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Abstract

Normal aging and neurodegenerative diseases both lead to structural and functional alterations in synapses. Comparison of
synapses that are generally similar but respond differently to insults could provide the basis for discovering mechanisms
that underlie susceptibility or resistance to damage. Here, we analyzed skeletal neuromuscular junctions (NMJs) in 16 mouse
muscles to seek such differences. We find that muscles respond in one of three ways to aging. In some, including most limb
and trunk muscles, age-related alterations to NMJs are progressive and extensive during the second postnatal year. NMJs in
other muscles, such as extraocular muscles, are strikingly resistant to change. A third set of muscles, including several
muscles of facial expression and the external anal sphinter, succumb to aging but not until the third postnatal year. We
asked whether susceptible and resistant muscles differed in rostrocaudal or proximodistal position, source of innervation,
motor unit size, or fiber type composition. Of these factors, muscle innervation by brainstem motor neurons correlated best
with resistance to age-related decline. Finally, we compared synaptic alterations in normally aging muscles to those in a
mouse model of amyotrophic lateral sclerosis (ALS). Patterns of resistance and susceptibility were strikingly correlated in the
two conditions. Moreover, damage to NMJs in aged muscles correlated with altered expression and distribution of CRMP4a
and TDP-43, which are both altered in motor neurons affected by ALS. Together, these results reveal novel structural,
regional and molecular parallels between aging and ALS.
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Introduction

Normal aging and age-related neurodegenerative diseases both

impair neuronal function. The functional decline observed in

aging humans and experimental animals was once thought to

reflect, in large part, neuronal death. Over the past decade,

however, it has become clear that relatively few neurons die during

normal aging [1]; instead, other cellular pathologies predominate

of which synaptic dysfunction appears to be a major contributor

[1,2,3,4,5,6,7,8]. In contrast, neuronal death is a prominent

feature - in fact the defining feature - of neurodegenerative diseases

[9,10,11,12]. Nonetheless, even in these disorders, synaptic

dysfunction often precedes and in some cases may even lead to

neuronal death. Thus, it is important to explore relationships of

neurodegenerative diseases to normal aging, not only because age

is their major risk factor but also because they involve synaptic

dysfunction.

One striking feature of neurodegenerative disease is that each

one selectively affects particular neuronal populations, even when

the causal genes are broadly expressed. For example, familial

forms of Huntington’s disease, Parkinson’s disease, Alzheimer’s

disease and amyotrophic lateral sclerosis (ALS), lead predomi-

nantly to death of striatial spiny neurons, dopaminergic substantia

nigra neurons, entorhinal cortex and hippocampal neurons, and

spinal motor neurons respectively, even though the mutated genes

in each condition –i.e. huntingtin, synuclein, APP/tau, and

superoxide dismutase 1 (SOD1) - are expressed in most neurons

[12,13]. In some cases, the selectivity of neuronal susceptibility is

not only cell-type specific but can differentially affect different

classes of the same neuronal type. For example, in familial ALS,

motor neurons innervating limb and trunk muscles are severely

affected, whereas those innervating extraocular muscles and the

anal sphincter muscle are largely spared [14,15].

Selective effects of aging on synaptic subpopulations have been

less well studied.

Comparison of affected and spared synapses within the same

region or broad type could aid in the identification of factors that

confer resistance to age-related change and, by extension, to

neurodegenerative diseases. Here, we have focused on skeletal

neuromuscular junctions (NMJs) to undertake such a comparison.

Their large size and accessibility facilitates detailed examination of

their structural integrity by light microscopy, thereby permitting

large numbers of synapses to be sampled. In fact, age-related

structural changes in NMJs of limb and trunk muscles have been

documented in several mammalian species including mice and

humans [7,16,17,18,19]. We therefore asked whether the rates and

patterns of change varied among muscles, and found that they did.

We then asked whether muscles in which NMJs were resistant

or susceptible to aging differed systematically in other respects. We
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considered the rostrocaudal and proximodistal position of the

muscle, the myosin heavy chains that its fibers expressed (which

define fiber type), the location of the MN pools innervating each

muscle, and the size of the motor unit (the number of muscle fibers

that each motor neuron innervates). Of these factors, innervation

by brainstem motor neurons through cranial nerves correlated

best with resistance to age-related synaptic disassembly.

Finally, we compared NMJs in old mice with those in a mouse

model of amyotrophic lateral sclerosis (ALS). We report similar

patterns of susceptibility and resistance in these two conditions,

and extend the structural analysis to document differential effects

on levels and distribution of two proteins that have been

implicated in the pathogenesis of ALS, CRMP4a and TDP-43

[20,21]. Our results reveal novel parallels between normal and

pathological aging, and provide starting points for seeking factors

that could attenuate or minimize synaptic damage in the two

conditions.

Results

NMJs in extraocular muscles are resistant to age-related
structural changes

In a previous study, we documented age-related structural

alterations in the NMJs of three hind-limb muscles, the tibialis

anterior, gastrocnemius, and gracilis [19]. Alterations were

qualitatively and quantitatively similar in all three muscles. To

begin the present study, we asked whether NMJs in all muscles age

in similar ways. We initially compared NMJs in the extensor

digitorum longus (EDL) of the hindlimb with those in extraocular

muscles (EOMs). We chose EDL because it showed similar age

related changes to the hindlimb muscles previously described [19].

In contrast, EOMs have been reported to resist damage brought

about by ALS as well as Duchenne’s muscular dystrophy

[14,15,22].

Figure 1. NMJs in young adult and old extensor digitorium longus and extraocular muscles. Muscles from transgenic mice that
expressed YFP in axons (green) were stained with BTX to label AChRs in the postsynaptic membrane (red). A) Young adult extensor digitorum longus
(EDL). B) Two year-old EDL. C) Young adult extraocular muscle (EOM). D) Old EOM. Age-related alterations are striking in EDL but subtle in EOM. Scale
Bar: 10 mm. Eight previously documented age-related alterations [19]were quantified from images such as those shown in Figure 1. E) Fragmentation
of the postsynaptic membrane. F) Decreased AChR density. G) Partial denervation. H) Complete denervation. J) Nerve terminal sprouting. I)
Preterminal axonal distension. K) Axonal dystrophy. L) Multiple innervation of a single postsynaptic site. Each bar represents mean 6 SEM from at
least 3 animals, with at least 100 NMJs counted per animal. *p,0.01 by t-test. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034640.g001
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We cut longitudinal sections of EDL and EOM from young

adult (3–6 months old unless otherwise noted) and old (24–28

months old unless otherwise noted) transgenic mice in which

motor axons were labeled with YFP [19,23]. Sections were

counterstained with a-bungarotoxin (BTX), which binds specifi-

cally to AChRs in the postsynaptic membrane, thereby marking

synaptic sites. Nearly 90% of NMJs in the EDL of old mice but

only 3% of NMJs in the EDL of young mice (Fig. 1A–B and E–L)

exhibited one or more of the following eight features: (1)

fragmentation of AChR-rich postsynaptic membrane into small

islands; (2) decreased AChR density in some or all of the

postsynaptic membrane; (3) retraction of the nerve from the

Figure 2. Age-related alterations in neuromuscular junction of 2 year-old mice. Incidence of age-related alterations shown in NMJs from
sternomastoid, Gracilis, Soleus Diaphragm, Gastrocnemis, Anal Sphincter, EDL and EOM. A) Fragmentation of the postsynaptic membrane. B)
Decreased AChR density. C) Partial denervation. D) Complete denervation. E) Nerve terminal sprouting. F) Preterminal axonal distension. G) Axonal
dystrophy. H) Multiple innervation of a single postsynaptic site. Values from Fig. 1 are replotted for comparison. Each point represents mean 6SEM
from at least 3 animals, with at least 100 NMJs counted per animal. Dashed lines are drawn to emphasize that values for external anal sphincter,
frontalis and EOM are generally lower than those from other muscles.
doi:10.1371/journal.pone.0034640.g002
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postsynaptic apparatus resulting in partial or (4) complete

denervation; (5) sprouts arising from nerve terminals that extended

beyond the postsynaptic apparatus; (6) swelling or distension in

preterminal axons, within 50 mm from NMJs; (7) thinning of

preterminal and/or terminal portions of the axon, termed axonal

dystrophy; (8) convergence of 2 or more axons on a single

postsynaptic site, leading to multiple innervation. These anatom-

ical changes are similar to those reported previously for tibialis

anterior, gastrocnemius and gracilis muscles [19]. NMJs in the

EOMs (lateral and medial rectus and inferior and superior

oblique), in contrast, were strikingly spared (Fig. 1C–D and E–L).

The postsynaptic membrane of most old EOM NMJs was

fragmented into small islands, but this topology is also a common

feature of young adult EOM NMJs (Figure S1), and is therefore

not a sign of aging in this muscle. Values were significantly lower

for all 7 other age-related changes in old EOM NMJs than in old

EDL (Fig. 1F–L). Thus, NMJs in the EOMs resist age-related

structural decline.

Intermuscular variations in susceptibility to aging
Are EOM NMJs unique in their resistance to age-related

changes? To address this issue, we analyzed NMJs in 16 other

muscles of young adult and old mice. For 8 of 16 muscles, we

quantified all of the features enumerated above (Figure S2 and

Figure 2); for the others, we quantified five of these features:

postsynaptic fragmentation, decreased AChR density, partial and

complete denervation, and nerve terminal sprouting (Table 1).

Muscles varied greatly in the incidence of age-related changes in

their NMJs. In some muscles, such as the soleus of the lower

hindlimb, the gracilis of the upper hindlimb, the diaphragm in the

trunk and the sternomastoid in the neck, alterations were similar in

frequency to those documented above for EDL (Fig. 2A–H). At the

other extreme, muscles such as the external anal sphincter (EAS)

and the frontalis were largely spared (Fig. 2A–H).

These differences might reflect absolute differences in suscep-

tibility among muscles or differences in the rates at which defects

accumulate. To distinguish between these two possibilities, we

examined NMJs in 3 year-old mice. The incidence of affected

NMJs changed little in the third year for the EDL, although

qualitatively, NMJs appeared more seriously affected in 3 year-old

mice than in 2 year-old mice (Fig. 3A, D). Likewise, NMJs in

EOMs of 3 year-old mice resembled those in 2 year-old mice, with

few structural signs of aging at either time (Fig. 3C, D). In contrast,

the structure of NMJs in the frontalis changed dramatically during

the third year: they were nearly as youthful in appearance in 2

year-old mice as those in EOMs, but the incidence of structural

alterations increased ,5-fold during the third year, approaching

that in the EDL (Fig. 3B, D). Based on these results, we analyzed

additional muscles at three years of age including the EAS and

other muscles of facial expression (interscutularis, levator auris

longus [LAL], and levator labii superioris [LLS]) and an accessory

EOM which elevates the eyelid (levator palpebrae surperioris

[LPS]). NMJs in the LPS, like those in other EOMs, remained

spared at three years of age, whereas those in the EAS,

interscutularis, LAL, and LLA accumulated defects over the third

year (data not shown). Thus, there may be three groups of muscles

with different susceptibility to aging: those highly affected by two

years of age (such as EDL), those that succumb during the third

year and, therefore, have a delayed response to aging (facial and

sphincter muscles) and some that are largely spared (EOMs and

LPS).

Table 1. Fraction of NMJs exhibiting one or more age-related alterations.

Muscle (A)Young (B) Old (C) Young (D) Old (E) Net change, D-C

Anal sphincter 4 66 0 32 32

Diaphragm 4 83 (4.3) 3 58 (5) 55

Dilator Nari 55 (3.8) 64 (7.6) 35 (1.8) 46 (4) 11

Extensor Digitorum Longus 3 87 (3.8) 2 (0.6) 72 (3.7) 70

Extraocular Muscles 47 (5.8) 57 (6.9) 10 (1.4) 11 (3.1) 1

Frontalis 6 (2) 12 (2) 3 (1) 9 (1) 6

Gastrocnemius 6 94 (2.7) 4 69 (3.2) 65

Gracillis 2 81 (5) 1 61 (13.8) 60

Interscutularis 27 (2.2) 39 (1.2) 22 (1.5) 31 (2) 9

Levator Auris Longus 19 (2.7) 35 (4.5) 13 (2.3) 21 (1.7) 8

Levator labii superioris 29 (5.3) 46 (1.7) 16 (2.9) 37 (2.5) 20

Omohyoid 15 (2.4) 76 (5.3) 11 (0.6) 52 (2) 42

Parotidoauricularis 24 (5) 31 (4) 15 (2) 23 (2) 8

Soleus 10 91 (3.8) 2 55 (10.7) 53

Sternomastoid 2 (0.4) 92 (2) 2 (0.3) 57 (6.7) 55

Sternomyoid 11 (2.1) 89 (3) 8 (3) 75 (3.8) 67

Tibialis Anterior 2 94 (2.6) 2 65 (5.8) 63

Triangularis 7 (.8) 87 (2.3) 4 (1.3) 68 (3) 64

Columns 2 and 3 show the percentage of NMJs in young adult and old muscles that exhibit one or more of five structural features that characterize old NMJs in limb
muscles: decreased AChR density, partial denervation, complete denervation, nerve terminal sprouting, fragmentation of the postsynaptic membrane. Column 4 and 5
show values for only the first four of these features, taking account of the fact that the postsynaptic membrane is fragmented in young adult NMJs in some muscles.
Column 6 shows difference between values in columns 4 and 5. Values represent average (and SD) from at least 3 animals, with at least 100 NMJs counted per animal.
doi:10.1371/journal.pone.0034640.t001
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Rostrocaudal position and segmental innervation
What could account for intermuscular differences in the

susceptibility of NMJs to the age-related decline? Muscles differ

in many ways that might be correlated with susceptibility,

including their position along the rostrocaudal axis, whether they

are innervated by spinal or cranial motor neurons, their fiber type

composition, the size of their motor units and the length of the

axons supplying them. Indeed, the highly susceptible EDL and the

spared EOM differ in all of these respects [24,25,26,27,28]. First,

we used the data in Table 1 to assess the relationship between the

segmental origin of the nerves that innervate each muscle and the

incidence of age-related alterations in their NMJs. We used

segmental innervation as a metric because it is a correlate of the

muscle’s somite origin, which is unknown in many cases, and of

body position, which is difficult to specify in a single dimension.

In general, NMJs in rostral muscles showed less age related

changes than those in caudal muscles (Fig. 4). However, hindlimb

and neck muscles are similarly affected by aging even though they

are innervated by motor neurons located in caudal and cervical

portions of the spinal cord, respectively. Moreover, the EAS

appeared spared at two years of age despite being quite caudal.

Thus rostrocaudal position per se is not directly related to the

incidence of age-related changes. On the other hand, there is a

striking difference between muscles innervated by brainstem

motor neurons (through cranial nerves) and those innervated by

spinal motor neurons: the incidence of age-related changes in

Figure 3. Structural alterations in NMJs during the third year. NMJs from EDL (A), frontalis (B) and EOM (C) of 3 year-old mice. D) Incidence of
age-related alterations in NMJs of 3 month-, 2 year-, and 3 year-old mice. Each bar represents mean 6 SEM from at least 3 animals, with at least 100
NMJs counted per animal. *p,0.025 by t-test. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034640.g003
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NMJs was higher in all muscles innervated through spinal nerves

than in muscles innervated by cranial nerves III, IV, VI, and VII.

Thus, NMJs formed by brainstem motor neurons are generally

refractory to age-related defects.

Fiber type composition
In most skeletal muscles, fibers are divided into 4 categories

based primarily on the particular myosin heavy chain (MyHC)

isoform they express - type I, IIA, IIX or IIB, ranging from slowest

to fastest [26]. Individual muscles contain stereotyped proportions

of two or more fiber types. Several studies have shown that fast

fibers are more susceptible than slow fibers to atrophy and

denervation within aging muscles [29]. It therefore seemed

plausible that the degree of severity to age related alterations in

some muscles is largely dependent on their fiber type composition.

Consistent with this idea, many fibers in the highly resistant EOM

express an unusual myosin heavy chain, myh13 [30,31].

We used a panel of isoform-specific antibodies to myosin heavy

chains to analyze the fiber type composition in a set of young adult

muscles that vary in susceptibility to aging. The frontalis, LAL and

interscutularis muscles, which exhibit age-related changes only

during the third year have a similar fiber type composition to the

EDL, which is highly susceptible to age related changes (Figure 5).

In contrast, the soleus, with nearly all slower fibers (.90% Type I

and IIA) and the EDL, with predominantly fast fibers (.80%

Type IIX and IIB) are similarly susceptible (Figure 5 and Table 1).

This data suggest that the overall fiber type composition of muscles

does not impart resistance.

The fiber type composition of fast type muscles is known to

change with aging, with fast (Type II) converting to slow (Type I)

muscle fibers [26]. The switch to a more oxidative type is believed

to allow muscle fibers to resist aging. We therefore asked if a high

rate of fiber type switching may account for the special resistance

of NMJs in muscles such as the frontalis and interscutularis

muscles, which are composed of type IIA, IIB and IIX muscle

fibers in young adult animals. We stained 2-year old frontalis,

interscutularis and EDL muscles for type I muscle fibers. In

contrast to young muscle, aged EDL muscle contains a significant

number of Type I fibers (Fig. 6A, Fig. 5A and B). However, fiber

type composition did not change significantly in aged frontalis or

interscutularis muscles (data not shown). Thus, fiber type switching

does not appear to account for the resistance of NMJs in facial

muscles, at least during the first two years.

We also asked whether the severity of age-related changes in

NMJs within single muscles might be related to fiber type.

Unfortunately, we could label only Type I fibers in the fixed whole

mounts that are required to assess NMJ architecture. In the soleus

.95% of fibers, however, are either Type I or IIA fibers, so nearly

all unlabeled fibers were Type IIA fibers. Using this approach we

were surprised to discover that Type I fibers exhibited a higher

incidence of age-related structural defects in their NMJs than Type

IIA fibers in the soleus muscle (Fig. 6B and D). We also used the

EDL to compare the incidence of age-related changes between

fibers that converted to Type I with other fiber types. The rate of

age-related changes in NMJs was similar in Type I (labeled) and

Type II fibers (unlabeled) of old EDL (Fig. 6A, C). Hence,

particular fiber types do not appear to be endowed with unique

abilities to protect their NMJs from aging.

Motor unit size
If motor neurons have limited capacity to maintain nerve

terminals, those that innervate many muscle fibers may be at

greater risk of losing terminals as their capacity declines with age

than those that innervate few fibers. If true, muscles with small

motor units might be more resistant to age-related decline than

those with large motor units. To test this idea, we used transgenic

mice that express YFP in only a small subset of motor axons (thy1-

YFP line H) [23,32] to reconstruct entire axonal arbors of

individual motor axons in muscles that vary in susceptibility to

age-related changes. Figure 7A shows one example and Figure 7B

summarizes data from all young adult muscles analyzed here and

in previous studies from our laboratory [33,34]. Consistent with

previous reports [27], EOM motor units are small, averaging 5

fibers. Likewise, the LPS, also spared, has motor units of

approximately 5 fibers [35]. Conversely, limb muscles, triangularis

and omohyoid, all of which are susceptible, have motor units

averaging 14 to 45 muscle fibers (Fig. 7B). However, motor units in

the frontalis, interscutularis, LLS and LAL muscles, which are

largely spared at 2 years of age, are similar in size to those found in

omohyoid and limb muscles. Thus, muscles with the smallest

motor units are the most resistant to aging, but small motor units

are not required to endow NMJs with resistance to aging.

Specifically, motor unit size cannot account for the difference

between muscles that are most susceptible to age-related changes

and those that exhibit such changes only during the third year.

We also examined motor units in old muscles. Motor units have

been reported to expand during normal aging likely due to

sprouting of surviving motor units to innervate synaptic sites left

denervated by death of other motor neurons [36]. Consistent with

this view, motor units in the omohyoid were on average 2.4 fold

larger in old than in young adult muscles (Fig. 8A–C). In contrast,

the size of motor units in EOMs, which are resistant, did not

increase significantly with age (Fig. 8D–F). Similarly, motor unit

size changed little in several facial muscles that are largely spared,

including the frontalis, interscutularis, LAL and LLS muscle (not

shown).

Proximodistal position
The ability of neurons to transport material to their terminals

decreases with age [37,38]. Muscle fibers innervated by long

motor axons might be more affected by this decrease than those

with short motor axons. Two observations suggested, however,

that this relationship is not a robust one. First, we compared neck

muscles, such as the omohyoid, to lower limb muscles such as the

tibialis anterior and soleus. Neck muscles are innervated by shorter

Figure 4. Relationship of rostrocaudal position and segmental
innervation to the incidence of age-related alterations in NMJs.
Muscles listed in Table 1 are arranged by the rostrocaudal position of
the motor pool that innervates them. The ordinate is the percentage of
NMJs with age-associated defects from column 6 of Table 1.
doi:10.1371/journal.pone.0034640.g004
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axons than lower limb muscles, but NMJs in neck and limb

muscles are similarly affected by aging (Table 1). Second, we

compared NMJs in proximal and distal portions of single motor

units in old muscles. NMJs within motor units varied substantially

in structure with some appearing normal and others being almost

completely denervated (Figure S3). However, severely affected

NMJs were distributed throughout the motor unit, and were not

especially prevalent in proximal or distal axonal branches

(Figure 9).

Correlated susceptibility of NMJs to age and ALS
Structural alterations of NMJs have been documented in

patients with ALS and in mouse models of ALS that overexpress

mutant forms of superoxide dismutase-1 (SOD), known to cause

dominant familial ALS in humans [39,40]. Mice overexpressing

the pathogenic human SOD-G93A show motor symptoms at

around 14–16 weeks of age (symptomatic stage) and die at 19

weeks of age (end-stage). Synaptic defects in symptomatic SOD-

G93A mice resemble those that afflict NMJs in old mice in several

respects [34]. Moreover, two muscles that are spared in old mice,

the EOMs and anal sphincter, are resistant in humans with ALS

[15,41].

Based on these parallels, we analyzed intermuscular variations

in the NMJs of SOD-G93A mice. NMJs in EDL of SOD-G93A

mice exhibited the defects described above for NMJs in EDL of

old mice: postsynaptic fragmentation, decreased AChR density,

partial and complete denervation, terminal sprouting, multiple

Figure 5. Fiber type composition of muscles with NMJs that vary in severity of age-related changes. A) Cross-sections of soleus, EDL,
and interscutularis muscles from young adult mice stained with antibodies specific for myosin Type I, IIA or IIB. Scale Bar: 20 mm. B) Fiber type
composition of muscles, determined from micrographs such as those in A. NMJs in both soleus and EDL suffer severe age-related changes but differ
in fiber type composition. In contrast, NMJs in frontalis, levator auris longus and intercutularis are largely spared from age-related changes, even
though their fiber type composition of these muscles is similar to that of the EDL.
doi:10.1371/journal.pone.0034640.g005
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innervation, and axonal distension and dystrophy (Fig. 10A, C–G).

In contrast, NMJs in EOMs of SOD-G93A mice were largely

spared (Fig. 10B–G).

We also determined the fractions of synaptic sites that were

partially or completely denervated in symptomatic SOD-G93A

transgenic mice for each of the muscles previously studied in old

mice. Results are summarized in Figure 11A. At the symptomatic

stage, most NMJs in all hind limb muscles studied were partially or

fully denervated. Most trunk muscles (with the exception of the

triangularis sterni) were also denervated although to a lesser extent

than hind limb muscles. In contrast, most NMJs in facial muscles

remained innervated and thus were refractory to the effects of

ALS. Similarly, most NMJs in the anal sphincter muscle were

innervated in SOD-G93A symptomatic animals (data not shown).

NMJs in EOMs, LPS and frontalis muscles were almost

completely spared.

We then examined NMJs in mice at the end stage of ALS to

determine whether spared muscles eventually succumb (Fig. 11B).

Most limb and trunk muscles were almost completely denervated

at this stage. Two exceptions were the soleus and triangularis, in

which ,40% and 85% of NMJs, respectively, were still partially or

fully innervated. Likewise, NMJs in facial muscles were more

affected in endstage than symptomatic ALS. In contrast, the NMJs

of the EOMs and LPS muscle remained resistant to disease

progression. These results demonstrate that most muscles are

similarly affected or spared by aging and ALS (Figure 12).

Expression of CRMP4a and TDP-43 in aging and ALS
The parallels between aged and ALS-afflicted NMJs raised the

possibility that similar molecular alterations occur in motor

neurons in both conditions. To test this idea, we focused on two

proteins recently found to be altered in spinal motor neurons of

SOD-G93A mice, collapsin response mediator protein 4a

(CRMP4a) and TAR DNA-binding protein 43 (TDP-43)

[20,21,42,43,44]. In spinal motor neurons of young adult control

mice, CRMP4a levels are low and TDP-43 is largely nuclear,

whereas in spinal motor neurons of symptomatic SOD-G93A

mice, CRMP4a is dramatically increased and TDP-43 forms

cytoplasmic aggregates [20,43,44]. We assessed the levels and

distribution of CRMP4a and TDP-43 in spinal and cranial motor

neurons of young adult, old and SOD-G93A mice.

As reported previously [20], CRMP4a is nearly undetectable in

motor neurons in lumbar segments of the spinal cord of control

mice, but readily detectable in about half of the lumbar motor

neurons of symptomatic SOD-G93A mice (Fig. 13A, C, E).

Similarly, the fraction of lumbar motor neurons containing

CRMP4a increased ,5-fold in old mice (Fig. 12B, E). Similar

results were obtained for motor neurons in cervical spinal cord

(data not shown). In contrast, few cranial motor neurons were

CRMP4a-positive in young adult wild-type (3 months), old wild-

type (2 years) or symptomatic SOD-G93A (19 weeks) mice

(Fig. 13D, E). Thus, differences between spinal and cranial motor

neurons and similarities between normal aging and ALS extend to

CRMP4a expression.

Figure 6. NMJ morphology in Type I and Type II muscle fibers of old mice. A, B) EDL and Soleus muscles from 2 year-old mice were stained
for Type 1 muscle fibers. Type 1 muscle fibers are found in old (A) but not young EDL muscles (see Fig. 5). C, D) NMJs in Type I and Type II fibers
exhibit age-related changes in EDL (C) and soleus (D). Each bar represents mean 6 SEM. Scale bar = 20 mm.
doi:10.1371/journal.pone.0034640.g006
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Localization of TDP-43 within motor neurons was also differen-

tially affected in cranial and spinal motor neurons by aging and ALS.

As reported previously [44], TDP-43 formed cytoplasmic aggregates

in the cytoplasm of spinal (lumbar and cervical) motor neurons of

symptomatic SOD-G93A mice (Fig. 14B, D). Similar cytoplasmic

aggregates of TDP-43 were abundant in spinal motor neurons of old

mice (Fig. 14C, D). In addition, whereas levels of TDP-43 were high

in all spinal motor neurons of young adult wild type mice (3 months),

some motor neurons in SOD-G93A and old mice had barely

detectably levels of TDP-43 (Fig. 14D). In contrast, the distribution of

TDP-43 in cranial motor neurons from 2-year old and SOD-G93A

mice was indistinguishable from that in adults (not shown).

Discussion

This paper reports two sets of comparisons among NMJs in

mouse muscles. First, we compared NMJs within and among 16

muscles of old mice. These comparisons established large intra-

and inter-muscular differences in the susceptibility of NMJs to age-

related structural alterations. By considering these differences in

light of structural and functional features of the muscles and their

innervation, we drew conclusions about factors that are likely and

unlikely to contribute to differential susceptibility to age-related

change. Second, we asked whether the inter-muscular differences

in old mice were similar to those in a mouse model of the

neurodegenerative disease, ALS. This comparison revealed

striking similarities between patterns of susceptibility in these two

conditions, strengthening the parallels between normal and

pathological aging.

Differences among muscles in old mice
In a previous study, we found that few NMJs in hind-limb

muscles of young adult mice but a majority of NMJs in hind-limb

muscles of 2 year-old mice exhibit one or more of eight structural

features: fragmentation of the postsynaptic apparatus, reduced

levels of AChRs, partial denervation, complete denervation,

sprouting of terminal axons beyond the postsynaptic apparatus,

swelling of the preterminal axon near or at the NMJ, thinning of

the axon within the NMJ, and multiple innervation of a single

postsynaptic site [19]. Here, we determined the frequency of these

age-related features in a larger set of muscles from both 2- and 3-

year old mice. Frequency varied over a wide range, but muscles

can be generally grouped into three categories. First, NMJs in all

hind-limb, trunk and neck muscles examined are highly

susceptible to age-related decline. Although some differences

among muscles in this category are statistically significant, they are

relatively small. Second, NMJs in extraocular and levator

palpabrae muscles (EOMs and LPS) are remarkably resistant to

the deleterious effects of old age. Even in 3 year old mice -at which

time a majority of animals in the cohort had already succumbed-

NMJs in these muscles retained their youthful appearance. Third,

NMJs in a set of head muscles innervated by cranial nerves, as well

as the external anal sphincter, appeared to be resistant to age-

related decline at 2 year of age but succumbed over the following

year. Thus, these muscles exhibit a delayed response to aging.

Similarities between aging and ALS
The structural defects in hind limb NMJs that accumulate

during normal aging resemble those that occur in ALS and in

mouse models of ALS [19,34,45]: in both cases, the postsynaptic

membrane becomes fragmented, partially or completely dener-

vated, axons sprout beyond the postsynaptic apparatus, some

AChR clusters become faint, and some synaptic sites become

multiply innervated. Moreover, NMJs in EOMs are spared in old

mice, in humans with ALS and, as shown here, in a mouse model

of ALS. These parallels led us to ask whether NMJs in other

muscles were similarly susceptible or refractory to disassembly

caused by aging and ALS.

The EOM and LPS, as expected, are completely spared in ALS

(Fig. 1) [14,15]. Even at endstage of the disease, NMJs in the EOM

and LPS are fully innervated. The external anal sphincter and

facial muscles are also partially spared in ALS as they are in old

mice. In symptomatic animals, these muscles show little sign of

denervation during the initial phase of the disease. As the disease

progresses, however, many of their NMJs become denervated.

Hence, many muscles are similarly affected by ALS and aging.

Interestingly, a few muscles are more susceptible to age than to

ALS. Most strikingly, the triangularis muscle remains innervated

in ALS even though it is substantially affected in old mice. The

soleus muscle has been reported [46] to resist ALS, but we find

that it is initially as affected as other hind limb muscles. As the

Figure 7. Motor unit size in muscles with NMJs that vary in
severity of age-related changes. A) Frontalis muscle of a young
adult mouse in a simple motor axon was YFP-positive (green). The
muscle was also labeled with BTX (red) to mark all postsynaptic sites.
Scale bar: 50 mm. B) Motor unit size determined from muscles such as
that in A. Bars indicate mean (6SD) of number of motor units in
parentheses. Data on neck muscles (sternomastoid, clavotrapezius, and
cleidomastoid) are replotted from Schaefer et al., (2005).
doi:10.1371/journal.pone.0034640.g007
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disease progress, however, denervation of the soleus NMJs

significantly slows compared to other limb muscles. Hence, the

triangularis and soleus appear capable of recruiting mechanisms

that act to prevent or retard destruction of NMJs.

Possible determinants of differential susceptibility to
aging and ALS

Why are some NMJs resistant while others are highly sensitive

to the deleterious effects of aging and ALS? Among many possible

cellular determinants, several seemed reasonable candidates to

test. (1) Previous studies have shown that the muscle fiber type

composition changes with aging [31], suggesting that the extent of

the change could affect susceptibility. Likewise, slow muscles are

reported to be relatively spared in ALS [47]. (2) In that motor

neurons have restricted ability to supply their terminal branches,

one might imagine that small motor units would be better

nurtured and thus more refractory to resist aging and ALS. (3)

Because the rate of axonal transport declines with age and during

Figure 8. Age-related changes in motor unit size. Tracings from muscles such as the one shown in Figure 7A. A–D) Motor units from the
omohyoid (A, B) and extraocular muscles (C, D) of young adult (A, C) and old (B, D) mice. E, F) Motor unit size in young adult and old omohyoid (E)
and extraocular (F) muscles. Each bar represents mean 6 SEM from at least 4 motor units per muscle and age. Scale bar = 50 mm.
doi:10.1371/journal.pone.0034640.g008
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the progression of ALS [9,37,38], NMJs far from motor neuronal

somata might lose sustenance before those close to their neuronal

somata. Our experiments addressed each of these possibilities but

our results supported none of them. Likewise, although we did not

directly assess whether patterns of muscle activity confer resistance

or susceptibility to insults indirect evidence suggests that they do

not. EOMs are unique in that they are able to fire at exceptionally

high rates (,600 Hz) but are also resistant to fatigue [48].

However, the other muscles spared by aging and ALS do not share

this specialization: many fibers in the external anal sphincter and

LPS are tonically active [28,49] and muscles of facial expression

exhibit phasic activity similar to those of somite-derived muscles.

Of all the possibilities we considered, our data favors only one.

Most muscles that resist age or ALS related decline are innervated

by motor neurons that reside in the brainstem and extend axons

through cranial nerves. This is especially true for oculomotor,

abducens and trochlear motor neurons that innervate the EOMs

and the LPS muscle, which are completely spared by aging and

ALS. Most facial nuclei motor neurons also resist aging and ALS,

but the partial resistance of facial muscles suggests that some

motor neurons may be susceptible. Interestingly a recent study

showed that NMJs in caudal and rostral LAL muscle are

differentially susceptible to denervation in a mouse model of

spinal muscular atrophy [50]. Our studies, however, combined

data from all regions of the sampled muscles, so we cannot directly

compare our results to those in Ref. 50.

Of muscles innervated by cranial nerves, one apparent

exception is the sternomastoid which is severely affected by aging

and ALS, but innervated through cranial nerve XI. However, a

recent study showed that this muscle is actually supplied by rostral

spinal motor neurons that, unusually, ascend to exit through

cranial nerve XI [51]. Hence, our data shows that brainstem

motor neurons are, in general, particularly resistant to aging and

ALS.

The other notable outlier is the external anal sphincter. The

preservation of synapses in this muscle may reflect unusual

properties. The EAS is a rhabdosphincter – a specialized muscle

sphincter composed of striated skeletal muscle – innervated by

Figure 9. Branch order analysis of motor axons in young adult and aged animals. A, B) Branching trees from motor units in young adult (A)
and old (B) omohyoid muscles. Color of circles represents the degree of AChR occupancy by nerve terminals (color code, bottom right corner). C) No
correlation between AChR occupancy and distance of the nerve terminal from the first branch point of the axonal arbor in either the young adult
(r = 0.09) or the aged animal (r = 0.05).
doi:10.1371/journal.pone.0034640.g009
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neurons that reside in the Onuf’s nucleus, a distinct nucleus of

neurons in the ventral horn of the sacral spinal cord. Although

these neurons appear morphologically similar to alpha motor

neurons and innervate striated muscle which is under voluntary

control, the identity of these neurons as being somatic or

autonomic in nature remains under debate [52,53]. For example,

motor neurons in Onuf’s nucleus are severely affected in Shy

Drager Syndrome [41], a disease that causes the degeneration of

autonomic neurons in the brain. Therefore, perhaps these neurons

are protected in aging and ALS because their genetic profile more

closely resemble neurons in the brain than spinal motor neurons.

With these findings in mind, an important future direction is to

identify the factors that protect cranial motor neurons from aging

and disease.

Molecular differences between afflicted and spared NMJs
The similar patterns of structural change in NMJs of old and

SOD-G93A mice suggested that molecular parallels might also

exist. To test this possibility, we focused on two proteins that have

been implicated in ALS: CRMP-4a and TDP-43. Upregulation

and mis-localization of CRMP4a and TDP-43, respectively, have

been documented in motor neurons. Furthermore, mutations in

TDP-43 lead to ALS and frontotemporal dementia of SOD-G93A

mice [44]. We found that CRMP4a is also upregulated and TDP-

Figure 10. Neuromuscular junctions in a mouse model of ALS. A, B) Longitudinal sections from EDL (A) and EOM (B) of SOD-G93A mice
transgenic mice. Axons and nerve terminals were stained with antibodies against neurofilament and synaptotagmin-2, (green) and postsynaptic sites
were stained with BTX (red). Compare with young adult controls in Figure 1 and Figure S1. Alterations are striking in EDL but subtle in EOM. C) Alter
ations quantified from images such as those shown in A–B. Each bar represents mean 6 SEM from at least 3 animals, with at least 100 NMJs counted
per animal. *p,0.02 by t-test. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034640.g010
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43 mislocalized in motor neurons of old mice that supply

susceptible muscles. In contrast, motor neurons with spared NMJs

maintain the normal expression level and distribution of these two

molecules, both in old mice and in SOD-G93A mice. These

results, therefore, provide evidence that NMJs, in aging and ALS,

share molecular as well as structural features.

Figure 11. Extent of denervation in muscles from SOD-G93A mice. A, B) NMJs in muscles from symptomatic (A) or end-stage (B) SOD-G93A
mice listed were scored as fully innervated, partially denervated or fully denervated. Values are shown for 14–16 weeks old symptomatic (A) and 19
weeks old end-stage mice (B). C) NMJs from soleus and tibialis anterior muscles of end stage mice, stained as in Fig. 9. Scale bar = 10 mm. Some NMJs
remain partially innervated in soleus, but most NMJs are fully denervated with dispersed postsynaptic structures in tibialis anterior.
doi:10.1371/journal.pone.0034640.g011

Figure 12. Relationship between the incidence of NMJ alterations in old mice and a mouse model of ALS. Values are from Table 1 and
Figure 10. NMJs in all muscles but the triangularis are similarly afflicted or spared by aging and ALS.
doi:10.1371/journal.pone.0034640.g012
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Materials and Methods

Source of mice
Thy1-XFP transgenic mice were described previously [23].

They were bred and aged in our colony. All motor axons are

labeled in line YFP-16 and small subsets of motor axons are

labeled in line YFP-H. We also obtained young (4 to 5 month-old)

and aged (22 to 28-month-old) C57BL/6 mice from the National

Institute of Aging and SOD-G93A transgenic mice from the

Jackson Laboratory. All experiments were carried out under NIH

guidelines and an animal protocol approved by Harvard

University Animal Studies Committee.

Immunostaining
Mice were anesthetized with sodium pentobarbital and perfused

transcardially with 4% p-formaldehyde in 0.1 M phosphate-

buffered saline (PBS; pH 7.4). Muscles were then dissected, post-

fixed for 30 min and blocked overnight at 4uC (1% Triton X-100,

4% BSA in PBS). They were then incubated for 1–3 days with

neurofilament (1:500) and synaptotagmin-2 (1:250) antibodies,

washed with PBS for 3 hours and incubated for 24 hours with

Alexa 555-a-bungarotoxin (Molecular Probes, Eugene, OR)

together with secondary antibodies (Alexa-488 anti-mouse IgG1

and Alexa-647 anti-mouse IgG2A; Molecular Probes). After

washing for 3 hours in PBS, muscles were whole-mounted on

slides in Vectashield (Vector Labs).

In some cases, muscles were incubated for 2 hr with 5 mg/ml

Alexa 555-conjugated a -bungarotoxin following post-fixation and

before further processing. To stain muscle sections, muscles were

dissected and immersed in 30% sucrose overnight. 30 to 40 mm

longitudinal sections were obtained and stained as described

above.

Figure 13. Regulation of CRMP4a in aging and ALS. A–D) CRMP4a immunoreactivity of motor neurons in caudal spinal cord (SC) from young
adult wild type (A), old wild-type (B) and symptomatic SOD-G93A (C) mice and brainstem (BS) of a symptomatic SOD-G93A mouse (D). Somata are
labeled with Neurotrace (A, B, D) or YFP (C). E) Percent of motor neurons immunoreactive for CRMP4a in spinal cord and brainstem of young adult,
old, and symptomatic SOD-G93A mice. Each bar represents mean 6 SEM. *p,0.015 by t-test. Scale bar = 20 mm.
doi:10.1371/journal.pone.0034640.g013
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Muscle fiber composition was determined by immunostaining

10 mm cross-sections of unfixed muscles. Sections were blocked for

30 minutes at room temperature (0.1% Triton X-100, 4% BSA in

PBS). They were immediately incubated with anti-MyHC I

[A4840 from Developmental Studies Hybridoma Bank (DSHB)

and NCLslow from Leica Microsystems/Novacastra Laborato-

ries], anti-MyHC IIA (2F7 and SC-71 from DSHB), or anti-

MyHC IIB (BFF3 from DSHB) for 2 hours. Sections were washed

3 times for 5 minutes and immediately incubated with alexa-

conjugated secondary antibodies. After a final wash, sections were

mounted and visualized.

Spinal cords and brainstem were dissected, postfixed for 2 hours

and immersed in 30% sucrose overnight. 40 mm cryosections were

obtained, blocked for 1 hour at room temperature (0.2% Triton

X-100, 4% BSA in PBS). They were then stained with antibodies

against CRMP4a or TDP-43 in blocking solution overnight,

washed 3 times with PBS and stained with alexa-conjugated

secondary antibodies. All sections were also stained with

Neurotrace to visualize neuronal cell bodies. Sources of antibodies

were as follows: anti-neurofilament (smi-312, Covance); anti-

synaptotagmin 2 (znp-1), Zebrafish International Resource Center

(Eugene, OR); anit-CRMP4a (ab23951, Abcam), anti-TDP-43

(3449S, Cell Signaling).

Histological analysis
Maximum intensity projections of confocal stacks obtained from

aged ($24 months) and young adult (2–6 months) junctions were

created using Metamorph 6.03 software (Molecular Devices,

Sunnyvale, CA). Innervation of AChRs was defined as co-

localization of axon terminals (green) with fluorescently labeled

AChRs (red). Synaptic occupancy was delineated using Meta-

morph from the overlapping area between the terminal axon and

Figure 14. Level and localization of TDP-43 in aging and ALS. A–D) TDP-43 immunoreactivity of motor neurons in caudal spinal cord from
young adult wild type (A), old wild-type (B) and symptomatic SOD-G93A (C) mice. Somata are labeled with Neurotrace (A, B) or YFP (C). D) Percent of
motor neurons with strong cytoplasmic immunoreactivity, cytoplasmic aggregates, or barely detectable levels of TDP-43 in spinal cord of young
adult, old, and symptomatic SOD-G93A mice. Each bar represents mean 6 SEM. Scale bar = 20 mm.
doi:10.1371/journal.pone.0034640.g014
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receptors. Synaptic defects were scored using the definitions in

Ref. 19: (a) NMJs were scored as fragmented if they contained 5 or

more AChR island and/or a segment of the postsynapse showing

severe abnormalities such as small and/or irregularly shaped

AChR clusters. (b) Faint AChR clusters were defined as noticeably

dimmer postsynaptic sites compared to those in the same confocal

plane. (c,d) Full or partial denervated postsynaptic sites were fully

or completely unapposed by nerve terminals, represented by YFP

or a presynaptic marker. (e) Sprouts were terminal extensions of

the nerve .1 mm beyond the border of AChR cluster in any

direction. (f) Axonal swellings were anomalous distensions of

preterminal portions of the axon. (g) Axonal atrophy was

characterized by thinning of the axon by approximately 2 mm

compared to the diameter of normal axons. (h) Multiple

innervation was scored when two or more preterminal axons

were seen to enter a single postsynaptic site. In all cases, we

sampled NMJs throughout all regions of a muscle, generally by

capturing a set of 206 or 406 images centered on the end-plate

band at each of three levels through the z-axis.

To determine motor unit size, entire motor axons and their

NMJs were imaged at high resolution as above. Z stacks were

flattened (Metamorph) and reconstructions generated using

Photoshop CS. The branch order for each motor axon was

determined by constructing a complete branching diagram for the

entire motor axon as described previously [32].

Supporting Information

Figure S1 Fragmentation of neuromuscular junctions in
young adult extraocular muscles. Extraocular muscles from

young adult transgenic mice that expressed YFP in axons (green)

were stained with BTX to label AChRs (Red). In young EOMs,

AChR are often highly fragmented compared to AChR clusters in

other muscles (see Figure 1A for a comparison to a young EDL

NMJ). Scale bar = 20 mm.

(TIF)

Figure S2 Neuromuscular junctions in young adult and
old muscles. Longitudinal sections from transgenic mice that

expressed YFP in axons (green) were stained with BTX to label

AChRs in the postsynaptic membrane (red). A) Young adult

sternomastoid. B) Old sternomastoid. C) Young adult frontalis. D)

Old frontalis. Scale bar = 10 mm.

(TIF)

Figure S3 Synapses are differentially affected within an
aged motor unit. The figure shows 46 NMJs that comprise one

axon’s motor unit in a 2 year old mouse. As shown by the color

code (bottom, right corner), some junctions are completely

innervated (red circles) while the AChRs at other junctions are

only partially covered by nerve terminals (purple, yellow, green

and blue circles). Numbers in left upper corners represent the

junction identity used for branch analysis in Figure 9.

(TIF)
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