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Aims: The study aimed to conduct a meta-analysis to determine the abnormalities

of white matter in patients with type 2 diabetes mellitus (T2DM) by identifying the

consistency of diffusion tensor imaging (DTI).

Method: The literature for DTI comparing patients with T2DM with controls published

before October 30, 2020, were reviewed in PubMed, Web of Science, Embase, CNKI,

and Wan Fang databases. The meta-analysis was performed using the activation

likelihood estimation (ALE) method, including 12 reports and 381 patients with T2DM.

Results: The meta-analysis identified 10 white matter regions that showed a consistent

reduction of fractional anisotropy (FA) in patients with T2DM, including genu of the corpus

callosum, the body of corpus callosum, bilateral anterior corona radiata, bilateral superior

corona radiata, bilateral cingulum, and bilateral superior fronto-occipital fasciculus.

Conclusion: This study revealed the abnormal characteristics of white matter in T2DM,

which would be helpful to understand the underlying neuropathological and physiological

mechanisms of T2DM and provide evidence for clinical diagnosis and treatment.

Keywords: type 2 diabetes mellitus, diffusion tensor imaging, white matter, meta-analysis, activation likelihood

estimation

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease in which blood glucose is abnormal
due to insufficient insulin secretion or the inability of the body to effectively use insulin (Arnold
et al., 2018). According to the International Diabetes Federation (IDF), the incidence of type
2 diabetes worldwide is estimated to be 8.18%, with 415 million adults living with the disease
and the number still on the rise (Zheng et al., 2018). T2DM is recognized as an independent
risk factor for cognitive impairment (Biessels et al., 2006; Cukierman-Yaffe et al., 2020). The
risk of developing Alzheimer’s disease (AD) in patients with T2DM is two times as high as that
in healthy individuals (Peila et al., 2002; Crane et al., 2013). Studies have shown that cognitive
decline is related to abnormal brain microstructures (Alfaro et al., 2018; Reas et al., 2020).
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Clarifying these brain abnormalities is helpful for the clinical
diagnosis and treatment of cognitive decline in T2DM.

White matter makes up about 50% of the volume in
the human brain (Filley, 1998). In the human forebrain,
there are about 135,000 km of myelinated fibers (Saver,
2006) connecting the gray matter regions. Information
processing in gray matter, manifested by synaptic events
such as neurotransmitter release and long-term enhancement,
is supplemented by information transmission in white matter,
both of which are essential for the highly evolved behavior
of the human brain (Filley, 2010). However, several studies
have found abnormalities in the white matter of T2DM
(Gao et al., 2019; Zhuo et al., 2019; Cui et al., 2020).

As a highly sensitive method for detecting the microstructure
of white matter, diffusion tensor imaging (DTI) is an important
technique for assessing white matter integrity in vivo (Catani,
2006; Mori et al., 2009). Based on the diffusion velocity of water
molecules in different tissues, white matter integrity is usually
estimated via fractional anisotropy (FA), and diffusion coefficient
parameters are calculated by DTI. Previous DTI studies have
observed widespread white matter abnormalities in patients with
type 2 diabetes, but the results of these studies were mixed. For
example, a reduction in FA was found mainly in the left temporal
lobe (Yau et al., 2009), as opposed to a reduction in the right
temporal lobe (Xiong et al., 2019b). Other researchers have also
found a decrease in FA in the frontal lobes and corpus callosum
(Ruan et al., 2017; Xie et al., 2017; Su et al., 2020). Differences
in the results of these studies might be due to the limited
sample sizes, different acquisition parameters, and analysis
methods. Several systematic reviews have summarized the brain
microstructural alterations in T2DM using DTI, which suggests
the detrimental effects of T2DM on cognitive functions that
might be associated with the alterations in brain microstructure
(Sanjari Moghaddam et al., 2019; Alotaibi et al., 2021). Although
the specific abnormal regions of white matter in T2DM were
summarized in the systematic reviews, the locations and sizes
of the alterations were not reported. Therefore, it is urgently
needed to conduct a meta-analysis to identify the locations of the
alterations in white matter in patients with T2DM.

Activation likelihood estimation (ALE) is a brain imaging
meta-analysis method based on coordinates, which integrates
many brain imaging results to obtain locations of the stable
differences in brain regions through automated statistical analysis
(Turkeltaub et al., 2002; Laird et al., 2005; Eickhoff et al., 2009,
2012). To date, ALE has been widely used in neuroimaging
studies of neurological and psychological disorders (Tahmasian
et al., 2017; Xia et al., 2017; Roberts et al., 2020). To identify the
consistency of white matter changes in T2DM, we applied ALE to
conduct a meta-analysis of DTI in patients with T2DM.

MATERIALS AND METHODS

Search Strategy
A meta-analysis of the literature on alterations in the white
matter of T2DMwas performed according to PRISMA guidelines
(Moher et al., 2015). All the articles published before October
30, 2020, were retrieved from PubMed, Web of Science, Embase,

CNKI, and Wan Fang database. Two researchers independently
used the combined keywords to complete the search: (1) “White
matter,” “Diffusion tensor imaging,” or “fractional anisotropy,”
and (2) “Type 2 diabetes mellitus” or “T2DM.” The FA differences
were estimated in most studies via voxel-based analysis (VBA)
or tract-based special statistics (TBSS), while the comparison
of other diffusion measures was very limited, such as mean
diffusivity (MD), radial diffusivity (RD), and axial diffusivity
(AD). We comprehensively searched the studies using MD,
RD, or AD for DTI analysis in T2DM. There was one study
that estimated MD and one that estimated RD which met the
inclusion criteria. Therefore, this study conducted an imaging
meta-analysis to investigate the FA differences.

Study Inclusion and Exclusion Criteria
Studies were included according to the criteria: (1) the original
research articles were published in peer-reviewed journals, (2)
patients with T2DM were diagnosed, (3) significant differences
in FA values were examined in the study, and (4) the coordinates
inMontreal Neurological Institute (MNI) or Talairach (Tal) space
were reported.

Studies were excluded in the following situations: (1) the study
included patients with undiagnosed T2DM in the experimental
group, (2) coordinates were not reported in the study or were
not obtained after contacting the first author, (3) the results were
limited to a particular region of interest, not the whole brain, and
(4) the articles or non-research articles were unpublished.

Literature Quality Assessment
The literature quality assessment form was developed based on
the previous study (Iwabuchi et al., 2015). The total score of the
form was 20, with two parts of sample information (10 points)
and imaging methods (10 points).

Sample information was scored as follows: (1) patients
were diagnosed with specified standardized diagnostic criteria
(1 point), (2) age and educational background were reported
with mean (or median) and SDs (or range) (2 points),
(3) healthy comparison subjects were evaluated to exclude
psychiatric and medical illnesses, and demographic data were
reported (1 point), (4) important clinical variables [e.g., illness
duration, fasting plasma glucose (FPG) level, HbA1c, and
cognitive level] were reported with mean (or median) and
SDs (or range) (4 points), and (5) sample size per group was
≥10 (2 points).

Evaluation of imaging methods was scored in the following
aspects: (1) whole-brain analysis was automated without a priori
regional selection (3 points), (2) magnet strength was at least
1.5 T (1 point), (3) the study had at least six of diffusion
direction (1 point), (4) whole-brain coverage of scans was used
(1 point), (5) the acquisition and preprocessing techniques
were clearly described so that they could be reproduced (1
point), (6) coordinates were reported in standard space (1
point), (7) significant results were reported after correction
for multiple testing using a standard statistical procedure
[false discovery rate (FDR), family-wise error (FWE), or
permutation-based methods] (1 point), and (8) conclusions were
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consistent with the results obtained and the limitations were
discussed (1 point).

Data Extraction
Information extraction from the included study was done
independently by two researchers. We extracted the baseline
information, DTI characteristics, and coordinates in the study.
Baseline information included the name of the first author,
publication year, study group, and sample size of each group,
age, years of education, FPG, HbA1c, disease course, body
mass index (BMI), and cognitive level. DTI characteristics
included the following information: magnet, image processing,
analytical method, coordinates type, direction, b values, and
statistical threshold.

Coordinate-Based Meta-Analysis
To analyze the consistency of abnormal FA clusters reported
in all studies, a meta-analysis of ALE was performed using the
GingerALE2.3.3 software package (Laird et al., 2005; Eickhoff
et al., 2009; Research Imaging Institute of the University of Texas

Health Science Center, San Antonio, TX, United States). The
voxel coordinates of each study were regarded as probability
distributions to create ALE distribution maps (Turkeltaub et al.,
2002). The x, y, and z peak activation coordinates of all the
white matter fiber clusters were included as the input for the
meta-analysis. FA measures from all included studies were used
in the meta-analysis. The analysis was performed in the MNI
space. The ALE meta-analysis was estimated using a cluster-
level inference threshold of P < 0.05 (FWE correction) with
5,000 permutations and P < 0.05. Then, the Johns Hopkins
University (JHU) DTI-based white-matter atlases were applied
to label the resulting clusters. Besides, Colin brain template
in MNI space was used to visualize the results using DPABI
software (Yan et al., 2016).

RESULTS

Search Results and Study Characteristics
Two researchers independently searched the literature according
to the search terms. A total of 2,100 articles were retrieved using

FIGURE 1 | The flowchart of the literature search.
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the search strategy (CNKI n = 327; Web of Science n = 638;
Wan Fang n = 448; PubMed n = 307; Embase n = 380). About
871 duplicate papers were deleted, 291 theses, 13 conference
papers, and 5 books were excluded according to literature types,
and 920 journal articles were selected. The titles or abstracts
of journal papers were screened according to the inclusion and
exclusion criteria, and 48 journal articles were selected to meet
the criteria. Two researchers independently reviewed the full text
of 48 articles. About 36 articles were excluded for the following
reasons: region of interest, coordinates not reported, imaging
rather than DTI, fiber tracking, axial diffusion, animal, and full
text not found. Finally, a total of 12 studies were included for the
meta-analysis (Yau et al., 2009, 2010, 2013; Chen et al., 2013; Kim
et al., 2016; Nouwen et al., 2017; Ruan et al., 2017; Xie et al., 2017;
Yoon et al., 2017; Liang et al., 2019; Xiong et al., 2019b; Su et al.,
2020; Figure 1).

The T2DM group and the control group in the 12 included
studies were usually described by their characteristics, such
as age, gender, education, FPG, HbA1C, duration, BMI, and
cognitive level (Table 1). In the included studies, one study
(Kim et al., 2016) showed a higher level of HbA1C than
the others. The DTI parameters and analysis methods in
the studies were used to examine magnetic field intensity,
toolbox, analysis method, coordinate space, the number of
diffusion direction, b0-value, and statistical threshold (Table 2).
Literature quality assessments with a total score of 20 were
conducted. All the scores of the 12 studies were higher than
16, which indicated that the quality of the included studies was
acceptable (Figure 2).

Meta-Analysis
Activation likelihood estimation meta-analysis was performed
on the FA values of 381 patients with T2DM from 12
included studies. Compared to controls, patients with T2DM
had shown consistent FA reductions (Figure 3; Table 3). The
largest cluster (4,432mm3) was located in the body of corpus
callosum, and the others included left superior corona radiata
(1,944mm3), right superior corona radiata (1,400mm3), right
anterior corona radiata (1,336mm3), genu of corpus callosum
(448mm3), right cingulum (120mm3), left anterior corona
radiata (88mm3), left cingulum (24mm3), left superior fronto-
occipital fasciculus (16mm3), and right superior fronto-occipital
fasciculus (8mm3).

DISCUSSION

In the present study, a coordinate-based meta-analysis of
DTI was conducted to investigate the abnormal white matter
in patients with T2DM. Twelve eligible studies with a total
of 381 patients with T2DM were analyzed. The consistent
abnormal whitematters were identified, namely, the commissural
fibers genu of corpus callosum and body of corpus callosum,
the association fibers cingulum and superior fronto-occipital
fasciculus, and the projection fibers anterior corona radiata and
superior corona radiata.

Commissural fibers connected the left and right hemispheres,
such as corpus callosum, anterior commissure, and fornix. As

the largest commissural fiber in the telencephalon, the corpus
callosum was an important connective fiber that played a key
role in transmitting, integrating, and coordinating information
between the left and right hemispheres, whether excitatory or
inhibitory (Bloom and Hynd, 2005; Caillé et al., 2005; Roland
et al., 2017). Consistent with previous reports (Chen et al., 2013;
Yau et al., 2013; Yoon et al., 2017), abnormalities in the corpus
callosum were also found in patients with T2DM in this study.
Furthermore, based on the discovery of abnormalities in the
corpus callosum, wemade a more detailed localization and found
abnormalities in the genu and body of the corpus callosum.
The body of the corpus callosum, which connects the parietal,
temporal, and occipital lobes, contains important structures for
processing memory, emotions, and execution (Musiek, 1986;
Matsukawa et al., 2011; Goldstein et al., 2021). Damage to the
body of the corpus callosum would result in dysfunction or
abnormal memory, mood, and executive function (Peltier et al.,
2012). Impairment in the body of the corpus callosummight play
an important role in cognitive impairment in T2DM. Besides,
the genu of the corpus callosum contains fibers that connect
the left and right prefrontal lobes, the premotor cortex, and the
accessory motor cortex (Matsukawa et al., 2011). Abnormalities
in the genu and body of the corpus callosum may contribute to
sensory, cognitive, mental, or visual impairments in patients with
T2DM (Yang et al., 2014). Therefore, these regions may become
new targets for the treatment of patients with T2DM who also
have cognitive impairment.

Projection fibers are the connecting fibers between the
cerebral cortex and the subcortical center. The anterior corona
contains projection fibers from the internal capsule to the
cerebral cortex (Wakana et al., 2004), which primarily projects
to the prefrontal cortex and plays a role in the neural circuitry
for emotion regulation (Sanjuan et al., 2013; Goodkind et al.,
2015). Consistent with the results of this meta-analysis, several
studies on DTI have found that the anterior corona radiata
and superior corona radiata were abnormal in patients with
T2DM (Xiong et al., 2016, 2019a; Sun et al., 2018). Patients
with T2DM are often accompanied by a variety of emotional
disorders, such as depression and anxiety. For example, a cross-
sectional study found that the prevalence of depression and
anxiety in patients with type 2 diabetes in western Saudi Arabia
was 33.8 and 38.3%, respectively (Alzahrani et al., 2019). It
was reported that the prevalence of anxiety in people with
T2DM was significantly higher than in those who were healthy
(Tu et al., 2017). At the same time, a meta-analysis showed
that almost a quarter of patients with T2DM were depressed
(Khaledi et al., 2019). Further studies are needed to explore
whether the occurrence of depression and anxiety in patients with
T2DM may be related to white matter abnormalities such as the
corona radiata.

The abnormal connecting fibers that connect the adjacent
gyrus of the ipsilateral cerebral hemisphere were found in
T2DM, including the cingulum and superior fronto-occipital
fasciculus. Consistent with the previous studies, significant
abnormalities in the cingulum of patients with T2DMwere found
in the study (Liang et al., 2019; Cui et al., 2020). As a core
member of the limbic system, the cingulate serves as a bridge
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TABLE 1 | Study and subject information of the studies included in the current meta-analysis.

References Groups Sample Age (years) Education (years) FPG (mmol/L) HbA1C (%) Duration (years) BMI (kg/m²) Full Scale IQ MMSE MoCA

Yau et al. (2009) T2DM 24 57.21 ± 8.05 15.29 ± 2.76 NA 7.83 ± 1.88 7.94 ± 5.64 32.13 ± 5.96 106.74 ± 13.00 NA NA

Control 17 56.44 ± 6.94 16.06 ± 1.75 NA 5.37 ± 0.42 — 24.09 ± 3.69 112.78 ± 12.28 NA NA

Yau et al. (2010) T2DM 18 16.46 ± 1.89 10.75 ± 1.53 8.37 ± 4.79 8.32 ± 2.87 NA 37.70 ± 6.36 87.83 ± 12.55 NA NA

Control 18 17.16 ± 1.45 11.15 ± 1.66 4.16 ± 0.43 5.29 ± 0.33 — 36.80 ± 7.22 103.63 ± 11.75 NA NA

Yau et al. (2013) HTN/T2DM 22 58.36 ± 7.91 NA 8.01 ± 3.26 7.89 ± 1.90 NA 32.89 ± 7.03 NA NA NA

HTN/non-T2DM 11 62.38 ± 7.32 NA 4.40 ± 0.62 5.64 ± 0.19 — 25.48 ± 5.08 NA NA NA

Chen et al. (2013) T2DM 16 61.00 ± 12.00 NA NA NA 13.00 ± 4.00 NA NA NA NA

Control 16 60.00 ± 8.00 NA NA NA — NA NA NA NA

Kim et al. (2016) T2DM 20 54.60 ± 2.30 11.90 ± 2.30 10.00 ± 1.04 10.70 ± 0.30 12.10 ± 6.50 24.70 ± 0.60 NA NA NA

Control 20 54.30 ± 2.40 10.00 ± 3.60 5.19 ± 0.13 5.90 ± 0.10 — 23.60 ± 0.40 NA NA NA

Nouwen et al. (2017) T2DM 13 16.00 ± 1.60 NA 8.87 ± 3.87 7.80 ± 1.97 2.57 ± 1.92 NA NA NA NA

Control 20 16.10 ± 1.90 NA 4.78 ± 0.49 5.29 ± 0.33 — NA NA NA NA

Xie et al. (2017) T2DM 58 56.09 ± 8.16 11.72 ± 3.31 8.06 ± 2.81 8.35 ± 2.10 7.60 ± 5.82 25.57 ± 2.19 NA 29.21 ± 0.89 NA

Control 58 54.66 ± 7.03 11.07 ± 2.64 5.13 ± 0.65 5.56 ± 0.33 — 24.64 ± 2.99 NA 29.50 ± 0.94 NA

Yoon et al. (2017) T2DM 100 49.20 ± 7.70 NA 7.67 ± 2.24 7.12 ± 1.43 1.83 ± 1.53 25.50 ± 3.40 NA NA NA

Control 50 49.00 ± 7.80 NA 5.24 ± 0.21 5.29 ± 0.15 — 22.70 ± 1.80 NA NA NA

Ruan et al. (2017) T2DM 30 55.83 ± 6.00 7.10 ± 1.30 12.39 ± 2.44 NA 8.77 ± 2.46 NA NA NA 24.77 ± 1.04

Control 30 56.33 ± 5.27 7.23 ± 1.33 4.88 ± 0.53 NA — NA NA NA 28.47 ± 1.31

Liang et al. (2019) T2DM 34 58.29 ± 4.19 10.50 ± 1.21 6.64 ± 2.00 7.85 ± 1.34 6.85(3-14) 24.36 ± 1.89 NA NA NA

Control 32 56.31 ± 4.46 9.75 ± 1.32 5.28 ± 0.23 NA — 20.58 ± 1.47 NA NA NA

Xiong et al. (2019b) T2DM-MCI 20 63.55 ± 5.81 11.30 ± 3.61 9.39 ± 2.16 8.15 ± 1.63 9.09 ± 8.14 24.37 ± 3.32 NA 25.40 ± 2.09 25.25 ± 1.25

Control 28 59.65 ± 5.98 10.18 ± 3.07 5.19 ± 0.68 5.23 ± 0.38 — 24.03 ± 2.02 NA 28.36 ± 0.99 28.64 ± 1.22

Su et al. (2020) T2DM 26 55.58 ± 5.93 14.54 ± 1.61 9.25 ± 3.38 8.13 ± 1.76 11.12 ± 5.56 23.97 ± 2.22 NA 28.69 ± 1.29 27.50 ± 1.24

Control 25 53.12 ± 4.79 15.56 ± 2.00 5.31 ± 0.85 5.58 ± 0.51 — 24.00 ± 3.45 NA 28.56 ± 1.42 27.54 ± 1.10

Data are mean ± SD. BMI, body mass index; FPG, fasting plasma glucose; HTN, hypertension; MCI, mild cognitive impairment; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment; T2DM, type 2

diabetes mellitus.
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TABLE 2 | Diffusion tensor imaging (DTI) parameters and analysis methods in the studies of the meta-analysis.

References Magnet Image processing Analytical method Coordinates Direction b0 (s/mm²) Statistical threshold

Yau et al. (2009) 1.5T MIDAS, ART2 VBA Tal 6 1,000 P < 0.005

Yau et al. (2010) 1.5T SPM VBA Tal 6 1,000 P < 0.005

Yau et al. (2013) NA ART2 VBA Tal 6 1,000 P < 0.01

Chen et al. (2013) 3.0T SPM VBA MNI 15 1,000 P < 0.01

Kim et al. (2016) 3.0T FSL TBSS MNI 30 1,000 P < 0.05 (FWE)

Nouwen et al. (2017) 3.0T FSL TBSS MNI 61 1,500 P < 0.05 (TFCE)

Xie et al. (2017) 3.0T SPM, FSL, DKE VBA MNI 25 1,000, 2,000 P < 0.05 (AlphaSim)

Yoon et al. (2017) 1.5T FSL TBSS MNI 54 1,000 P < 0.05 (Cluster-based thresholding)

Ruan et al. (2017) 3.0T SPM, FSL VBA MNI 64 1,000 P < 0.05 (corrected for multiple comparisons)

Liang et al. (2019) 3.0T PANDA VBA MNI 25 1,000 P < 0.05 (AlphaSim)

Xiong et al. (2019b) 3.0T FSL TBSS MNI 25 1,250, 2,500 P < 0.05 (FWE)

Su et al. (2020) 3.0T FSL TBSS MNI 64 1,000 P < 0.05 (TFCE)

ART2, automated registration toolkit 2; DKE, diffusional kurtosis estimator; FA, fractional anisotropy; FWE, family-wise error; FSL, FMRIB software library; MIDAS, multi-modal imaging

data analysis system; MNI, Montreal neurological Institute; PANDA, pipeline for analyzing brain diffusion images; SPM, statistical parametric mapping; Tal, talairach; TBSS, tract based

spatial statistics; TFCE, threshold-free cluster enhancement; VBA, voxel-based analysis.

FIGURE 2 | Literature quality assessment. The green circle means the information is clearly described in the study. The yellow circle means the information is not

clearly described in the study. The red circle means the information is not described in the study.

connecting the various lobes of the brain and the cingulate
gyrus (Dalgleish, 2004; Bubb et al., 2018). The anterior cingulate
cortex is related to cognitive control and decision-making, and

the posterior cingulate cortex is involved in the adjustment
of working memory, visual space, and spatial orientation. In
particular, the anterior cingulate cortex plays a key role in

Frontiers in Aging Neuroscience | www.frontiersin.org 6 August 2021 | Volume 13 | Article 693890

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Huang et al. Abnormal White Matter in T2DM

FIGURE 3 | Abnormal white matter estimated by fractional anisotropy (FA) in type 2 diabetes mellitus (T2DM). (A) The results from the activation likelihood estimation

(ALE) meta-analyses are shown in 3D rendering. The gray region represents the outline of the brain. The green region represents the normal white matter. The blue

region represents the abnormalities in the white matter. (B) The results from the ALE meta-analyses are overlaid onto a standard template in the Montreal Neurological

Institute (MNI) space. The color bar represents the ALE value. Cluster-level inference threshold of P < 0.05 [family-wise error (FWE) correction] with 5,000

permutations and P < 0.05.

TABLE 3 | Regions that showed consistent fractional anisotropy (FA) reduction in patients with T2DM.

No. ROI X Y Z Extrema Volume (mm3)

1 Genu of corpus callosum 16 20 24 0.01434 448

2 Body of corpus callosum 18 12 32 0.015065 4,432

3 Anterior corona radiata R 18 16 32 0.013598 1,336

4 Anterior corona radiata L −16 16 30 0.0034261 88

5 Superior corona radiata R 18 12 34 0.017433 1,400

6 Superior corona radiata L −22 −8 36 0.0094876 1,944

7 Cingulum R 10 20 24 0.0042591 120

8 Cingulum L −6 −2 32 0.0025344 24

9 Superior fronto-occipital fasciculus R 22 14 22 0.0021478 8

10 Superior fronto-occipital fasciculus L −20 10 24 0.002947 16

error handling (Leech and Sharp, 2014; Bliss et al., 2016;
Maldonado et al., 2020). Cingulate impairment in neurological
and psychiatric disorders has been widely reported. Based on
these studies, we speculate that the abnormal cingulate may
be related to cognitive decline in T2DM. In addition, some
studies have previously reported the abnormality of the post-
default mode network connection in patients with T2DM (Cui
et al., 2015; Ishibashi et al., 2018; Liu et al., 2019), and the
cingulate as the structural basis of this default network (van
den Heuvel et al., 2008). The findings in this study may help
to explain these network changes. Interestingly, abnormalities
in the fronto-occipital fasciculus were also found in the study,
which is consistent with the reduction of FA in bilateral frontal
occipital tracts of T2DM reported by Xiong et al. (2019a).
The fronto-occipital fasciculus played an important role in
visual processing and spatial awareness (Bar et al., 2006; Meola
et al., 2015). Therefore, the visual impairment in patients with
T2DM might not only be due to retinal atherosclerosis but may
also be related to abnormalities of the cingulate and fronto-
occipital fasciculus.

This meta-analysis has determined the abnormalities of white
matter in patients with T2DM by identifying the consistency
of DTI. However, some limitations need to be pointed out.
First, the number of included studies was relatively small.
Second, few studies have reported the other indicators via DTI;
therefore, only FA was used to estimate the abnormalities in
white matter. Further studies based on MD, AD, and RD should
be conducted to comprehensively assess the abnormal white
matter in T2DM. Third, on the one hand, the MRI machine,
acquisition parameters, and analysis method in each of the
studies were different; on the other hand, few studies share the
original data because it is too large. It is difficult to estimate the
heterogeneous using FA images. Further studies should be done
to establish a shared neuroimaging dataset about T2DM, which
would make it possible to do the meta-analysis based on the
original images.

In summary, the meta-analysis of DTI demonstrated
the abnormalities in commissural fibers, association fibers,
and projection fibers in T2DM, which might contribute
to the neurobehavioral disorders in T2DM. These findings
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would promote the understanding of the neuropathological
mechanisms of T2DM.
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