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Abstract

Motor cortical neurons exhibit persistent selective activities (selectivity) during motor planning. Experimental
perturbation of selectivity results in the failure of short-term memory retention and consequent behavioral
biases, demonstrating selectivity as a neural characteristic of encoding previous sensory input or future action.
However, even without experimental manipulation, animals occasionally fail to maintain short-term memory
leading to erroneous choice. Here, we investigated neural substrates that lead to the incorrect formation of se-
lectivity during short-term memory. We analyzed neuronal activities in anterior lateral motor cortex (ALM) of
mice, a region known to be engaged in motor planning while mice performed the tactile delayed-response
task. We found that highly selective neurons lost their selectivity while originally nonselective neurons showed
selectivity during the error trials where mice licked toward incorrect direction. We assumed that those alterna-
tions would reflect changes in intrinsic properties of population activity. Thus, we estimated an intrinsic mani-
fold shared by neuronal population (shared space), using factor analysis (FA) and measured the association of
individual neurons with the shared space by communality, the variance of neuronal activity accounted for by
the shared space. We found a positive correlation between selectivity and communality over ALM neurons,
which disappeared in erroneous behavior. Notably, neurons showing selectivity alternations between correct
and incorrect licking also underwent proportional changes in communality. Our results demonstrated that the
extent to which an ALM neuron is associated with the intrinsic manifolds of population activity may elucidate
its selectivity and that disruption of this association may alter selectivity, likely leading to erroneous behavior.
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Significance Statement

Appropriate retaining of short-term memory can maximize a future reward. During retention, neurons in fron-
tal cortex show persistent activity encoding a selection of future action, the collapse of which leads to erro-
neous behavior. This study addressed the underlying neural mechanism for changes of selectivity in
erroneous behavior by investigating selectivity in rodent anterior lateral motor cortex (ALM) during the de-
layed-response task. We found that the stronger a neuron’s activity was coupled to an intrinsic shared
space of ALM, the greater its selectivity was. Also, changes in selectivity during erroneous behavior were re-
lated to changes in coupling strength. Our work suggests that proper association with the shared space is
key to orchestrating ALM neuronal activities for accurate planning for upcoming movement.
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Introduction
Appropriate motor planning is essential to accurate

motor control. Neurons in motor cortex modulate their ac-
tivity for motor planning before movement onset (Tanji
and Evarts, 1976; Weinrich et al., 1984). This prepara-
tory activity contains information on forthcoming move-
ment such as reaction time (Riehle and Requin, 1989;
Churchland and Shenoy, 2007). Similar to motor corti-
cal preparatory activity shown in nonhuman primates,
anterior lateral motor cortex (ALM), which is a central
part of motor planning circuits in mouse, shows selec-
tive firing activities (i.e., termed as selectivity) depend-
ing on the direction of upcoming movements (Li et al.,
2015). Neural circuits involving ALM neurons that gen-
erate selectivity during movement preparation have
been investigated using a delayed-response task where
a sensory cue informs animals which direction to lick
after delay (Chen et al., 2017; Guo et al., 2017; Gao et
al., 2018; Wang et al., 2021). For example, disruption of
selectivity in ALM by photoinhibiting relevant neural cir-
cuits leads to failure of short-term memory retention.
Thus, proper maintenance of selectivity is necessary for
ALM to link past sensory cue and future action.
Even after learning a delayed-response task, however,

animals often perform the task incorrectly without external
perturbation. Such erroneous behavior is likely to be as-
sociated with error in motor planning, potentially attrib-
uted to several hypothetical sources. For instance, a
received sensory cue could be misrepresented in neurons
participating in movement preparation (Panzeri et al.,
2017). Or the stochastic nature of the evolution of neural
states underlying motor cortical activity can drive neural
states toward a wrong subspace by chance (Inagaki et al.,
2019). While these accounts are plausible and worth ex-
ploring, a simpler starting point to investigate neural sub-
strates of erroneous behavior would be examining
possible sources that underpin changes in the selectivity
of neurons, as selectivity has been shown to be substan-
tially disrupted when movement error ensues (Li et al.,
2015) .
Therefore, the present study aims to investigate neural

substrates of erroneous behavior in a delayed-response
task by focusing on neural determinants of the disruption
of selectivity during motor planning. To this end, we ana-
lyze ALM activity in three folds. First, at a single neuronal
level, we examine how the selectivity of single ALM neu-
rons is disrupted for erroneous behavior. Second, at a

neuronal population level, we investigate whether there is
a collective pattern in the disruption of selectivity by in-
specting an intrinsic manifold shared by population (i.e.,
the shared space; Athalye et al., 2017). We employ factor
analysis (FA) to infer the shared space from observed
ALM population activity. Third, by integrating both single
neuron and population levels, we associate individual
neuronal activities with the shared space and analyze
how these associations are altered during erroneous be-
havior. As FA allows the decomposition of individual neu-
ronal activities into shared and private signals (Athalye et
al., 2017), where the shared signal reflects the portion of a
neuronal activity generated from latent factors in the
shared space, the analysis of the shared signal would re-
veal how disruption of population-level activity connects
to that of individual neuronal activity. Specifically, we in-
vestigate how the selectivitiy of a single neuron is related
to the shared space and whether such a relationship is al-
tered for erroneous behavior.
At the single neuronal level, we observed alternations in

the selectivity during erroneous motor planning. We ob-
served a false drive of selective firings of ALM neurons,
resulting in increases in the selectivity of those neurons
that were less selective in preparation of correct behavior
and vice versa. At the population level, we confirmed
that movement direction information was inadequately
represented in the shared space during erroneous motor
planning. Finally, by associating the selectivity of single
neurons with the shared space, we found that the selec-
tivity of single neurons was positively correlated with the
variance of neuronal activity accounted for by the shared
space (i.e., termed as communality), which showed that
neurons more strongly tied to the shared space tended to
exhibit greater selectivity. Such correlations disappeared
when the mice licked to the incorrect direction. We found
that changes of selectivity from correct to incorrect trials
were positively correlated with changes of communality
from correct to incorrect trials during the delay period. It
suggests that erroneous behavior may be caused by both
the decreased selectivity of originally more selective neu-
rons and the increased selectivity of originally less selec-
tive neurons, which seems to occur in relation to changes
in those neurons’ coupling to the shared space, especially
during motor planning.

Materials and Methods
Datasets
In this study, we analyzed two open datasets (Li et

al., 2014; Chen et al., 2016) that contained the same
experimental data in a total of 38 mice (26 males and
12 females, ages .P60; P: Postnatal day). Action po-
tentials (spikes) were simultaneously recorded in left ALM
with silicon probes (part #A4x8-5 mm-100-200-177,
NeuroNexus). The datasets are publicly available online at
the Collaborative Research in Computational Neuroscience
website (http://crcns.org), contributed by the Svoboda labo-
ratory. A detailed description of the procedure to collect
data can be found in previously published work (Li et al.,
2015, 2016). In brief, the mice were trained to sense the
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contact position of a pole (anterior or posterior) in their
whiskers to perform a tactile delayed-response task (Fig.
1A). At the beginning of each trial of the task, a pole touched
the whisker of the mice for 1.3 s (sample period), cueing the
direction of an upcoming reward (left or right). After the pole
was detached from the whisker, the mice waited for another
1.3 s (delay period), then executed a licking movement (re-
sponse period; Fig. 1A). The mice received a water reward if
they licked to the right provided that the pole had touched
the posterior part [called a hit right (HR) trial], or to the left
provided that it had touched the anterior part of the whisker
[called a hit left (HL) trial]. A trial ended with no reward if the
mice licked either to the left given the posterior cue [called
an error right (ER) trial] or to the right given the anterior cue
[called an error left (EL) trial; Fig. 1B]. On average, each
mouse performed 4.84 sessions for multiple days, where
each session consisted of 100.43 trials of HR, HL, ER, and
EL. Extracellular traces were recorded from left ALM and
bandpass filtered (300–6000Hz). A spike was extracted
from the filtered trace by visual inspection with a spike
width calculated as a trough-to-peak interval in the aver-
age spike waveform (Guo et al., 2014). Units with spike
width,0.35ms were defined as fast-spiking GABAergic
(FS) neurons (196/2420) and units with spike width
.0.45ms as putative pyramidal neurons (2135/2420).
Units with intermediate values (0.35–0.45ms) were ex-
cluded from our analyses (89/2420).

Neuronal firing rates
The firing rate of a neuron was calculated by counting

spikes within a nonoverlapping 100-ms bin. We also defined
a firing rate change for each period (sample, delay, and re-
sponse) as the mean firing rate in each period divided by the
mean firing rate in baseline (0.3–0 s before tactile cue onset;
Fig. 1E). Note that no firing rate change was calculated for
those neurons which did not fire during baseline.

Selectivity
ALM neurons reveal selectivity that characterizes differ-

ential firing rates depending on licking directions (Li et al.,
2015, 2016; Guo et al., 2017; Economo et al., 2018; Gao
et al., 2018; Inagaki et al., 2018, 2019). We classified a
neuron as ipsi-preferring if its firing rate was significantly
higher in the HL than in the HR trials, contra-preferring if
vice versa, or nonselective if no significant difference was
found (p,0.01, one-tailed Mann–Whitney test). We con-
ducted this classification of neurons independently within
each period.
We defined the selectivity of an ipsi-preferring, or con-

tra-preferring, neuron in a given similar to the previous
study (Inagaki et al., 2018):

Selectivity ¼ 2� frHR � frHL
MaxðfrHRÞ1MaxðfrHLÞ ; (1)

where frHR (frHL) and Max(frHR) (Max(frHL)) denote the
mean and maximum firing rates across the HR trials (HL
trials), respectively. From Equation 1, contra-preferring
neurons should have positive selectivity whereas ipsi-pre-
ferring neurons should have negative one. Normalization

in Equation 1 was necessary for generalizing and compar-
ing the selectivity across neurons regardless of sessions.
In normalization, we divided the difference in firing rates
between HR and HL trials by maximum firing rate during
HR and HL trials. Most of the selectivity had value be-
tween �0.5 and 0.5, we multiplied two to set the selectiv-
ity value between �1 and 1. Note that the maximum
values are only for the period under consideration (sam-
ple, delay, and respond period each), and we used mean
firing rate in the period (averaged across time points) and
calculated the selectivity.
Then, we estimated the selectivity of a neuron from

data in the same way as the previous studies (Li et al.,
2015; Inagaki et al., 2018). Specifically, we randomly
sampled firing rates from 30% of the HR and HL trials and
calculated frHR � frHL in each period. We repeated this
calculation in Equation 1 1000 times and obtained the
mean value, which was applied to Equation 1 to compute
selectivity. We also estimated the selectivity of a neuron in
the error trials with the same procedure, but by replacing
the HR and HL with ER and EL trials, respectively (i.e.,
neurons selective in ER: frER.frHL). Note that we used
Mann–Whitney test instead of t test to classify an ipsi-pre-
ferring or contra-preferring neuron in the error trials.

Factor Analysis (FA)
We used FA to infer a shared space, an intrinsic mani-

fold shared by neuronal population activity (Churchland et
al., 2010; Everett, 2013; Athalye et al., 2017, 2018; Wei et
al., 2019). Unlike other dimensionality reduction techni-
ques such as principal component analysis (PCA), FA fo-
cuses on finding latent variables (i.e., factors) that best
describe covariance between neurons (Byron et al., 2009;
Athalye et al., 2017, 2018). Moreover, FA decomposes the
firing activity of a neuron into a shared signal, which is ac-
counted for by population-shared latent variables, and a
private signal, which is independent of latent variables.
Before applying FA to population activity, we first

trimmed firing activity data. So, to detect and remove
those neurons which did not exhibit action potentials be-
cause of unstable recordings, we excluded neurons that
were silent for .50% of the trials. After this process, the
data of 63 sessions in 22 mice out of 184 sessions in 38
mice were used for FA. We applied FA to the firing rate
data of a neuronal population in each period. As the previ-
ous study on the same data showed that ALM neuronal
firing activities during the delay period could be well rep-
resented on a two-dimensional space (Inagaki et al.,
2018), we also determined the number of factors as two in
our analyses. The previous study on the same task para-
digm showed that two modes capture over 60% across-
trial variance in ALM activities. (Inagaki et al., 2018). We
calculated the mean variance explained by principal com-
ponents after 100 random subsampling of hit trials to
match the number of hit trials and the number of error tri-
als. We observed two principal components explained
similar level of variance of our data both in the hit and
error trials (hit trials, sample: 62.22 6 0.0069%, delay:
65.35 6 0.0056%, response: 64.34 6 0.0067% mean 6
SEM across subsampling iterations; error trials, sample:
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Figure 1. Disruption of selective ALM activity tuned to the licking direction during erroneous behavior. A, A schematic diagram for
the tactile delayed-response task. In the sample period, a tactile cue represented as a pole position at either anterior or posterior
whiskers was given for 1.3 s to indicate the upcoming reward (water) direction. The anterior cue was associated with the left direc-
tion whereas the posterior cue was with the right. Mice should not move but wait during a 1.3-s delay period and began to lick to-
ward either the left or right direction after hearing an auditory go cue. B, Four possible behavioral results from the delayed-response
task depending on the match between the tactile cue (anterior vs posterior) and licking direction (left vs right): HL, ER, EL, and HR.
ER (left) denotes erroneous movement to the left (right) given a right-directing (left-directing) cue. C, No significant difference in the
behavioral performance of the tactile delayed-response task between licking directions (p.0.1, two-tailed paired t test, n=22).
Error bars, SEM across the mice. n.s.: not significant. D, Examples of the selective firing activities (i.e., selectivity) of three represen-
tative ALM neurons when mice performed the tactile delayed-response task, for each of the four cases of behavioral outcomes (HL,
HR, ER, and EL). Each neuron showed peak activity in a particular period when the task goal (left or right direction) agreed with its
selectivity (left or right) and when mice behaved correctly (HL and HR). This selective firing activity became more ambiguous when
mice behaved wrongfully (ER and EL). Also, differences in activities between HR and HL in a particular period were large in the hit
trials (top), which was less apparent in the error trials (bottom). E, Differences in the firing activity of the ALM neurons showing selec-
tivity between licking directions. Contra-preferring neurons denote the ALM neurons with selectivity to the right direction (note: left
ALM neurons were recorded) and ipsi-preferring neurons do for the left direction. Differences in firing activities of these neurons be-
tween licking directions were shown in the hit and error trials, based on the fold changes from baseline activity (*p, 0.05,
**p, 0.01, Bonferroni-corrected post hoc test). While the neurons exhibited significant differences between the directions for every
period in the hit trials (left), such differences mostly disappeared in the error trials (right). Error bars, SEM across the neurons.
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61.55 6 1.40%, delay: 64.19 6 1.50%, response: 62.84
6 1.35%; mean 6 SEM across sessions). Note that mean
variance explained in the hit trials is mean of variance ex-
plained across iterations of subsampling the hit trials.
Because mean variance explained is over 60% regardless
of behavioral results (hit and error) and periods (sample,
delay, and response), we decided to fix K as two.
A specific procedure to conduct FA on ALM data are as

follows. Let x 2 RN be a vector of the firing rates of N neu-
rons and z 2 Rk be a K-dimensional random vector
(K,N) following a multivariate normal distribution such
as:

z;Nð0; IÞ: (2)

FA assumes that x is generated from z by a linear
model:

x;Nðm1Uz;UUT 1 c Þ; (3)

where m 2 RN is a vector of the mean firing rates of N neu-
rons, U 2 RN�k is a factor loading matrix illustrating a gen-
erative relationship from z to x and c 2 RN�N is a
covariance matrix of residuals. We form a vector of the
shared signals of N neurons, xshared ¼ Uz, and that of the
private signals of N neurons xprivate ¼ x�m� Uz. Each
vector follows a multivariate normal distribution:

xshared ;Nð0; RsharedÞ (4)

xprivate ;Nð0; RprivateÞ; (5)

where Rshared ¼ UUT and Rprivate ¼ W. We can decompose
x and its covariance as:

x ¼ m1 xprivate 1 xshared (6)

Rtotal ¼ Rprivate 1Rshared; (7)

where Rtotal denotes the covariance matrix of x. The factor
loading matrix U is estimated by the expectation-maximi-
zation (EM) algorithm (Dempster et al., 1977; Athalye et
al., 2017, 2018).

Representation of licking directions in the shared
space
We evaluated the representation of licking directional

information in the shared space. Let Z be the matrix of the
factor scores from every hit trial, Z [ RTxK, where T is the
number of the hit trials, including both the HR and HL tri-
als and K is the number of factors. We assigned a factor
score vector of each trial (i.e., each row of Z) to one of the
two clusters corresponding to the licking direction. Then,
we measured how well the two clusters were separated
using the Fisher ratio (FR) given by:

FRðLV1HR; LV1HLÞ ¼ ðE½LV1�HR � E½LV1�HLÞ2
Var½LV1�HR 1Var½LV1�HL

; (8)

where LV1 is the first latent variable (i.e., the first factor)
and E[·]HR/HL and Var[·]HR/HL represent its expected value

and variance over the HR/HL trials, respectively. We also
calculated the FR(LV2HR, HV2HL) for the second latent
variable (LV2, the second factor) in the same way. The
higher the FR is, the more the two clusters are separated.
We repeated the same separability analysis for the error
trials, where we assigned each factor score vector to one
of the two clusters corresponding to the tactile cue in-
stead of actual licking direction.
To establish a statistical criterion for determining

whether the latent variables contained licking directional
information, we calculated a random FR by randomizing
directional information. We shuffled directional informa-
tion of all the hit trials, clustered latent variables accord-
ingly, and measured the FR between the clusters. We
repeated this procedure multiple times to establish a dis-
tribution of the random FR.
We validated the reliability of licking directional repre-

sentations in the shared space via a train-and-test
scheme. In this scheme, we first built a shared space
using the first half of the hit trials such that the first half
was used as training data. Then, we projected the firing
rate data of the second half of the hit trials or those of the
error trials onto that shared space such that these remain-
ing data were used as testing data. The projection of a
testing firing rate vector of the second half of the hit trials
or the error trials, x, onto the shared space was conducted
by estimating a corresponding shared signal (x̂shared) and
a factor score vector (ẑ) as following (Athalye et al., 2017):

x̂shared ¼ E½xsharedjx� ¼ E½Uzjx� ¼ UUTðUUT 1 c Þ�1ðx�mÞ
(9)

ẑ ¼ ðUTUÞ�1UTx̂shared
; (10)

where m, U and c were estimated from the training data.
Here, we denote a set of estimated factor score vectors
from the second half of the hit trials as HITtest and that
from the error trials as ERRtest. We also repeated the
same projection using the training data and denote a set
of factor score vectors from the first half of hit trials as
HITtrain.
Then, we measured a similarity between HITtrain and

HITtest or between HITtrain and ERRtest to assess the reli-
ability of directional representations in the shared space.
To this end, we divided the factor score vectors in each of
HITtrain, HITtest, and ERRtest into two clusters, respectively,
according to the cue information (i.e., cued direction).
Then, we calculated the FR between the two clusters of
HITtrain and HITtest or HITtrain and ERRtest, that were as-
signed to the same cue. Similarly, we calculated the FR
between the clusters assigned to the opposite cue. If the
shared space remained consistent between training and
testing, HITtrain and HITtest would form similar clusters and
the two clusters assigned to the same cue would be over-
lapped, resulting in a smaller FR. On the other hand, the
two clusters assigned to the opposite cue would be apart
from each other with a larger FR. We also examined
whether this examination was held for ERRtest. For refer-
ence, we calculated the FR between the two clusters of
HITtrain and compared other FR values to it. Pairwise
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comparisons between the reference and the other four FR
values were performed: (1) FR(HITtrain, HITtest) for same
cue, (2) FR(HITtrain, HITtest) for opposite, (3) FR(HITtrain,
ERRtest) for same, and (4) FR(HITtrain, ERRtest) for
opposite.

Selectivity of shared signals
To investigate whether the shared signal of each ALM

neuron exhibited selectivity, we estimated selectivity of
shared signals in the same way as firing rates (see above),
by replacing firing rates in Equation 1 with shared signals,
xshared. Hereafter, we denote the selectivity of the shared
signal of a neuron as SelSH.

Reversed firing modulation with erroneous behavior
We assessed whether the selectivity of ALM neurons

vanished or was reversed for erroneous behavior by com-
paring individual neuronal firing activities between the
error trials and the hit trials. Among ipsi-preferring, or con-
tra-preferring, neurons, we examined whether there ex-
isted neurons that reversed their firing modulation with
erroneous behavior by showing significantly higher firing
rates in a nonpreferred cue trial than in a preferred cue
trial during the erroneous behavior (Mann–Whitney test,
p, 0.05).
Then, we examined whether such neurons reversed

their firing rates together with other neurons or independ-
ently during the task. To this end, we calculated trial-by-
trial correlations between the firing rates of all possible
pairs of those neurons which showed reversed firing mod-
ulation, in each of the error trials and the hit trials. Then,
we evaluated whether correlations were different or not
between the hit and error trials using Wilcoxon signed-
rank test. If the correlations in the error trials remained un-
changed compared with the hit trials, it would indicate
that the neurons reversed firing modulation collectively
during the error trials.

Analysis of generative relations from latent variables
to shared signals
We further analyzed how a generative relation from la-

tent variables to the shared signals of individual neurons
was altered between the hit and error trials. Since this
generative relation, described by the factor loading ma-
trix (U), could be altered by changes in U, changes in la-
tent variables (z), or changes in both U and z, we
examined the effect of U or z on the selectivity of shared
signals (SelSH). To this end, we reconstructed shared
signals in two ways. First, we reconstructed shared sig-
nals through xshared ¼ Uz with U estimated using the
data in the hit trials and z inferred using the data in the
error trials. Second, we repeated the same reconstruc-
tion with U estimated using the error trials and z inferred
using the hit trials. In each session, we calculated selec-
tivity of shared signals reconstructed in either the first
or the second way above (reconstructed SelSH). We
also calculated selectivity of shared signals originally
generated using the data in the hit trials (original SelSH).
Collecting these selectivity values from all sessions, we

calculated correlations between original SelSH and
reconstructed SelSH for each way of reconstruction. If
reconstructed SelSH in the first way was positively cor-
related with original SelSH, it would indicate that z re-
mained similar across the hit and error trials and
possible changes in selectivity of neurons might be
attributed to changes in U. On the other hand, if recon-
structed SelSH in the second way was positively correlated
with original SelSH, it would indicate that U remained rela-
tively similar across the hit and error trials and possible
changes in selectivity of neurons might be attributed to
changes in z.

Communality
We employed communality as a metric to measure how

much the firing activity of a single neuron was explained
by the shared space. Specifically, the communality of a
neuron was calculated as the sum of squared factor load-
ings associated with the neuron, thus representing how
much variance of the neuron’s firing rate was accounted
for by the latent variables. The ith neuron’s communality
was calculated by:

Communalityneuroni ¼ u2
i1 1 u2

i2; (11)

where ui1 and ui2 constitute the ith row of the factor load-
ing matrix U in Equation 3.
After calculating the communality of every neuron,

we assessed a relationship between the selectivity
and communality of individual neurons using the line-
ar regression analysis, where a dependent variable
and an independent variable were the selectivity and
communality of each neuron, respectively. Statistical
significance of linear regression was evaluated by the
F test.

Results
ALM neuronal selectivity changed whenmice licked to
wrong direction
We first verified that a success rate of the tactile de-

layed-response task was not different between licking
directions across the sessions selected for FA (63 ses-
sions): the mean and standard error of the success rate
was 79.176 0.08% for the HR trials and 75.186 0.15%
for the HL trials, respectively (p = 0.28, two-tailed paired
t test; Fig. 1C).
During the task, many ALM neurons showed selectiv-

ity in specific periods (see examples in Fig. 1D). While
the firing rates of selective neurons were obviously
higher for their preferred cue than nonpreferred ones in
the hit trials (Fig. 1E, left), such differences were largely
absent in the error trials (Fig. 1E, right). Notably, the fir-
ing rates of ipsi-preferring neurons were even higher in
the ER than in the EL trials during the response period
(Fig. 1E, right).
Next, we inspected changes of selectivity between the

hit and error trials. The Kolmogorov–Smirnov test (K-S
test) revealed no significant difference in the overall distri-
butions of selectivity between the hit and error trials
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(ps. 0.05 for every period; Fig. 2A). Thus, it confirmed
that selectivity did not disappear during the error trials.
Rather, we observed that neurons with higher selectivity
in the hit trials tended to show reduced selectivity in the
error trials whereas those with lower selectivity in the hit
trials tended to show increased selectivity in the error
trials (Fig. 2A). To examine these observations, we se-
lected neurons showing selectivity within the top (show-
ing high selectivity in HR trials) and bottom (showing
high selectivity in HL trials) 5% of the selectivity distri-
bution in the hit trials and tracked their selectivity in the
error trials. The absolute values of selectivity of these
neurons significantly decreased from the hit to error tri-
als (ps,10�6 for every period, one-tailed paired t test;
Fig. 2B). Similarly, we conducted the same analysis in
the opposite direction – selecting neurons with the top
(showing selectivity in ER trials) and bottom (showing
selectivity in EL trials) 5% selectivity in the error trials
and tracking their selectivity in the hit trials, and ob-
served significant decreases of the absolute selectivity
from the error to hit trials (ps,0.01 for every period,
one-tailed paired t test; Fig. 2C). We found that neurons
selective during the hit trials decreased their selectivity
in the error trials (ps, 0.01 for every period, one-tailed
paired t test) and neurons selective during the error tri-
als also decreased selectivity in the hit trials (ps, 0.05
for every period, one-tailed paired t test). Thus, rela-
tively less selective neurons during the hit trials could
gain more selectivity during the error trials, indicating
that those neurons that were significantly selective dur-
ing the hit trials decreased selectivity during the error
trials, and those neurons that were significantly selec-
tive during the error trials also decreased selectivity
during the hit trials. We explored this pattern in terms of
neuronal relations to the shared space in the following
analyses.

Reversed firing modulation with erroneous behavior
We inspected whether there was a set of neurons col-

lectively showing reversed firing modulation between the
error and the hit trials (see the definition of reversed firing
modulation in Materials and Methods), as conceptually il-
lustrated in Figure 3A (e.g., contra-preferring neuron in
the hit trials changes to ipsi-preferring neuron in the error
trials). In effect, among selective neurons, some neurons
jointly showed reversed firing rate modulation in the error
trials and such joint reversal of firing modulation disap-
peared when directional information was shuffled across
the neurons (for example, see Fig. 3B). We calculated
pairwise correlations between neurons showing reversed
firing modulation in contra-preferring and ipsi-preferring
neurons respectively. Note that we pooled the correlation
coefficients of contra-preferring and ipsi-preferring neu-
rons together and conducted statistical test because of
small number of sample size. As a result, we found that
the correlation coefficients of neurons showing reversed
remained unchanged or even greater in the error trials
(p, 0.05 in sample; ps. 0.05 in delay and response pe-
riod, sign rank-test; Fig. 3C). These results support that
the selectivity was reversed in a number of ALM neurons
followed by behavioral error.

Representation of licking directions in the shared
space was disrupted for erroneous behavior
To investigate whether ALM neuronal population repre-

sents task-related information together, we estimated a
2D shared space of the firing rates of ALM neuronal popu-
lations using FA. We could identify latent variables (i.e.,
factors) that best describe covariance matrix between
population of neurons through FA. Since two principal
components capture over the majority of variance
(.60%) of data in every period of the hit and error trials,

Figure 2. Changes in selectivity of ALM neurons between correct and erroneous behavior. A, Distributions of selectivity in the cor-
rect (hit) and erroneous (error) trials for each period (sample, delay, and response). Black dots represent individual neuronal selectiv-
ity in the hit and the error trials. Gray lines connecting each pair of the black dots indicate the selectivity change of the
corresponding neuron between the hit and error trials. The vertically oriented shadings indicate the sample distributions of selectiv-
ity for hit (gray) or error (pink) trials, respectively. While individual neuronal selectivity was decreased or increased across the hit and
error trials, there was no significant difference in the distribution of the selectivity between the hit and error trials (K-S test, p. 0.05)
for every period. B, 10% of the ALM neurons, marking the top 5% contra-preferring and the top 5% ipsi-preferring selectivity in the
hit trials (black dots), significantly decreased their selectivity in the error trials (red dots) for every period (one-tailed paired t test,
p, 10�6). The gray lines indicate selectivity changes between hit and error trials of each neuron. C, 10% of the ALM neurons, mark-
ing the top 5% contra-preferring and the top 5% ipsi-preferring selectivity in the error trials (black dots), significantly decreased
their selectivity in the hit trials (red dots) for every period (one-tailed paired t test, p, 0.01). The gray lines indicate selectivity
changes between hit and error trials of each neuron.
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the number of latent variables was fixed to two.
Although the shared space was estimated solely from
neuronal data in an unsupervised way, we observed
that task-related information (i.e., cued licking direction)
was present in the shared space (Fig. 4A, top). The FR
between the two clusters in the shared space formed
based on the cue information (i.e., HR vs HL or ER vs
EL) showed a significant difference between the hit,
error, and shuffled trials (ps, 0.05 for every period and
latent variable, one-way ANOVA; Fig. 4B). A post hoc
analysis showed that the FR of the hit trials was greater
than that of the shuffled trials in every period for both la-
tent variables except in the sample period for the sec-
ond latent variable. However, the FR of the error trials
was greater than that of the shuffled trials only in the
sample period (p,0.01, Bonferroni-corrected post hoc
t test; Fig. 4B). Besides, it showed that the FR of the hit
trials was greater than that of the error trials in the re-
sponse period on the first latent variable (p, 0.01).
Thus, in the hit trials, the cue information was sepa-
rately represented in the shared space, which became
less distinguishable in the error trials.

Next, we tested the reliability of this representation
of task-related information in the shared space via a
train-and-test scheme (see Materials and Methods).
We constructed the shared space using the first half of
the hit trials. The second half of the hit trials and the
error trials were projected on the built shared space
and measured FR to test whether the directional infor-
mation is still separated on the shared space. If emer-
gent shared space has consistent axes across trials,
then FR of test data would show FR values similar to
those projected by the train data. The shared space
built from the first half of the hit trials consistently
maintained a discriminative spatial pattern for the sec-
ond half of the hit trials projected onto that shared
space (Fig. 4D, middle). In contrast, the projection of
the error trials onto the same shared space did not
show a discriminative spatial pattern clearly (Fig. 4D,
bottom). Using the FR, we assessed the similarity of
clustering patterns in the shared space across the hit
and error trials (see Materials and Methods). Between
the two clusters across the first and second halves of
the hit trials corresponding to the same cue (Fig. 4C,

Figure 3. Reversed firing modulation of ALM neurons. A, The schematic diagram illustrating reversed firing modulation (see
Materials and Methods). If (hypothetic) neurons decrease firing rates in the error trials in response to a preferred cue that originally
increases the firing rates in the hit trials and vice versa, neurons are deemed to exhibit reversed firing modulation. For example, with
reversed firing modulation, neurons that show higher firing rates for correct right licking (HR) than for correct left licking (HL) would
decrease firing rates in response to a right directional cue for erroneous left licking (ER; left) while increase firing rates in response
to a left directional cue (EL; middle). If two neurons with similar selectivity exhibit reversed firing modulation, their firing rates would
be correlated even over the error trials as well as over the hit trials (right). B, Examples of correlated firing rates of two ALM neurons
showing reversed firing modulation. In the hit trials, two contra-preferring neurons (neurons #3 and #10, session ALM219031) simi-
larly increased firing rates when the posterior cue was given, showing a high correlation (r=0.85) between their firing rates over the
hit trials (left). But in the error trials, both neurons increased firing rates when the anterior cue was given, such as ipsi-preferring neu-
rons, showing again a high correlation (r=0.81) over the error trials (middle). Yet, such a correlation disappeared in the error trials
when the trial order was shuffled (right). C, Correlations between neurons showing reversed firing modulation. Pearson correlation
coefficient was calculated between all pairwise combinations of the neurons showing reversed firing modulation (for the criterion to
determine a neuron with reversed firing modulation, see Materials and Methods) for the hit and error trials, respectively, in each pe-
riod. The average correlation coefficient was not significantly different between the hit and error trials (two-tailed paired t test,
p. 0.1) in the delay and response periods, or greater over the error trials than over the hit trials in the sample period (one-tailed
paired t test, sample: p,0.05). N denotes the total number of neurons showing reversed firing modulation summed over the ses-
sions. Pair denotes the sum of the number of all possible pairs of such neurons calculated session-wise (e.g., if N=2 in session 1
and N=3 in session 2, then Pair = 2C2 1 3C2 = 5). Note that N and Pair should remain the same across the hit and error trials in a
given period. Error bars, SEM across pairs. n.s.: not significant.
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Figure 4. Neural representations of task-relevant information in the shared space of ALM neurons. A, Examples of the task-
related information representation in the shared space composed of the latent variables 1 and 2 (LV1 and LV2; top: hit trials,
bottom: error trials). Each dot represents the 2D values of the latent variables resulting from the FA of the firing rates of ALM
population at each trial. In the hit trials, the latent variables (especially LV1) distinctly represented the target direction infor-
mation (HR or HL) in all the periods, which became less apparent in the error trials. B, The FR between the two groups of the
values corresponding to each target direction was calculated for each latent variable (LV1 and LV2), and compared among
the hit, error and randomly shuffled trials (ANOVA, *p, 0.05, **p, 0.01, Bonferroni-corrected post hoc t test). Randomly
shuffling was performed for the hit trials. Error bars, SEM across sessions. C, The schematic diagram for illustrating the test-
ing of consistent emergence of task-related information in the shared space (for detailed descriptions, see Materials and
Methods). A shared space is first built using HITtrain data, followed by the projection of HITtest data onto that shared space
(HITtrain data: ALM neurons’ firing rate data from a part of the hit trials used for training the FA model; HITtest: ALM neurons’
firing rate data from the remaining hit trials not used for training). Whether the representation of task-related information in
the shared space is consistent throughout the trials is evaluated by two distances: (1) same-cue distance (left; between the
same cues) and (2) opposite-cue distance (right; between the different cues). Distance is measured by the FR between
the two groups of the latent variable values corresponding to the train and test data, respectively (for LV1 and LV2 each). If
the shared space consistently represents the target direction information across trials, then the same-cue distance would re-
main small while the opposite-cue distance would remain large between HITtrain and HITtest. This test is also applied between
HITtrain and ERRtest, where ERRtest indicates ALM neurons’ firing rate data from the error trials. D, Examples of the task-re-
lated information represented in the shared space. As a standard, HITtrain was projected onto the shared space built using
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left), the FR was significantly reduced compared with
original FR of the first half of the hit trials for every pe-
riod (ps, 0.05, one-tailed paired t test), showing that
the clusters assigned to the same cue remained largely
unchanged across the hit trials (Fig. 4E). In contrast,
the FR with the opposite cue (Fig. 4C, right) showed no
difference from the reference value except for the sec-
ond latent variable during the sample period, showing
that distinct representations of licking directions were
maintained across the hit trials. Between the hit and
error trials (HITtrain – ERRtest), the FR was largely re-
duced in the error trials with both the same and the op-
posite cue (p, 0.05, one-tailed paired t test; Fig. 4E),
showing that task-related information in the error trial
was not represented as clearly as in the hit trials.
Moreover, the FR reduced more with the opposite cue
than with the same cue in the delay and response peri-
ods of the error trials (p,0.01, one-tailed paired t
test), which indicated that clustering patterns in the
error trials appeared to be relatively closer to those in
the hit trials if licking directions were switched.

ALM neurons showed selectivity in the shared signals
In this section, we investigated how the selectivitiy of in-

dividual neurons was related to the shared space and
whether such a relationship was altered for erroneous be-
havior. By decomposing the firing rate of a neuron into
shared signals and private signals using FA (see Materials
and Methods), we analyzed the shared signals that re-
flected how the neuronal firing rate was modulated by the
shared space (see Materials and Methods). Of a total of
634 recorded ALM neurons, we observed 220 contra-pre-
ferring neurons and 271 ipsi-preferring neurons (FR1; Fig.
5A). Among these selective neurons, 107 contra-prefer-
ring neurons (48.6%) and 159 ipsi-preferring neurons
(58.7%) also showed selectivity in their shared signals
(FR1SH1; Fig. 5A). We focused on these FR1SH1 neu-
rons, in which task-related information in the shared
space was reflected on the firing rate. Next, we compared
the magnitudes of selectivity between the firing rates and
shared signals of the FR1SH1 neurons. We found that
the selectivity of shared signals (SelSH) was significantly
greater than that of firing rates (ps, 0.05 for every period,

Figure 5. Selectivity in firing rates and shared signals of ALM neurons. A, Venn diagrams of the number of neurons showing selec-
tivity in each period. FR1 denotes the neurons that have selectivity in firing rates (top: contra-preferring neuron; bottom: ipsi-prefer-
ring neuron). FR1SH1 denotes then neurons that have selectivity in both firing rates and shared signals (for the description of the
shared signal of a neuron, see Materials and Methods). B, For the FR1SH1 neurons, selectivity in shared signals (SelSH) is greater
in magnitude than selectivity in firing rates (Selectivity) in every period (top, one-tailed paired t test, ps, 0.05 for every period).
Linear regression of Selectivity against SelSH yielded significant linear fits (bottom, ps,0.05), with every slope,1 in each period.

continued
the same data of HITtrain(top). Each dot represents the projection outcome in each trial. HITtest and ERRtest were projected
onto the shared space constructed by HITtrain, respectively (middle and bottom). E, The same-cue and opposite-cue distan-
ces measured by the FR for each latent variable (LV1 and LV2) in each period. First, the opposite cue distance using HITtrain

only was measured as the standard distance value (black). Then, the same-cue and opposite-cue distances were measured
for HITtest (gray) and ERRtest (red), respectively. Note that the opposite-cue distance using HITtrain only was measured by the
FR of HITtrain on the shared space built using the same HITtrain. Each of the same-cue and opposite-cue distances was com-
pared with the standard distance value (one-tailed paired t test), *p, 0.05, **p, 0.01. Error bars, SEM across sessions.
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one-tailed paired t test; Fig. 5B, top). A linear regression
analysis with SelSH as an independent variable and that of
firing rates as a dependent variable showed a significant
linear relationship with slopes ,1 (ps, 0.01; Fig. 5B, bot-
tom). The result supports our assumption on a generative
relation of firing rates from latent variables that the selec-
tivity of a single neuron may be related to the shared
space composed by population activity.
From the observed changes in firing rates (Fig. 2A,B)

and latent variable patterns (Fig. 4A,D) across the hit and
the error trials, we examined how firing modulation of se-
lective neurons was altered during the error trials. In the
perspective of a generative model (FA), if latent variables
in the error trials represent licking direction contrary to the
direction that they should have represented while the gen-
erative relationship described in the factor loading matrix
remains unchanged, the shared signal of selective neu-
rons that are generated from the latent variables should
also exhibit selectivity in an opposite way to the hit trials.
Since this collectively reversed firing modulation indi-

cated that the altered selectivity of ALM neurons in the
error trials might be driven by changes in the shared
space, rather than an independent change of modulation

in individual neurons, we analyzed the possible changes
in the generation of shared signals from latent variables
during the error trials. On one hand, when we generated
shared signals from latent variables using the error trials
while keeping the factor loading matrix (U), their selectivity
became uncorrelated with their original selectivity ob-
tained from the hit trials in the sample and response peri-
ods, or even negatively correlated in delay period (r =
�0.33; Fig. 6A). On the other hand, if we generated shared
signals using U estimated from the error trials while keep-
ing latent variables, their selectivity was positively corre-
lated with their original selectivity in every period (r=0.68
for the sample, r=0.68 for the delay, and r=0.79 for the
response period; Fig. 6B). Hence, we confirmed that la-
tent variables were altered during the error trials rather
than overall generative relationships from latent variables
to shared signals.

ALM neuronal selectivity is correlated with
communality
For each neuron, we measured communality to deter-

mine how well the neuron’s firing rate was accounted for

Figure 6. Alteration of selectivity in erroneous behavior is related to alteration of latent variables while relations between firing rates
and latent variables are unchanged. A, The scatter plots of reconstructed SelSH and original SelSH in the hit trials. Each dot denotes
each session. Reconstructed SelSH was the selectivity of the shared signals reconstructed by the loading matrix (U) obtained from
the hit trials and latent variables (z) obtained from the error trials. A significant correlation was observed between reconstructed
SelSH and original SelSH only in the delay period (p, 0.01), where the correlation coefficient was negative (r = �0.33). The negative
correlation indicates that z in the error trials were reversely formed, thus generating altered selectivity (see the text for more details).
B, The scatter plots of reconstructed SelSH and original SelSH in the hit trials. Different from A, the shared signals were now recon-
structed using U obtained from the error trials and z from the hit trials. For every period, reconstructed SelSH and original SelSH were
positively correlated (ps, 0.01).
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Figure 7. Selectivity of individual neurons is positively correlated with their communality to the shared space. A, Correlations be-
tween communality and selectivity in the hit trials. The communality and selectivity across individual neurons were positively corre-
lated in every period (r, Pearson’s correlation coefficient, **p, 0.01). B, The scatter plots of communality and selectivity across
individual neurons in the hit trials. The dashed lines indicate significant regression lines obtained from linear regression (ps, 0.01).
Each circle reflects a single neuron. Note that selectivity was normalized before calculating correlations to compare the differences
between neurons regardless of the session. C, Correlations between communality and selectivity in error trials. No significant corre-
lation was observed in any period (ps. 0.1). D, The scatter plots of communality and selectivity across individual neurons in the
error trials. Linear regression revealed no significant linear relationships between communality and selectivity (ps. 0.1). Each circle
reflects a single neuron.

Figure 8. Changes in communality between correct and incorrect behavior. A, Distributions of communality in the correct (hit) and
erroneous (error) trials for each period (sample, delay, and response). Black dots reflect the communality of single neurons in the hit
and the error trials. Gray lines connecting each pair of dots between the hit and error trial indicates communality change of the cor-
responding neuron between the hit and error trials. The vertically oriented shadings indicate sample distributions of selectivity for hit
(gray) or error (pink) trials, respectively. The K-S test showed that the cumulative density function of communality in the hit trials was
significantly smaller than that in the error trials (ps,10�4 for every period). B, Neurons with the top 10% highest communality in the
hit trials significantly decreased their communality in the error trials for every period (one-tailed paired t test, p, 0.01). Gray lines in-
dicate communality changes from the hit to the error trials of single neurons. C, Neurons with the top 10% highest communality in
the error trials significantly decreased their communality in the hit trials for every period (one-tailed paired t test, p, 0.01). Gray
lines indicate communality changes from the hit to the error trials of single neurons.
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by the first two latent variables. Then, we examined a cor-
relation between the magnitude of selectivity and that of
communality of the FR1SH1 neurons. For the hit trials,
we found significant positive correlations between com-
munality and selectivity in every period (sample: r=0.39;
delay: r=0.47; response: r=0.47; ps,0.01 for every pe-
riod; Fig. 7A,B). It revealed that the ALM neurons tended
to be more selective when their firing rate modulation con-
tributed more to the shared space. However, such linear
relationships disappeared in the error trials (sample:
r=0.06; delay: r = �0.11; response: r=0.14; ps.0.05 for
every period; Fig. 7C,D), implying that selective modula-
tion of firing rates in the ALM neurons became irrelevant
to their dependency on the shared space in erroneous be-
havior especially during movement preparation.

Changes in selectivity between the hit and error trials
were correlated with changes in communality
To understand why correlations between selectivity and

communality present in the hit trials disappeared in the
error trials, we first compared overall distributions of com-
munality between the hit and error trials. The K-S test
showed that cumulative density function of communality
in the hit trials was smaller than that in the error trials
(ps, 10�4 for every period; Fig. 8A). However, we ob-
served a similar pattern in communality changes between
the hit and error trials (Fig. 7B) as in selectivity (Fig. 2B),
neurons with higher communality in the hit trials tended
to reduce their communality in the error trials whereas
those with lower communality in the hit trials increased
their communality in the error trials. To examine these
observations, we examined neurons with the top 10%
communality in the hit trials and found that they signifi-
cantly decreased communality in the error trials and vice
versa (ps, 0.01 for every period, one-tailed paired t test;
Fig. 8B,C).
Upon finding this similarity between selectivity and

communality, we further investigated whether neuron-
level alterations in selectivity were related to those in com-
munality. Although we did not directly estimate the shared

space from the selectivity, the task-related activities would
be captured in the shared space through covariance struc-
ture. Therefore, to identify a specific aspect of dependency
related to behavior in the shared space, we evaluated
whether each neuronal engagement on the shared space
could explain the selectivity and accounted for the change
in the selectivity in the error trials by changes in engage-
ment on constructing the shared space. Specifically, we
tested whether the amount of change of selectivity from
the hit to error trials would be explained by that of commu-
nality. To this end, we defined a change in communality
and selectivity of a neuron between the hit and error trials
as Dcom = communalityHit – communalityError and Dsel =
selectivityHit – selectivityError, respectively, and performed a
correlation analysis between Dsel and Dcom in each pe-
riod. The result showed relatively weak but significant linear
relationships between Dsel and Dcom across individual
neurons (sample: r = 0.29, p, 0.05; delay: r=0.27,
p, 0.01; response: r=0.33, p, 10�6). However, when we
performed the correlation analysis at the population level,
where Dcom (or Dsel) was averaged over a population of
ALM neurons within each session, we found a stronger
correlation between Dcom and Dsel in the delay period
(r=0.57, p ,10�3), but not in other periods (sample:
r=0.15, p=0.52; response: r=0.03, p=0.81; Fig. 9A,B).
The results suggest that changes in single neurons’ selec-
tivity underlying erroneous behavior, i.e., the decreased
selectivity of originally more selective neurons and the in-
creased selectivity of originally less selective neurons,
might occur in relation to changes in those neurons’ com-
munality, especially during a motor planning period.

Discussion
The present study investigated neural substrates of er-

roneous behavior in rodents’ ALM populations during the
tactile delayed-response task. Compared with correct be-
havior, the selectivity of individual ALM neurons was re-
versed. Licking direction was inadequately represented in
the shared space by population, and connections of the
selectivity of individual neurons to the shared space,

Figure 9. Altered selectivity of ALM neurons with motor planning error is related to altered communality. A, Correlations between
the mean communality change and the mean selectivity change from the hit to the error trials, where the mean was estimated over
the population of neurons in each session, were calculated across sessions (r, Pearson’s correlation coefficient). A significant corre-
lation was observed only in the delay period (***p , 10–3). B, The scatter plots of the mean communality differences and the mean
selectivity differences in each period. Each dot reflects each session. The dashed regression line was obtained from linear regres-
sion (p, 0.01).
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measured by correlations between selectivity and com-
munality, was disrupted, during erroneous behavior.
Notably, average selectivity in animals changed more be-
tween correct and erroneous behavior when the corre-
sponding average communality changed more, during the
delay period. Our results suggest neural substrates of er-
roneous behavior in the tactile delayed-task as joint
changes in the selectivity of ALM neurons at both single
neuron and population levels, as well as alternation of the
neuronal coupling assignment to the shared space.
One of the intriguing findings of the present study was

that the single neuron-level change in selectivity between
correct and erroneous behavior was highly correlated
with the population-level change in communality, which
was observed only in the delay period. Also, we demon-
strated that highly selective neurons for correct behavior
decreased their selectivity for erroneous behavior where-
as less selective neurons for correct behavior became
more selective for erroneous behavior. Together, signifi-
cant alterations in selectivity of ALM neurons that under-
lie erroneous behavior were tightly linked to changes in
communality during the delay period. Considering that
changes of communality mean changes of the degree to
which a neuron’s activity is coupled to the shared space,
our results suggest that incorrect modulation of ALM
neurons that are less selective during movement prepa-
ration would be engaged in causing behavioral error as
supported by changes in selectivity.
Individual neuronal activities vary in part with those of

other neurons, which creates “common variance” shared
among a number of neurons. Existence of such shared
variance among neurons enables us to find a low-dimen-
sional space mathematically in which each dimension
represents co-varying activity of a subset of neurons in
the population. If the shared variance changes with the
task, the task-related information would also be repre-
sented on the shared space. In this study, we confirmed
that future licking direction was discriminately repre-
sented on the shared space for correct behavior but not
for erroneous behavior. This implied that co-varying activ-
ity of a subset of neurons in the population was not cor-
rectly coordinated for erroneous behavior, indicating a
possible error in the interaction between those neurons.
Moreover, stronger coupling of a single neuron to the

shared space means that the neuron’s activity is ex-
plained more by co-varying activity of a set of neurons
that share variance. It implies that a strongly coupled
neuron might participate more in generating co-varying
activity pattern in the shared group. As it is known that
selectivity is key to movement preparation, we can as-
sume that tight coupling of highly selective neurons shar-
ing the same preferred direction (i.e., contra-preferring
or ipsi-preferring) would be important to make correct
movements. We observed that highly selective neurons
showed stronger coupling to the shared space for cor-
rect behavior and that these neurons reduced their cou-
pling as well as selectivity for erroneous behavior.
Interestingly, we rather found that a different group of
neurons that showed low selectivity for correct behavior
became more selective for erroneous behavior along

with stronger coupling. It indicates that a wrong set of
neurons became more interactive during movement
preparation for erroneous behavior while the originally
selective neurons were not properly coordinated. Note
that this wrong set of neurons partially involved selec-
tive neurons of opposite preferred direction but mostly
included neurons that had been nonselective if behaved
correctly. It implies that erroneous behavior might not
be a consequence of wrong sampling of tactile cue,
which would have increased coupling of neurons of op-
posite preferred direction, but rather involve more com-
plicated processes of neuronal interactions in the ALM
circuit which remains vague and needs further in-depth
investigations.
Although much more work is needed to answer why

changes in selectivity were correlated with changes in
communality only during the delay period, we speculate
possible explanations for this as follows. First, ALM neu-
rons are involved in retaining working memory related to
future licking information in the delay period. When a tac-
tile cue is given, primary somatosensory cortex (vS1) enc-
odes the tactile information and subsequently transfers it
to ALM (Guo et al., 2014). Also, medial motor cortex (MM)
is activated in the sample period, followed by the activa-
tion of ALM neurons in deep layers in the early delay pe-
riod (Chen et al., 2017). Hence, ALM neurons might
become more coordinated as the delay period begins,
which would be likely to tighten the coupling of population
activity of ALM neurons with the shared space. Second,
preparatory activities of motor cortical neurons stay on
the null space of movement execution to prevent muscle
from evoking overt movements, thus coupling with the
shared space would also be changed after go cue (Guo et
al., 2014; Stavisky et al., 2017; Economo et al., 2018).
In this study, we showed that the selectivity of individual

ALM neurons in mice varied with the extent to which the
neurons’ firing activities were coupled to an intrinsic mani-
fold shared by the neurons. Our finding is in line with a re-
cent computational study, which reported that a latent
state model based on recurrent neural networks could
generate virtual neurons with selectivity, suggesting that
the selectivity of motor cortical neurons could be the re-
sult of latent dynamics under which a population of neu-
rons modulates their firing activities to perform a task
(Michaels et al., 2016). Yet, different from in-silico studies
elucidating selectivity by latent dynamics with synthetic
neurons, the present study revealed that coupling to the
intrinsic manifold elucidated selectivity of biological ALM
neurons.
Wei and colleagues showed similar dynamical struc-

tures underlying correct and erroneous behavior at ALM
population level (Wei et al., 2019). In their study, neural
representations of population activity in an intrinsic mani-
fold reached toward the opposite direction during the
error trials but also hovered over intermediate areas be-
tween two possible licking directions. Consistent with
these results, we found less separable representations of
population activities in the error trials. However, different
from this previous study’s account of licking behavior
based only on neural representations of population
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activity in the intrinsic manifold, the present study ex-
plains behavioral outcomes produced by individual neu-
ronal firing characteristics (selectivity) in association with
latent structure (shared space).
The present study showed that the selectivity of individ-

ual ALM neurons could be partially explained by the ex-
tent to which their firing activities were coupled to the
intrinsic manifold where the task-relevant information (i.e.,
licking direction) was manifested (Figs. 7, 9). This new ac-
count of selectivity may be applied to other similar neuro-
nal activities found in many brain areas such as preferred
directions (Georgopoulos and Ashe, 2000; Omrani et al.,
2017) as well as other types of selectivity associated with
various sensorimotor and cognitive tasks (Rigotti et al.,
2013; Amedi et al., 2017; Banerjee and Long, 2017).
Although biological implications of the shared space in

the motor cortex remain elusive, many studies have at-
tempted to gain insights from the analysis of the shared
space regarding task-relevant neuronal population dy-
namics. For instance, studies have shown that the align-
ment of an intrinsic manifold of wide-scale motor cortical
neurons occurs in the course of task learning, and the la-
tent space becomes consolidated across neurons after
learning (Ganguly et al., 2011; Koralek et al., 2012, 2013;
So et al., 2012; Wander et al., 2013; Clancy et al., 2014;
Gulati et al., 2014). Also, a recent study suggests that
anatomically separated cortical areas interact with each
other through the latent spaces (Semedo et al., 2019).
Multiple brain regions are reportedly involved together
with ALM in the performance of the tactile delayed-re-
sponse task, including vS1, MM, thalamus, and cerebel-
lum, implying that a large-scale shared variance may
emerge across multiple brain regions after learning to per-
form the task (Li et al., 2016; Allen et al., 2017; Chen et al.,
2017; Guo et al., 2017; Gao et al., 2018).
Dynamics underlying ALM selectivity can be described

by a network model such as a discrete attractor model
(Inagaki et al., 2019) and possibly elucidate how errone-
ous behavior occurs more precisely. But it is difficult to
extend the network model to incorporate all inputs to
ALM. On the other hand, low-dimensional projection can
effectively represent the task-relevant variance of ALM
neurons driven by input signals to ALM, because the pro-
jection methods such as FA capture shared variance
across neurons evoked by recurrence and input signals.
For example, the trajectory on the low-dimensional space
of ALM showed ramping patterns similar to those elicited
by a ramping input from thalamus (Li et al., 2016; Inagaki
et al., 2019). Thus, in future studies, additional investiga-
tions are required to understand what aspect of neural
network dynamics is manifested the shared space. FA
captures latent variables using covariance among neu-
rons, thus prominent inputs to ALM would be reflected on
the covarying activities of many ALM neurons, which is
represented by latent factors. Considering that VM/VAL of
thalamus drives ALM dynamics, the shared space of ALM
populations inferred by FA might represent a subspace in
which neuronal dynamics temporally evolve by strong
thalamic inputs (Guo et al., 2017). If thalamic feedback
through the thalamocortical loop falsely draws temporal

growth of ALM activities to the fixed points corresponding
to opposite licking direction, then neural representation in
the shared space would also change accordingly. In this
scheme, the selectivity of each ALM neuron would be al-
tered depending on how much each neuron is weighted
by thalamic inputs, which would be described by commu-
nality in FA.
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