3A). For gene expression assays, the
top two genes, FYN and DGKZ, showed relative stability over time. Levels of DGKZ were con-
sistently higher in responders compared to non-responders (Fig 3B). Conversely, for the
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Fig 1. Levels of transitional B cells and Tregs classify responders and non-responders. (A) Decision
tree algorithm illustrating the classification of responders (R; n = 10) and non-responders (NR; n = 10) based
on two phenotypes. Numbers in parentheses are the numbers of patients who reach each leaf node. The leaf
nodes are the shaded rectangular boxes. (B) Transitional B cells and Tregs by candidate and response
group. Each line indicates one candidate. Horizontal reference lines indicate decision tree threshold values of
0.466 (transitional B cells) and 5.96 (Tregs).

doi:10.1371/journal.pone.0153355.g001

phosphoepitope flow cytometry assays, there were no significant differences between respond-
ers and non-responders with all the samples centered around 1 on the y-axis, indicating little
or no reaction to cytokine stimulation (Fig 3C). While none of the p-values were significant
after adjustment for multiple comparisons, the CyTOF phenotyping and gene expression data
may suggest avenues of exploration in future studies.

Cross-Assay Associations

To better elucidate the possible interactions between analytes and across assays, we focused on
cross-assay models (each analyte from a different assay) in which the p-value for both the cor-
relation between the analytes, and the p-value for the difference between responders and non-
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Fig 2. Transitional B cells and Tregs scatter plots compared to healthy controls. The values of transitional B cells and Tregs for transplant candidates
appear largely distributed at the extremes of the healthy control population. This comparison illustrates that the thresholds selected by the decision tree tend
toward the extremes in a much larger sample. Healthy = healthy controls; NR = non-responder; R = responder.

doi:10.1371/journal.pone.0153355.g002

responders, were both less than 0.001 (n = 93). Using an SVM, we found one combination of a
cell subset frequency, HLA-DR-CD38+CD4+ T cells, and a gene expression level, TRAF3IP3,
yielded perfect classification of responders and non-responders (Fig 4). Four additional pairs
yielded only a single misclassified data point (data in S3 Fig).

The 93 pairs of analytes described above spanned 72 unique analytes. Of these, seven were
highly connected, having at least six associations as described above. The resulting network
included these highly connected analytes, and the analytes to which they are connected, for a
total of 47 analytes. An arc diagram of the network is shown in Fig 5. As a whole, this suggests
a high degree of relatedness between a few key genes and a subset of immunological readouts.
These relationships might provide insights into the biological mechanisms of responsiveness to
desensitization therapy.

Starting with the 72 analytes identified by this systems immunology screen, we built an elas-
tic net logistic regression model to predict response status. The model and its predictions are
shown in Fig 6. The model, using 11 of the 72 analytes, provides impressive segregation
between responders and non-responders.

Discussion

Here we report for the first time the application of multi-assay immune monitoring, including
mass cytometry, in highly sensitized kidney transplant candidates undergoing desensitization
therapy to lower HLA antibodies and enable transplantation. This study was designed to deter-
mine if comprehensive immune profiling and the development of a multivariate analysis
model might help predict which candidates respond to desensitization therapy.

First, we found significant baseline, pre-treatment differences between responders and non-
responders. In our multivariate, decision tree model, we found that candidates with low num-
bers of transitional B cells and high numbers of Tregs were the most likely to not respond to
therapy. Transitional B cells are seen in operationally tolerant patients and are thought to have
regulatory and tolerogenic properties [12-14]. In addition, there is belief that tolerogenic B
cells could balance allosensitization [15]. High levels of Tregs may represent an underlying
inflammatory state secondary to infection or other ongoing immune events, leading to poor
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Fig 3. Top two longitudinal models by assay. (A) CyTOF phenotyping, (B) gene expression, (C) phosphoepitope flow cytometry. (Pheno = CyTOF
phenotyping; G = gene expression; Phospho = phosphoepitope flow cytometry). Top models have the smallest p-values for the difference at baseline
between responders and non-responders. Each symbol type and the connecting lines represent the values for one candidate across multiple blood draws.
Blood draws are ordered by sequence number. Non-responders (NR) are in the left-hand panel of each figure, and responders (R) are in the right-hand
panel. The table provides key metrics for the analyses. “Difference at baseline for responders” indicates the amount that the estimated average baseline level
for the responders differs from that of the non-responders. “Unadjusted p-value for difference” and “Adjusted p-value for difference” are the unadjusted and
adjusted p-values for this estimate, respectively.

doi:10.1371/journal.pone.0153355.g003
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Fig 4. Best performing cross-assay pair using longitudinal samples. (A) Regression model with the solid blue line indicating the estimated relationship
between the two analytes for non-responders (NR) and the dotted green line the relationship for responders (R). (B) Support vector machine (SVM) with the
dotted line indicating the best linear relationship separating the two groups. Observations that are circled are the “support vectors,” the observations that drive
the placement of the line of separation. All observations are correctly classified by the SVM. G = gene expression; Pheno = CyTOF phenotyping.

doi:10.1371/journal.pone.0153355.9004

response to desensitization therapy. Notably, the thresholds set for the decision tree algorithm
were at the extremes of the values of the normal healthy population. Therefore, a combination
of baseline levels of immune phenotypes may predict response to therapy.

Second, we analyzed the trend of immune phenotypes, gene arrays, and phosphoepitope
flow cytometry longitudinally after starting desensitization therapy. The top two analytes,
HLADR-CD38+CD8+ T cells and CD94+CD8+ T cells, in which the responders were lower
than non-responders were both markers of effector T cells. Interestingly, CD94/NKG?2 is a lec-
tin expressed predominantly on natural killer (NK) cells and a subset of CD8+ T cells [16].
NK-cell antibody-dependent cell mediated toxicity (ADCC) may contribute to microvascular
damage associated with antibody-mediated rejection and may activate B cells via IFN-gamma
or direct cell to cell contact [17]. In transplantation, NK cells are thought to promote either
rejection or tolerance, and, therefore, it is unclear whether the presence of NK cells is beneficial
or deleterious [18]. For our model, we also identified the top two genes and phosphoepitope
flow signaling pathways that could separate responders from non-responders over many
months of therapy. Although the p-values were not significant after adjustment for multiple
comparisons, the longitudinal findings confirmed the stability of our baseline measurements,
which did not change dramatically over the course of several time points during desensitization
therapy. Therefore, this analysis provided evidence that baseline measurements can be utilized
for our predictive model.

Finally, we combined all the assays and 72 analytes in multivariate analyses to determine the
interrelatedness of different immune and biological markers and to identify top markers that
can classify responders from non-responders. We found that the combination of an activated
T cell phenotype, HLA-DR-CD38+CD4+ T cells, and the gene, TRAF3IP3, could perfectly sep-
arate responders from non-responders. TRAF3IP3, tumor necrosis factor-associated factor3
(TRAF3) interacting protein 3, mediates cell growth by up-regulating the c-Jun N-terminal
kinase (JNK) pathway [19]. Moreover, TRAF3PIP3 is specifically expressed in immune organs
and tissues and may play a role in T and/or B cell development [19, 20]. Furthermore, we were
able to examine the relationships between key genes and immune phenotypes and to develop a
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doi:10.1371/journal.pone.0153355.9g005
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doi:10.1371/journal.pone.0153355.g006

model of eleven analytes to predict response status. This model will need to be validated in a
larger cohort.

Desensitization therapy is utilized to decrease HLA antibodies and the underlying immune
cells responsible for antibody production. The exact mechanism of how these medications
work or how to predict who responds to therapy is unknown. IVIG may exert its effects by
binding to Fc receptors on immune cells, inhibiting IgG production, or inducing B cell apopto-
sis [21]. Rituximab, a chimeric CD20 monoclonal antibody, is postulated to decrease the pro-
duction of HLA antibodies through targeting memory and naive B cells without having any
known effect on plasma B cells [22, 23]. However, memory B cells may be resistant to rituxi-
mab. Plasmaphereis removes plasma proteins including HLA antibodies without any known
effect on B cells [24]. Bortezomib, a proteasome inhibitor, results in apoptosis of plasma cells
although the effect on memory B cells and plasmablasts are unknown [5, 25]. Therefore, quan-
tifying and measuring immune profiles to understand how desensitization therapies work or to
predict who responds to treatment can provide valuable information for patient management.

This study is one of the first comprehensive analyses of immune profiling using CyTOF
immunophenotyping in patients undergoing desensitization therapy. One of the strengths of
this study is the use of three assays, each of which interrogates a different compartment of
immune response. Another strength is its single center design that allows uniform desensitiza-
tion and immunosuppression protocols and sample processing, prospective and consistent
HLA antibody monitoring, and long-term and careful patient follow-up. As this is a single cen-
ter study, one limitation is the small sample size, although the main objective of this pilot study
was to develop a predictive model. Larger studies will need to be performed for validation.

In conclusion, this study of immune profiles in highly sensitized kidney transplant candi-
dates shows that patients that respond to desensitization therapy with a reduction in HLA anti-
bodies may have different baseline immune and gene expression profiles than those that are
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not responsive to therapy. This study demonstrates the translation of novel technology, com-
prehensive immune phenotyping, and analytic models to a challenging clinical setting of highly
sensitized kidney transplant candidates. Ultimately, profiling of select immune phenotypes and
key genes may permit the development of predictive biomarkers that can improve kidney
transplant rates and outcomes in highly sensitized kidney transplant candidates.
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S1 Fig. Scatter plots of two baseline immune phenotypes. Non-responders (NR) and
responders (R) show significantly different levels of CD94+CD8+ T cells and HLA-DR-CD38
+CD8+ T cells at baseline (top row, n = 20). These frequency differences were concordant with
differences in absolute cell counts (bottom row, n = 19), although there was no significant dif-
ference in the counts.

(TTF)

S2 Fig. Pairwise analysis of baseline immune phenotype frequencies using support vector
machines. The dotted line represents the support vector, or the line that best separates
responders and non-responders. The most discriminating analyte pairs, including this repre-
sentative (HLA-DR-CD38+CD8+ T cells and CD27+CD8+ T cells) misclassify three samples
(green points above the dotted line) in this example. Pheno = CyTOF phenotyping.

(TIF)

S3 Fig. Analysis of cross-assay pairs using support vector machines (SVM). Four pairs of
analytes yielding an SVM with one classification error. The dotted line represents the support
vector, or the line that best separates responders and non-responders. Observations that are
circled are the “support vectors,” the observations that drive the placement of the line of sepa-
ration. G = gene expression; Pheno = CyTOF phenotyping.

(TIF)
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