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Abstract
Introduction  A large number of studies on systems to detect and sometimes normalize adverse events (AEs) in social media 
have been published, but evidence of their practical utility is scarce. This raises the question of the transferability of such 
systems to new settings.
Objectives  The aims of this study were to develop an AE recognition system, prospectively evaluate its performance on an 
external benchmark dataset and identify potential factors influencing the transferability of AE recognition systems.
Methods  A pipeline based on dictionary lookups and logistic regression classifiers was developed using a proprietary dataset 
of 196,533 Tweets manually annotated for AE relations and prospectively evaluated the system on the publicly available 
WEB-RADR reference dataset, exploring different aspects affecting transferability.
Results  Our system achieved 0.53 precision, 0.52 recall and 0.52 F1-score on the development test set; however, when 
applied to the WEB-RADR reference dataset, system performance dropped to 0.38 precision, 0.20 recall and 0.26 F1-score. 
Similarly, a previously published method aiming at automatically detecting adverse event posts reported 0.5 precision, 0.92 
recall and 0.65 F1-score on thus another dataset, while performance on the WEB-RADR reference dataset was reduced to 
0.37 precision, 0.63 recall and 0.46 F1-score. We identified four potential factors leading to poor transferability: overfitting, 
selection bias, label bias and prevalence.
Conclusion  We warn the community about a potentially large discrepancy between the expected performance of automated 
AE recognition systems based on published results and the actual observed performance on independent data. This study 
highlights the difficulty of implementing an all-purpose system for automatic adverse event recognition in Twitter, which 
could explain the lack of such systems in practical pharmacovigilance settings. Our recommendation is to use benchmark 
independent datasets, such as the WEB-RADR reference, to investigate the transferability of the adverse event recognition 
systems and ultimately enforce rigorous comparisons across studies on the task.
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1  Introduction

The internet has radically changed the way patients inform 
themselves about diseases and medicinal products [1, 2]. In a 
survey by the Pew Research Center, it was estimated that 6% 
of internet users posted comments or stories regarding per-
sonal health experiences online over 1 year, and the majority 
of this group did so in order to reach a general audience of 
friends or other internet users [3]. Twitter, a social network-
ing service, is one of the largest social media platforms with 
more than 120 million daily users at the beginning of 2019. 
In Twitter, users post messages (with a maximum length of 
140 characters at the beginning of this study, but 280 char-
acters since 2017), that will be visible for anyone following 
the sender. With its massive number of users openly shar-
ing their thoughts and experiences, Twitter has the potential 
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Key Points 

Transferability of adverse event (AE) recognition sys-
tems developed for social media has not been properly 
investigated so far.

An AE recognition system for Twitter data has been 
developed in the course of the WEB-RADR project. 
The developed system and another published method for 
AE-post classification were prospectively evaluated on 
an external, independently annotated dataset and both 
showed a substantial drop in performance compared with 
reported results on the datasets used for their develop-
ment.

Relying on traditional cross-validation schemes might 
lead to an overestimation of the transferability of AE 
recognition systems in social media. This study identi-
fies four potential factors leading to poor transferability: 
overfitting, selection bias, label bias and prevalence. Uti-
lization of a benchmark independent dataset will help the 
community to get a better understanding of AE recogni-
tion systems on previously unseen data.

all-purpose pharmacovigilance and have yet to demonstrate 
impact on the field [25]. A recent study by Caster et al. 
demonstrated the poor value of disproportionality analysis 
of Twitter and Facebook data for detection of new safety 
signals [30]. This obviously poses questions on the reason 
behind this reality: is the lack of implemented solutions a 
mere sign of the infancy of the research done, or could it be 
explained by the complexity of the task and the poor trans-
ferability of the developed algorithms to new data?

As pointed out earlier, ‘adverse event recognition’ can 
represent different underlying tasks, hence it is important 
to clarify the task our system is addressing, so as to avoid 
invalid cross-study comparisons of performance. Our system 
aims to automatically extract data that would be directly 
given as input for signal detection downstream, as done 
using spontaneous reporting databases, where suspected 
drugs and AEs are extracted from case reports and used to 
calculate a measure of disproportionality, facilitating iden-
tification of drug/AE pairs for further manual assessment 
[31]. Therefore, the task requires the identification of any 
medicinal product and any medical event within a given 
Tweet, the mapping of both types of concepts to dedicated 
terminologies (in our case WHODrug Global, the most com-
prehensive and actively used drug reference dictionary in the 
world, and the Medical Dictionary for Regulatory Activi-
ties, MedDRA®, the international medical terminology 
developed under the auspices of the International Council 
for Harmonisation of Technical Requirements for Pharma-
ceuticals for Human Use) and finally the characterization 
of the relationships between identified medical events and 
identified medicinal products as AE relations or not [32]. 
We have no requirement to find the exact locations of the 
products or the events within the Tweets, as is done in some 
other studies [9, 10, 33, 34]. Our success is measured by our 
ability to discover product/event combinations that represent 
AE relationships and appropriately map the product and the 
event to the correct respective entry in the terminologies. It 
is noteworthy to highlight the importance for downstream 
analysis of the mapping step so that mentions like “can’t 
sleep” and “still awake” can be mapped to the single concept 
of Insomnia. For the events, we relax the evaluation con-
straints by mapping the annotations produced by the system 
to the gold standard annotations at the Higher Level Terms 
(HLTs) of the MedDRA® hierarchy, to partly circumvent the 
potential subjectivity introduced by the manual mapping of 
the event terms. For precision computations, a true positive 
medical event is a preferred term (PT) found by the system 
for which at least one PT in the gold standard annotated 
events is found under the same HLT. Similarly, for recall 
computations, a true positive medical event is a PT from the 
gold standard annotations for which at least one PT annota-
tion has been found by the system under the same HLT. The 
two kinds of true positives might not match exactly.

to be a useful resource for post-marketing surveillance of 
medicines, complementing traditional pharmacovigilance 
tools with its unsolicited nature, timeliness and breadth of 
patient coverage [4].

In the last 10 years, a sizeable number of systems for 
automatic recognition of adverse events (AEs) in social 
media (including Twitter) have been published, with large 
variations on the actual task, from finding posts containing 
AEs [e.g. 5–8] to finding the location of the AE mentions 
within the post [e.g. 9–13], from simple extraction of the AE 
verbatims [e.g. 6, 14, 15] to mapping of the AE verbatims 
to specific terminologies [e.g. 10, 12, 16–18], from implicit 
attribution of the detected AEs to the drug of interest men-
tioned in the post [e.g. 18, 19] to classification of the rela-
tionship between drugs and AEs found [e.g. 20–23]. There-
fore, when adding the heterogeneity of the datasets used (e.g. 
size, prevalence of AEs, number of drugs studied, number of 
AE types in focus), it becomes a real challenge to compare 
performances across studies and even assess whether the 
systems described are likely to perform well on previously 
unseen independent data [24, 25]. A recent comprehensive 
review of published work on the task of AE recognition in 
social media clearly highlights all these challenges, as well 
as a great number of limitations found in studies published 
in the field [25]. Despite the claims on the usefulness of 
social media data for pharmacovigilance purposes from 
many of the studies on the topic [e.g. 5, 21, 26–29], social 
media today rarely seem to be used in practical settings for 
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Only a limited number of published systems aim at accom-
plishing this comprehensive task, most other systems are 
designed to target very specific products or events or solve 
partial aspects of the task and would therefore need additional 
steps if used in routine pharmacovigilance methods such as 
disproportionality analysis. This reality might be explained 
by the scarcity of available data to train algorithms to per-
form the comprehensive task. The 2017 shared task from the 
Social Media Mining for Health (SMM4H) workshop [11] 
provided a valuable opportunity to compare performance of 
different systems (13 different teams participated) but was 
divided into the following subtasks: (1) binary classification 
of AE posts, (2) medication intake classification and (3) map-
ping of AE expressions to MedDRA®. However, the shared 
task was renewed in September 2019 [35] and included one 
task aiming to jointly find the mentions of AEs and map the 
expressions to MedDRA®. Although the task did not include 
recognition of the drug, the best system obtained an F-score of 
0.432 [35], which is much lower than most published results of 
so-called ‘AE recognition systems’ [25]. Among other publicly 
available datasets, we found two others that were compatible 
with the development of a system that solves the comprehen-
sive AE recognition task (i.e. find all drug mentions, all event 
mentions, map them to respective terminologies and finally 
characterize their relationships): the CADEC corpus [36] and 
the TwiMed corpus [37]. Nonetheless, the vast majority of 
systems developed using these two datasets focused on one 
single subtask, the location of the ADR mention for systems 
using the CADEC corpus [e.g. 13, 38–40] and post-/sentence-
level AE classification for the TwiMed corpus [e.g. 41], with 
the mapping of the event mention to a terminology being 
ignored. Solving the comprehensive task within one single 
dataset has proven to be challenging [35]. Therefore, seri-
ous concerns about the ability of AE recognition systems to 
maintain their performance in applied settings (typically, new 
streams of social media data) can be raised, as such transfer is 
likely to cause a certain degree of performance drop. However, 
the question of transferability of such systems to new data has 
been largely left unaddressed.

With this study, we provide a first attempt at answering 
this question. The study is embedded in a larger project, 
carried out by the WEB-RADR consortium, a partnership 
between academia, industry and regulators and supported by 
the Innovative Medicines Initiative Joint Undertaking. One 
of the goals of the WEB-RADR project was to investigate 
the usefulness of social media for pharmacovigilance [42]. 
The issue raised by the question above highlights the great 
need for benchmark datasets, used solely for evaluation pur-
poses. Because annotated datasets are scarce, such datasets are 
often used both for training and evaluation. This means that 
the transferability of most developed systems, that is, the abil-
ity to maintain acceptable performance when applied in new 
contexts, is basically unknown. In fact, out of all the studies 

(~ 50) we have compiled in relation to the topic, none provide 
any sort of external validation for their developed systems of 
AE recognition. Poor transferability is likely to affect the more 
sophisticated methods, trained on datasets of limited size. To 
our knowledge, this study is the first to present the develop-
ment of an AE recognition system together with a prospective 
evaluation of its performance outside of the universe of the 
data it has been trained on. We perform an external evaluation 
using a publicly available benchmark dataset manually curated 
and annotated by members of the WEB-RADR consortium 
[43]. The dataset is entirely independent from the dataset we 
used for training our system, which was provided to us by Epi-
demico, a health informatics company (later acquired by Booz 
Allen Hamilton) and former WEB-RADR partner. Epidemico 
also published on a system for the recognition of posts with 
AE mentions as well as their characterization [5, 18], which 
seems to achieve state-of-the-art performance on the task. 
In this paper, we present external evaluation results for both 
our system and the system described in [18]. In addition, we 
sought to provide preliminary answers regarding the observed 
performance difference when the systems are applied to their 
respective training datasets and when they are applied to previ-
ously unseen and independently annotated data. Another note-
worthy original aspect of the system developed in this work 
is its scope: by design, it aims at finding any type of AE for 
any kind of medicinal product, a necessary requirement for 
performing pharmacovigilance on a global scale.

2 � Methods

2.1 � System Overview

The automatic recognition and mapping of AEs in Twit-
ter posts developed in this study is implemented like a 
pipeline, where Tweets flow through different components 
(modules) aimed at solving specific subtasks before finally 
being converted into a list of medicinal product/medical 
event pairs with a suspected AE relationship between 
them. There are three modules in our system. First, a 
relevance filter discards Tweets with low resemblance to 
AE posts, using the Indicator Score introduced elsewhere 
[18]. Second, a Named Entity Recognition (NER) module 
recognizes mentions of products as well as events, and 
then maps the recognized mentions to standardized termi-
nologies (WHODrug and MedDRA® PTs, respectively). 
Finally, an AE relation classification module classifies 
all possible pairs of recognized products and events as 
AE relations or not (Fig. 1). To provide a good trade-off 
between readability and reproducibility, a brief descrip-
tion of the datasets and the methods involved in the three 
modules is given in the following subsections, however, 
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the more technical details are provided in Online Resource 
1 (see electronic supplementary material [ESM]).

Although we have arranged the system so that the rel-
evance filter comes before the NER and mapping module, 
both modules are independent and thus could be applied 
in the reverse order. In the result section, we thus provide 
a detailed view of how AE relations are lost in these two 
modules, ignoring the order in which they are applied. 
This allows us to assess the performance of both modules 
separately.

2.2 � Datasets

The system partly involves machine learning methods. To 
train the associated models, we have used a proprietary data-
set provided by Epidemico, of 196,533 manually annotated 
Tweets (see [5] for a description of the annotation process), 
which after de-duplication and pre-processing (e.g. Eng-
lish language filtering) resulted in 138,885 Tweets further 
divided into a training set to learn the parameters of all 
models, a validation set to tune the hyperparameters and a 
test set for evaluation of the system (97,190/27,963/13,732 

Tweets, respectively). The entire processed proprietary data-
set involves 125,660 medicinal product annotations (862 
unique products) and 92,909 medical event annotations (507 
unique MedDRA® PTs), for a total of 37,434 AE relations 
(25,125/8762/3547 for the training, validation and test sets, 
respectively), representing one of the largest AE-annotated 
Twitter training datasets to date. We refer to this dataset as 
the system dataset, to keep in mind the tight relation existing 
between the dataset and the system, as all parameters of the 
system are trained using this dataset.

A second dataset is used in this study, to provide an exter-
nal prospective validation of the system and to provide an 
idea of its transferability: a publicly available set of 57,473 
Tweets manually curated for AE relations, developed in the 
course of the WEB-RADR project and intended as a bench-
mark for the task [43]. In this dataset, only Tweets with valid 
AE relations are annotated for medicinal products of interest 
and medical events, as well as the AE relations. There are 
1056 Tweets with at least one AE relation (AE posts) and 
1396 AE relations in total. We refer to this dataset as the 
reference dataset.

Fig. 1   Overview of the adverse 
event recognition system 
with examples inspired from 
observed Tweets
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2.3 � Relevance Filter

To increase the proportion of relevant posts, we apply a 
previously published method to score every post for their 
resemblance to posts containing AE relations [5, 18, 44]. In 
brief, each Tweet is converted into a bag of words. Under 
a Bayesian probabilistic model, a composite score—called 
the Indicator Score—is calculated based on the likelihood 
that the Tweet contains an AE combined with the likelihood 
that the Tweet does not contain an AE. An Indicator Score 
can lie between 0 and 1, with values close to 1 suggesting 
the presence of at least one AE mention in the post. Posts 
with scores above 0.7 were retained while the others were 
discarded, as was done in [18].

2.4 � Named Entity Recognition and Mapping

Product names are recognized via dictionary lookup using 
WHODrug Global (Uppsala Monitoring Centre, Uppsala). 
Dictionary entries with a high level of ambiguity (such as 
the tradename ‘Today’) are removed automatically before 
the lookup, to reduce noise. Overlapping matches are 
resolved by match size [45]. As we are using WHODrug 
Global, mapping to substances is trivial.

Medical events are recognized via dictionary lookups and 
machine learning. The first dictionary used is MedDRA® 
Lowest Level Terms. The second dictionary is extracted 
from VigiBase, the World Health Organization (WHO) 
global database of individual case safety reports. By using 
the reported verbatim descriptions of reactions, we include 
more expressions related to medical events. Finally, we train 
169 logistic regressions using the system dataset. Each logis-
tic regression uses the Tweet as a bag-of-grams (up to tri-
grams) as input and targets a single MedDRA® Preferred 
Term that has been annotated at least 20 times in the training 
dataset. We only retained the 124 logistic regression mod-
els for which the validation performance exceeded 0.4 in 
F-score. Mapping of the events is thus done to MedDRA® 
PTs directly by design.

2.5 � Adverse Event Relation Classifier

After the NER and mapping module, every possible pair of 
a medicinal product and a medical event that have been rec-
ognized in a Tweet that satisfied the Indicator Score thresh-
old is evaluated for their AE relation. We trained a logistic 
regression classifier based on document features (e.g. num-
ber of URLs, of words, of user mentions), on syntactic fea-
tures (e.g. product before event, number of words between 
the product mention and the event mention) and semantic 
features using word2vec [46] representations clustered in 
discrete groups. The full list of features used in the model 
is given in the Online Resource 1 (see ESM). Word2vec is 

an algorithm that can automatically, and without supervi-
sion, learn vector representations of words using a very large 
amount of text. Words appearing in similar contexts end up 
with similar vector representations, leading to a (usually) 
high-dimensional space of meaning, where neighbouring 
words have similar meaning. Word vectors can provide a 
level of abstraction that go beyond the mere terms employed. 
We used existing word vectors pre-trained on a large corpus 
of 400 million Tweets [47]. However, we did not use the 
vectors directly, instead we clustered the word vectors (500 
different clusters, using K-means clustering), as has been 
successfully done in a previous study [9].

3 � Results

3.1 � Performance Results

The recall performance results of the first two components, 
the relevance filter and the NER module, are summarized 
in Fig. 2 as a Venn diagram. As can be seen in the intersec-
tion of the three module parts, only 68.4% of the 25,125 
AE relations of the training set are still discoverable after 
the first two components (appearing in a post of Indica-
tor Score > 0.7 and having both product and event cor-
rectly recognized by the NER module), before applying 
the AE relation classifier. This number drops moderately 
to 63.3% for the test dataset and considerably to 30.4% 
for the WEB-RADR reference dataset. This means that 
31.6% of the AE relations in the training set are being lost 
by either appearing in a Tweet with Indicator Score < 0.7, 
or by having its medicinal product not recognized, or by 
having its medical event not recognized, while this per-
centage increases to 36.7% for the test set and to 69.6% for 
the WEB-RADR reference dataset. For all three datasets, 
the event recognition component is the main bottleneck, 
with 17.3%, 21.0% and 26.8% of the AE relations pass-
ing the relevance filter and having their product correctly 
recognized but their event either not detected or improp-
erly mapped to MedDRA® in the training, test and WEB-
RADR reference dataset, respectively (see the intersection 
between the green and blue ovals in Fig. 2).

The product NER is the only component that does not 
display a drop in performance when evaluating the WEB-
RADR data, with 0.878 recall of the products in AE rela-
tions in the test data versus 0.896 in the WEB-RADR refer-
ence data (this can be computed by summing all percentages 
in the blue oval in Fig. 2, representing all AE relations for 
which the medicinal product gets correctly recognized). It 
should be noted that WHODrug, used in this system, has 
also been used in the development of the WEB-RADR refer-
ence dataset to provide search terms for the six substances 
of interest; hence, the recall is expected to be smaller when 
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considering all possible product mentions that could exist 
in the world. In contrast, the event NER displays a drop in 
recall from 0.743 of the events involved in AE relations in 
the test dataset to 0.461 in the reference dataset, and the rel-
evance filter as well, from 0.953 of AE relations passing the 
filter in the test set to 0.644 in the reference dataset (this can 
be computed by summing all percentages in the pink oval in 
Fig. 2, representing all AE relations for which the medical 
event gets correctly recognized). The absolute drop in recall 
of the relevance filter and both NER modules between the 
training dataset and the test dataset is much more moderate 
(0.01 for the relevance filter, 0.009 for the product NER and 
0.055 for the event NER).

Considering the detection of AE posts (as opposed to 
AE relations), the Indicator Score gave a precision of 0.63 
and recall of 0.96 (F1-score 0.76) on the test dataset, which 
exceeds published performance (0.50 precision, 0.92 recall 
and 0.65 F1-score [18]). As the system dataset might include 
posts used to train the Indicator Score, this performance 
result is likely to represent an overestimation of the perfor-
mance that can be expected on new datasets. In fact, we also 
observed a clear drop in performance of the Indicator Score 
when applying to the reference dataset (0.37 precision, 0.63 
recall and 0.46 F1-score).

Out of the 17,175 true AE relations still retained in the 
training set after the relevance filter and the NER module 
(i.e. 68.4% of the original 25,125 AE relations), 14,608 
were correctly classified as AE relations by the AE relations 
classifier, which represents a recall of 0.85 for the classifier 
alone and a recall of 0.58 for the entire system. For the test 
set, the recall of the classifier drops to 0.80 and the overall 
recall to 0.52. For the WEB-RADR reference dataset, the 
recall of the classifier is 0.63 and the overall recall is 0.20.

Precision-wise, the NER module produces many potential 
product/event combinations to be classified as AE relations 

or not (Table 1). In all three datasets, the AE relation classi-
fier manages to improve the precision of the product/event 
combinations obtained after the NER module, from 0.31 
pre-classification to 0.61 post-classification in the train-
ing set, 0.28 to 0.53 in the test set and 0.27 to 0.38 in the 
WEB-RADR dataset; however, the benefit is much more 
marginal in the reference dataset compared with the other 
two datasets.

Overall, the system obtains the following performance 
results for recognizing, correctly coding and correctly clas-
sifying AE relations: 0.61 precision, 0.58 recall and 0.60 
F1-score on the training set, 0.53 precision, 0.52 recall 
and 0.52 F1-score on the test set, and finally 0.38 preci-
sion, 0.20 recall and 0.26 F1-score on the independently 
annotated WEB-RADR reference dataset. The F1-score 
of the entire AE recognition system is thus halved when 
moving from the test set to the independent WEB-RADR 
reference data.

3.2 � One Size Does Not Fit All

There are 291 unique PTs annotated in the WEB-RADR 
reference data, and the majority of them (156) are annotated 
only once in the dataset. When comparing F1-score per-
formance broken down by PT between the test set and the 
reference dataset, we observe that the vast majority of PTs 
have a lower observed performance in the reference dataset 
(see Fig. 3). The performance of our system on the ten most 
commonly annotated PTs in the reference dataset is sum-
marized in Table 2.

The use of dictionary lookups in the event NER allows 
the system to identify medical events that have never been 
observed in the training data. However, the performance is 
limited by the richness of expressions related to the medical 
events, which can only be captured if the dictionaries contain 

Fig. 2   Performance in recalling 
adverse event (AE) relations 
of the relevance filter and the 
Named Entity Recognition 
(NER) and mapping module. 
The total number of AE rela-
tions of the training set, the 
test set and the WEB-RADR 
reference set is given on the 
upper right corner. The figures 
in the Venn diagram indicate 
the percentage of AE relations 
correctly passing or failing the 
different module parts
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those expressions (e.g. ‘drug use disorder’ in Table 2). The 
PT ‘social problem’ illustrates another important limita-
tion of recognizing medical events: the subjectivity of the 
annotation. Most Tweets annotated for this PT describe the 
discontentment of the author to one associated product (e.g. 
“[…] Drug X is the most horrific drug.[…]”, “Fucking Drug 
X and Drug Y h8 u both”, “Talking about Drug X makes 
me sad”). Detecting common patterns in those Tweets is 

challenging for the algorithm. In fact, even describing these 
as medical events and characterizing them as AE relations 
to the product can be seen as debatable.

3.3 � Error Analysis

Out of the 1396 AE relations present in the WEB-RADR 
reference dataset, 1114 of them have been missed by the 
system. There are four possible sources of false negatives: 
the system can have missed the product mention or miscoded 
it (146 AE relations), the system can have missed the event 
mention or miscoded it (753 AE relations), the AE relation 
can be in a post that did not pass the relevance filter (498 
AE relations) or in a post with Indicator Score > 0.7 with 
both product and event correctly coded, but mistakenly clas-
sified as a non-AE relation (210 AE relations). Note that 
the first three sources of false negatives just mentioned are 
not mutually exclusive. The event NER thus represents the 
major bottleneck in recall for the reference dataset, followed 
by the Indicator Score filter.

We also analysed the 482 product–event pairs that the 
system mistakenly classified as AE relations. Of these, 52 
(11%) could potentially be interpreted as AE relations, and 
77 (16%) could be associated with different annotation 
practices used between the system dataset and the reference 

Table 1   Precision results 
before and after the AE relation 
classifier

AE adverse event

Dataset No. of product/event 
combinations

Proportion of AE rela-
tions pre-classification

No. of true positive AE rela-
tions after classification

Precision

Training 57,612 0.31 14,904 0.61
Test 8236 0.28 1829 0.53
WEB-RADR 

reference
1645 0.27 295 0.38

Fig. 3   F1-score comparison between test dataset and reference data-
set for all preferred terms in the reference dataset

Table 2   System performance on 
the top ten most common PTs in 
the WEB-RADR reference data

AE adverse event, PT preferred term

PT name No. of AE 
relations

Precision Recall F1-score No. of annota-
tions in the train-
ing set

Drug ineffective 133 0.61 0.36 0.45 5652
Feeling abnormal 74 0.42 0.04 0.07 231
Insomnia 59 0.39 0.37 0.38 2013
Adverse event 57 0 0.04 0 0
Fatigue 40 0.36 0.55 0.44 2715
Adverse drug reaction 37 0.50 0.05 0.10 0
Somnolence 29 0.62 0.21 0.31 489
Social problem 27 0 0 0 0
Hallucination 27 0.92 0.37 0.53 312
Drug use disorder 27 0.18 0.26 0.21 0
All PTs 1396 0.36 0.21 0.27
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dataset. The major source of these differences was related to 
expressions of psychotic effects such as ‘high’, ‘doped up’, 
‘floating around’ or ‘loopy’. These were generally mapped 
to the PT Altered state of consciousness in the system data-
set (the machine learning component of the event recogni-
tion thus learned to make these associations), while they 
were mapped to Euphoric mood or Feeling abnormal in the 
reference dataset. Another example of these coding differ-
ences relates to the coding of unspecific expressions such 
as ‘side effects’, which were mapped to Nonspecific reac-
tion in the system dataset while mapped to Adverse drug 
reaction or Adverse event in the reference dataset. These 
types of errors are problematic for a truthful evaluation of 
the system, because they actually lead to two paired errors: 
a false positive error where the event is coded according to 
the annotation practices of the training dataset, and a false 
negative error where the event is coded according the anno-
tation practices of the independent dataset. Evaluation of the 
system at the HLT level instead of the PT level can mitigate 
these kinds of errors only to a certain degree.

Among the remaining 352 false positive AE relations that 
truly were mistakes of the system, a majority (141) were 
due to the recognition of an event unrelated to the meaning 
of the post. Nonetheless, we also found examples of missed 
negations (the event is in the text and properly coded but 
the author means the event did not happen), events paired 
with another product mentioned in the post, not with the 
product of interest, events that were not AEs in this context 
(oftentimes indication), or events related to the gold standard 
annotation but too general (e.g. Pain vs Injection site pain) 
or slightly off compared with the gold standard annotation 
(e.g. ‘sleepy’ often got coded by the system as Tiredness 
instead of Somnolence).

4 � Discussion

In this study, we developed a system to automatically rec-
ognize medicinal products and medical events in Tweets, 
map them to WHODrug Global and MedDRA® PT termi-
nologies, and classify product/event pairs as representing 
AE relations or not. The obtained performance of the sys-
tem on the training dataset was 0.61 precision, 0.58 recall 
and 0.60 F1-score. The typical approach for estimating the 
future performance of systems of our kind is by means of 
retrospective analysis. A separate test set is reserved from 
the available data and used for computing measures of per-
formance. When evaluating our system using this approach, 
we obtained a moderate drop in performance: 0.53 precision, 
0.52 recall and 0.52 F1-score.

Measures obtained this way can, however, be expected 
to be biased, because product and AE mapping conven-
tions, the set of monitored products and safety profiles, 

epidemiological aspects of the population at the site of 
implementation, and the prevalence of reported AEs, may 
vary. A more realistic estimate of future performance can be 
obtained by instead performing a prospective evaluation of 
the system on data collected after completion of the system, 
from the context and under conditions where the system will 
be implemented. The present study is to our knowledge the 
first attempt to prospectively evaluate the performance of 
an AE recognition system for social media. Our evaluation, 
using an external, independently annotated dataset, resulted 
in a significant drop in performance compared with our ret-
rospective evaluation: 0.38 precision (two-third of the train-
ing precision), 0.20 recall (one-third of the training recall) 
and 0.26 F1-score (less than half of the training F1-score).

None of the published studies that we reviewed had, 
however, performed such an evaluation, despite its poten-
tial for revealing positive biases in estimated performances. 
Comparing AE recognition performance of our system with 
other published systems is problematic not only because of 
different study designs, but also because most published 
studies addressed fewer or different tasks. If we were to 
ignore mapping, focus on the task of identifying AE posts 
and classify any post with a relation classified as AE by our 
system, we would obtain 0.76 precision, 0.67 recall and 0.71 
F1-score for detecting AE posts when applied to the test 
dataset, which is in the range of published results. Detecting 
AE posts this way leads to 0.70 precision, 0.39 recall and 
0.50 F1-score when applied to the reference dataset, clearly 
better performance results than the results presented in the 
above paragraph (in fact, F1-score on the reference dataset 
is doubled for the AE-post recognition task compared with 
the full AE recognition task).

Another method that similarly presented poor transfer-
ability when evaluated on the WEB-RADR reference dataset 
is the Indicator Score method, which aims to detect posts 
with high resemblance to AE posts [18]. In the study, Powell 
and colleagues found that using an Indicator Score threshold 
of 0.7 led to a precision of 0.50 and a recall of 0.92 for find-
ing AE posts (0.65 F1-score). On the WEB-RADR reference 
dataset, this performance dropped to 0.37 precision and 0.63 
recall (0.46 F1-score). While the drop in precision could 
potentially be explained by the different prevalence of AE 
posts in the dataset used in the publication and in the refer-
ence dataset (25% vs 1.8%), recall is not expected to depend 
on prevalence and thus there must be other explanations for 
its performance drop. AE recognition is not the first natural 
language processing task to have poor transferability when 
applied to external datasets. Negation detection algorithms 
have also demonstrated similar difficulties [48].

The use of an external independent annotated dataset 
(the WEB-RADR reference) gave us a unique opportunity 
to study the effects of transferability of AE recognition sys-
tems. We warn the community on the existence of several 
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potential factors that can lead to poor transferability. One 
factor that can affect machine-learning–based methods 
is overfitting. It is illustrated by the drop in performance 
observed for the Indicator Score filter as well as for the AE 
classifier module and for the event recognition component 
of the NER module. The latter provides the most compel-
ling illustration. The event recognition component has two 
parts: a dictionary lookup part based on MedDRA® lowest 
level terms and VigiBase reported reactions, and a machine-
learning-based part composed of 124 logistic regressions. 
The dictionary lookup part was unaffected by the transfer 
to a new dataset (0.35 recall of the events involved in AE 
relations of the test set vs 0.33 recall in the reference data-
set). In contrast, the machine-learning-based part was clearly 
affected (0.68 vs 0.32 recall, respectively). This overfitting 
actually happens at the level of the entire training dataset 
(the system dataset in our case), not just on the training part 
of the traditional training/validation/test split. The machine-
learning–based part of the event recognition component had 
indeed a much more moderate drop in performance when 
comparing performance on the training set (0.75 recall) to 
the performance on the test set (0.68 recall). The dataset-
level overfitting is tightly linked to our second identified 
factor for explaining poor transferability of AE recognition 
systems: the issue of systematic differences between the 
training dataset and the external dataset.

Systematic differences between datasets cannot be alle-
viated by the typical methods of overfitting reduction (e.g. 
cross-validation, regularization). We have identified two 
main sources of those differences: selection bias and label 
bias. Selection bias relates to all factors that contributed to 
making the datasets, selecting the Tweets. In most AE rec-
ognition studies, Tweets are collected via Twitter API using 
search terms that often represent tradenames and substances 
of interest. Differing products leads to different safety pro-
files (the AEs will be different in nature) and different kinds 
of users (e.g. age, sex), which, combined, can lead to very 
different ways of expression. For instance, methylphenidate 
users are likely to differ from interferon users; they will tend 
to express themselves differently in their posts, and the kind 
of events they will talk about will also differ. The WEB-
RADR reference dataset has only six substances of interest: 
Methylphenidate (34.2%, used to treat attention-deficit dis-
orders), Zolpidem (30.3%, used to treat insomnia), Leveti-
racetam (23.8%, an anti-epileptic), Insulin glargine (6.8%, 
used to treat diabetes), Terbinafine (3.5%, an anti-fungal 
drug) and Sorafenib (1.3%, used to treat advanced renal 
cell carcinoma). Although these substances do appear in 
the system dataset, they only represent 5.6% of the product 
mentions in AE relations. In contrast, the top six substances 
associated with AE relations in the system dataset are Ibu-
profen (11.7%, a non-steroidal anti-inflammatory drug), 

Alprazolam (3.5%, an anxiolytic), Paracetamol (3.3%), 
Human papilloma virus vaccine (3.1%), Zolpidem (3.0%) 
and Oxycodone (3.0%, an opioid used to treat severe pain). 
Apart from the Tweets involving zolpidem, the expressions 
found in the two datasets are likely to differ, because the 
products being discussed are very different.

The second source of systematic differences between 
datasets is label bias. Label bias relates to the subjectiv-
ity surrounding the annotation of the datasets. Tweets are 
short and often quite informal. It can sometimes be hard to 
interpret what the author means. In the case of classifying a 
Tweet as containing the mention of an adverse drug reaction 
or not, different annotators can reach different conclusions. 
In a study based on Twitter data, a Kappa value (inter-anno-
tator agreement) of 0.69 has been found for this task [49], 
which demonstrates a non-negligible level of subjectivity. 
Most annotation work involves initial cycles of annotations 
where annotators develop guidelines in order to achieve a 
high consensus in their annotations. Interpretations regard-
ing what counts as an AE might differ, and so can the map-
ping of the associated event. In the error analysis, 16% of 
the false positives could be attributed to different practices 
in the coding of the event between the system dataset and the 
reference dataset. This kind of bias is only problematic if the 
system data is gathered from an external source and applied 
to another dataset of interest. Annotation practices adopted 
for making the training set of the AE recognition system will 
impact the results obtained on new data. If there are sys-
tematic differences in how the annotation is desired versus 
how it is produced by the system, some additional automatic 
corrective steps can be taken (e.g. mapping Altered state of 
consciousness to Feeling abnormal under some conditions 
related to the Tweet text). However, if there are no clear 
rules that can be derived to achieve the desired annotation 
practice, the system might have to be re-trained in-house, 
with a dataset whose annotations are following the desired 
practices.

Finally, another factor that can affect performance results 
across datasets, especially precision results, is prevalence. 
Regrettably, few studies clearly specify the prevalence of 
AEs in their training data or discuss the implications of that 
prevalence on their results as well as the transferability of 
their performance results to more real-world settings. In 
most studies, the annotated training dataset is enriched with 
AE mentions compared with what we expect to find in Twit-
ter. When applied to low AE prevalence data, algorithms 
trained on high AE prevalence data are likely to display 
a dramatic decrease in precision (and thus in F1-score to 
a smaller extent). In social media such as Twitter, where 
a tiny proportion of posts about medicinal products is 
expected to contain AE mentions, this effect is likely to be 
exacerbated.
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5 � Conclusion

There is a great need for external evaluation of AE recog-
nition systems developed for Twitter, and probably social 
media in general. The field seems to suffer from a lack 
of reproducibility. Although efforts have been made for 
ensuring fair comparison between systems [11, 35], addi-
tional publicly available annotated benchmark datasets, 
used solely for evaluation purposes, could help the field 
progress and allow for more comparisons across stud-
ies, notably on their ability to generalize to new data. In 
this study, by using the WEB-RADR reference dataset, 
a publicly available dataset [43], we identified a number 
of factors that could explain the poor transferability of 
the system we developed and of another published system 
aimed at classifying AE posts. The poor transferability 
offers a plausible explanation to why, despite almost a 
decade since the first AE recognition systems in social 
media have been published, such systems have not been 
adopted in routine pharmacovigilance practice. The vision 
of an all-purpose social-media-based pharmacovigilance 
system can only be attained if a reliable and performant 
AE recognition system is developed. Another study per-
formed under the umbrella of the WEB-RADR project 
used a state-of-the-art AE recognition system to identify 
AE relations from Twitter and Facebook posts and applied 
statistical signal detection methods [30]. Caster and col-
leagues found that these social media had no predictive 
value for either labelling changes or validated signals, and 
they point at the AE recognition system as one of the limit-
ing factors that could explain their results. Such a finding 
puts the use of social media for pharmacovigilance into 
serious question. As a community, we may have to re-think 
how social media could be of use for detecting safety con-
cerns in the use of medicines. It might be that an all-pur-
pose (all products, all events) pharmacovigilance system is 
unfeasible, but questions of more limited scope (e.g. stud-
ies of lack of effect or drug abuse) could still be addressed 
using this kind of data. Mining dedicated forums could 
provide data of higher quality and help investigate targeted 
issues. In any case, it seems clear that the utility of social 
media for pharmacovigilance remains an open question 
and that additional, carefully described research is needed 
to really understand the value social media could represent 
for monitoring the safety of medicinal products.
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