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Abstract
Background: Most studies inferring species phylogenies use sequences from single copy genes or
sets of orthologs culled from gene families. For taxa such as plants, with very high levels of gene
duplication in their nuclear genomes, this has limited the exploitation of nuclear sequences for
phylogenetic studies, such as those available in large EST libraries. One rarely used method of
inference, gene tree parsimony, can infer species trees from gene families undergoing duplication
and loss, but its performance has not been evaluated at a phylogenomic scale for EST data in plants.

Results: A gene tree parsimony analysis based on EST data was undertaken for six angiosperm
model species and Pinus, an outgroup. Although a large fraction of the tentative consensus
sequences obtained from the TIGR database of ESTs was assembled into homologous clusters too
small to be phylogenetically informative, some 557 clusters contained promising levels of
information. Based on maximum likelihood estimates of the gene trees obtained from these
clusters, gene tree parsimony correctly inferred the accepted species tree with strong statistical
support. A slight variant of this species tree was obtained when maximum parsimony was used to
infer the individual gene trees instead.

Conclusion: Despite the complexity of the EST data and the relatively small fraction eventually
used in inferring a species tree, the gene tree parsimony method performed well in the face of very
high apparent rates of duplication.

Background
Since the advent of efficient nucleotide sequencing tech-
nology in the 1980's, sampling of plant genomes to build
species phylogenies has emphasized organellar markers,
especially in the chloroplast genome, and a few nuclear
loci such as ribosomal RNA genes. Though not universal
(see e.g., [1-3]), phylogeneticists' avoidance of the nuclear

genome of plants is in no small part due to its relative
complexity – mainly the frequent occurrence of paralo-
gous copies of genes derived from gene duplications [4].
Not only is polyploidy widespread in plants, but recent
evidence derived from whole genome sequencing projects
suggests a cryptic history of whole genome duplication
and diploidization not predicted by cytogenetic evidence,
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including for example the prospect that Arabidopsis has
undergone three complete genome doublings since the
origin of seed plants, legumes two, and cereals two or
more [5,6]. This contributes to already complex dynamics
of gene family expansion and contraction driven by func-
tional divergence [4]. In Arabidopsis, 65% of genes are
members of gene families [7], and because of silencing of
alternative paralogs in other taxa, in addition to sporadic
background rates of gene duplication, phylogenetic stud-
ies will undoubtedly sample even more duplications as
they increase in taxonomic scope.

Phylogenetic methods are relatively poorly adapted to
inferring species trees from gene trees that contain dupli-
cations, despite steady work since Goodman et al.'s [8]
pioneering paper [9-14]. Complicating matters further,
homologous recombination in gene families (e.g. gene
conversion) can add reticulate patterns to gene family his-
tories. Most efforts to use nuclear markers have therefore
focused on finding true single copy loci or on extracting
subsets of orthologs from gene families [15-20]. However,
the problem of detecting and extracting orthologs is itself
quite challenging: a diversity of techniques have been pro-
posed, ranging from reciprocal best BLAST searches to
more phylogenetically driven approaches [3,21-26].

Thus plant biologists are now in the curious position of
having increasingly rich and deep phylogenomic data sets
but lack a full spectrum of tools to build species phyloge-
nies from them. In addition to whole genome projects,
large EST libraries have been assembled for dozens of
crops and model plants. At the moment these data pro-
vide the most taxonomically broad source of potential
phylogenomic data in plants, but they are characterized
by numerous gene families and to date only orthologous
subsets have been exploited to build species phylogenies
[3,27,28]. The data themselves also present numerous
challenges because of the laboratory methods by which
they are extracted [29], the complex informatics proce-
dures by which they are assembled [28,30], and the diver-
sity of molecular variation at the level of expression that
they reflect (e.g. alternative splice variants; [29]). This
paper examines both the phylogenetic informativeness of
the EST data and current methodologies for building spe-
cies phylogenies from duplication-rich gene families to
address the potential utility of such data for constructing
the phylogeny of plants.

That the signature of species phylogeny can be found in
complex gene trees displaying a mosaic of orthologous
and paralogous relationships has been recognized for dec-
ades [31]. The first piece of possible strategy to infer such
relationships was provided by Goodman et al. [8], who
developed an algorithm for fitting a given species tree and
gene tree together to determine the minimum number of

duplications necessary to explain the data. This problem
came to be known as "tree reconciliation", and several
algorithms were developed to solve it efficiently [9,14,32].
Figure 1 illustrates some of the complexities involved. For
example, a simple re-rooting of the gene tree can have dra-
matic effects on inferences about the history of gene
duplication. The second element of the strategy is a search
among candidate species trees, determining the minimum
duplication score for each species tree relative to one or
more gene trees that are assumed to be known
[9,10,12,33-37]. This is an optimization problem entirely
analogous to maximum parsimony or likelihood, but in
which the optimality criterion is the summed duplication
score (or perhaps the summed duplication plus loss
scores) across all gene trees for a given species tree. The
rationale for this "gene tree parsimony" (GTP) approach
is that we should seek the species tree that imposes the
fewest assumptions of unnecessary duplications in the
collection of gene trees available. Though rarely used
[33,36,37], Cotton and Page [12] showed in an extensive
analysis of vertebrate gene families that it was possible to
reconstruct a very credible species tree of vertebrates using
this approach. One reason it has not been explored much
in real data may be the lack of available software tools to
implement the tree search part of GTP. Though several
tools are available to do tree reconciliation [38-40], Page's
program GeneTree [39], is the only widely available soft-
ware to implement tree search heuristics, but these are rel-
atively simple, having only tree rearrangement heuristics
and no sequential addition steps.

One way to assess the utility of a phylogenetic method is
to compare its output to a "known phylogeny". In this
paper we examine the efficacy of GTP for reconstructing
species relationships across angiosperms using an
"accepted" angiosperm tree for six taxa, together with pine
as an outgroup (Fig. 2). Limiting the problem to this size
accomplishes two things: first, it permits exhaustive
searches of the species tree space, avoiding the problem of
developing efficient heuristics for searching tree space;
second, it provides an immediate test of the quality of the
results. The six angiosperms chosen span deep and rela-
tively shallow phylogenetic relationships, ranging from
the monocot-eudicot split (~120 Ma) to splits within one
clade of eudicots, the legumes, which is a relatively recent
radiation (~60 Ma). Phylogenetic relationships of these
six angiosperms are strongly supported by numerous
studies from multiple single copy (or effectively single
copy in the case of 18S rDNA) loci [41-43], and in some
cases from nuclear gene family data in which ortholog
groups have been extracted [44]. In the case of legumes,
the number of loci is fewer but both the monophyly of
legumes and the indicated three-taxon statement within
legumes are supported by multiple loci [45-47].
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A final ingredient in any assessment of utility of methods
and data is a statistical estimate of reliability of results.
Agreement or disagreement of results with the accepted
phylogeny takes on added meaning if the estimated tree is
strongly supported. Little work has addressed confidence
limits in gene tree parsimony studies. However, bootstrap
procedures may provide some useful indication of
strength of evidence [12]. In addition to the "usual" error
expected in phylogenetics – incorrect gene trees owing to
noise in the sequence data or bias in the inference – there
is an additional important source of error stemming from
incorrect rooting of the gene tree. Gene tree parsimony
methods require that both the species and gene tree be
rooted. Whereas rooting is generally accomplished in spe-
cies-level phylogenetics by outgroup analysis (often after
an unrooted analysis is completed), this is usually more
problematic in gene families, because of the difficulty of
identifying the correct ortholog for the entire ingroup. As
suggested by several authors [13,32] one way to sidestep
this source of error is to implement GTP across all root-
ings of each gene tree; in other words, to calculate the GTP
score by finding the rooting that minimizes it for each
gene tree. This conservative approach is adopted here.

Some terminology associated with gene family data war-
rants definition. We refer to gene duplication events as in-
duplications (i.e. producing inparalogs, [26]) or out-duplica-
tions (producing outparalogs, Fig. 1). In-duplications result
in descendants within a single species and are therefore
inferred to have occurred since the most recent common
ancestor of the species and its sister group. This can
include within-species duplications (or species-specific
alleles), or duplications that appear to be within-species
because of incomplete species sampling. Because the
descendants of an in-duplication remain in a single spe-
cies, they cannot prefer one species tree to another. Out-
duplications, in contrast, occur earlier than the most
recent speciation event and produce descendants in two
(or more) species. An out-duplication therefore can
(indeed, must) disagree with the species tree and can con-
tribute to the preference of one species tree over another.

Results
Sequence data and gene trees
The TIGR Gene Indices Database provided 172,900 Tenta-
tive Consensus (TCs) sequences for the seven focal taxa
(Table 1). After discarding sequences for which there was

Tree reconciliation exampleFigure 1
Tree reconciliation example. Two alternative rootings of the same unrooted gene tree (thin black lines) imbedded in a 
species tree (thick grey lines) visualized with the tool PrIMETV [76]. The gene tree is the maximum likelihood tree for a data 
set with 12 tentative consensus (TC) sequences assembled from ESTs from seven taxa (our cluster 13024). Bars indicate dupli-
cations within species (in-duplications) and black circles indicate out-duplications (those followed by a speciation event). A. The 
gene tree rooted to minimize the number of duplications required to reconcile the trees (two out-duplications required). B. 
The gene tree rooted using midpoint rooting, which places the root along the branch to the Arabidopsis sequences. This rooting 
is less optimal, requiring five out-duplications.

Pi
nu
s
2

Pi
nu
s
1

G
ly
ci
ne
2

Lo
tu
s
1

G
ly
ci
ne
1

M
ed
ic
ag
o
1

Ar
ab
id
op
si
s
2

Ar
ab
id
op
si
s
1

So
la
nu
m
2

So
la
nu
m
1

O
ry
za
2

O
ry
za
1

G
ly
ci
ne
2

Lo
tu
s
1

G
ly
ci
ne
1

M
ed
ic
ag
o
1

O
ry
za
2

O
ry
za
1

Pi
nu
s
2

Pi
nu
s
1

So
la
nu
m
2

So
la
nu
m
1

Ar
ab
id
op
si
s
2

Ar
ab
id
op
si
s
1A B
Page 3 of 14
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7(Suppl 1):S3
no open reading frame (ORF) at least 500 nucleotides (nt)
in length, 105,453 TCs remained. These were trimmed to
their longest ORF, producing sequences with average
length of 1094 nt (336 nt shorter, on average, than the
original TCs).

Clustering of sequences implemented with BLAST and
single-linkage clustering produced a wide diversity of clus-
ter sets (Table 2) depending on how we set the minimum
hit fraction, which is the set union of the sets of locally
aligned sites (hits) reported by BLAST. With this mini-
mum value set to zero, nearly 40,000 clusters were assem-
bled, some 4423 of them phylogenetically informative.
However, the largest contained 6565 sequences, and the
sequences in it were extremely heterogeneous in length,
sequence, and annotation, and were not homologous to
any level that would be useful in phylogenetic inference.
Clearly the stringency of overlap set by the minimum hit
fraction was too low. When we increased the minimum
hit fraction the size of the largest cluster was reduced and
the data became more fragmented, as reflected in the
increasing number of clusters (Table 2), but also more
homogeneous within clusters. Ultimately we selected a hit
fraction of 0.7 in an effort to maximize the amount of

information retained while attempting to minimize
within-cluster heterogeneity (see also e.g. Schlueter et al.
[48]; who impose analogous requirements, although on
fractional overlap of an entire hit rather than the set union
of hits, as we do).

The chosen cluster set contained 88,864 clusters, only 577
of which were potentially phylogenetically informative;
that is, they had at least four sequences and at least three
taxa (most contained just a single sequence or a single
taxon: Table 3 and Table 4). Fifty-nine clusters contained
sequences from all seven taxa. The largest informative
cluster contained 94 sequences, including several from
each of the seven taxa. On the other hand, an extraordi-
narily large number of clusters, 79,122, were singletons
(only one sequence). The contributions of each taxon to
the final data sets ranged widely: from 315 to 1065 TCs
and membership in 159 to 538 clusters (Table 1). The
number of sequences excluded due to insufficiently long
ORFs also varied tremendously across taxa (Table 1). In
the end only 4536 TC sequences of the original 105,453
found their way into phylogenetic analysis (4.3%). This
was about one tenth of the sequences produced by the
least stringent clustering requiring 0% hit fraction overlap,

Accepted species tree for seven plant model speciesFigure 2
Accepted species tree for seven plant model species. Names of clades are indicated at internal nodes. See text for dis-
cussion of strength of evidence for this phylogeny.
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but those clusters were largely unusable because of their
heterogeneity as described above.

The collection of gene trees reconstructed using parsi-
mony (henceforth "parsimony gene trees") was quite sim-
ilar to that reconstructed under likelihood ("likelihood
gene trees"). In fact, 354 of the clusters produced the same
tree topology or same set of equally optimal tree topolo-
gies. In 34 other clusters the set of ML trees was a proper
subset of the set of MP trees, and in one cluster the reverse
was true. Finally, in 187 clusters, the set of MP trees and
the set of ML trees were disjoint. Not surprisingly, these
tended to be the clusters with more sequences (mean 12.4

sequences, whereas the mean across all 577 clusters was
7.9 sequences).

Tree reconciliation: duplication scores on the accepted 
species tree
The distribution of the number of clusters inferred to have
a given number of duplications is highly skewed for both
parsimony and likelihood gene trees with many clusters
having zero duplications but the maximum number of
duplications in any cluster still being quite large (Table 5).

On the accepted species tree, the inference method
affected the number of duplications inferred for 154 clus-

Table 2: Effects of hit fraction threshold on cluster assembly. Bold indicates the threshold chosen for the current study.

Hit fractiona Clustersb Singletonsc Phylogenetically informative 
clustersd

Max sizee TCs in phylogenetically informative 
clustersf

0.0 39924 26782 4423 6565 54051
0.1 47798 32824 4079 1947 42406
0.2 57229 41327 3324 1362 29403
0.3 64691 48864 2561 330 21504
0.4 71333 56383 1876 117 15457
0.5 77564 63890 1340 98 10721
0.6 83435 71539 897 95 7105
0.7 88864 79122 577 94 4536
0.8 94296 87186 324 92 2529
0.9 99843 95975 103 89 872
1.0 105144 104860 1 6 6

a Minimum proportion of sequence similarity based on BLAST's pairwise comparisons. The hit fraction determines whether a sequence is linked to 
another (if a pair is linked, they will be placed in the same cluster) and thus affects the level of heterogeneity within clusters and the number of 
assembled clusters. Original number of sequences is 105,453 TCs.
b Total number of assembled clusters.
c Number of single-sequence clusters.
d Phylogenetically informative clusters for this study are those that include at least three species and at least four sequences.
e Number of tentative consensus sequences (TCs) in the largest phylogenetically informative cluster.
f Total TCs in all phylogenetically informative clusters.

Table 1: Sequence and cluster data for each taxon

Taxona Releaseb Original TCsc MaxORFsd Clusterse Final TCsf

Arabidopsis thaliana 12.1 28900 23737 343 729
Glycine max 12.0 31928 13930 538 1065
Lotus japonicus 3.0 12485 3116 365 452
Medicago truncatula 8.0 18612 12254 528 852
Oryza sativa 16.0 36381 25842 199 418
Pinusg 6.0 23531 13949 159 315
Solanum tuberosum 10.0 21063 12625 378 705
Total 172900 105453 577 4536

a Taxon as given by TIGR for the EST collection assembled in the Gene Index Database.
b Versions used in this paper, current as of 18 February 2006.
c The 363,971 sequences in the database for these taxa were screened to include only those sequences assembled by TIGR into Tentative 
Consensus (TC) sequences.
d TCs were trimmed to the largest sense-direction ORF that was at least 500 nt in length; shorter sequences were discarded.
eNumber of clusters in which the taxon is represented, after screening for phylogenetic informativeness (at least three taxa and at least four 
sequences).
f Total number of sequences from each taxon in the final set of clusters.
gTIGR assembled this library from several species of Pinus.
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ters but had no effect on the other 323 clusters. Of those
for which it made a difference, in 87 clusters the likeli-
hood gene trees fit the accepted species tree better i.e. with
fewer duplications, and in 67 clusters the parsimony trees
fit better.

Gene tree parsimony: finding the optimal species tree
The optimal species trees differed slightly depending on
whether the parsimony or likelihood gene trees were used.
Based on the likelihood gene trees, the optimal tree was
exactly the accepted species tree, with an (out-) duplica-
tion score of 779.0 (Fig. 3A). Based on the parsimony
gene trees, the optimal species tree was very similar to the
accepted tree, except for a rearrangement within the leg-
umes (Fig. 3B). Its score was 771.9 (out-) duplications.
The duplication score of the accepted species tree based
on the parsimony gene trees was 796.3 and it was ranked
fourth among all species trees. Fractional scores reflect
weighting of multiple equally parsimonious or equally
likely gene trees within a cluster. Note also that the rank-
ings and relative scores are the same when counting all
duplications as when counting out-duplications only. As
they are restricted to only a single species, in-duplications
are akin to autapomorphies in being phylogenetically
uninformative.

Because of the exhaustive enumeration algorithm we
could obtain the entire distribution of duplication scores
for the two analyses (Fig. 4). The duplication scores for the
likelihood trees ranged from 779.0 – 1152.0, whereas
those for the parsimony trees ranged from 771.9 – 1165.9.
Both distributions were highly skewed with a long tail of
low scoring trees, suggesting the presence of phylogenetic

signal, at least by analogy to skewness indices that have
been used to study parsimony score distributions [49].

Support levels and hypothesis testing
Bootstrap I values could only be calculated for the parsi-
mony gene tree collection because of computational lim-
its (100 maximum likelihood searches on 557 data sets
was prohibitive). Support was >95% for all nodes in the
species tree derived from the parsimony gene trees except
for the rosid clade, which was only supported at 48% (Fig.
3). Bootstrap II support values were also moderate for the
Rosid clade in both parsimony and likelihood gene tree
analyses (71% and 68% respectively). In addition, the
relationship within the legumes, which conflicts between
the two optimal species trees (Glycine + Lotus versus Medi-
cago + Lotus), is weakly supported (66%) in the likelihood
analysis, but strongly supported (99%) in the parsimony
analysis.

Because our analyses supported two different trees
depending on which collection of gene trees was used, we
examined whether these two trees were statistically distin-
guishable on the basis of the data at hand. Let TL be the
optimal species tree found based on the likelihood gene
trees (identical to the accepted tree) and TP be the optimal
tree found with the parsimony gene trees. We examined
the difference in support for these two trees based on
either the likelihood gene tree collection or the parsimony
gene tree collection using the analog of the paired-sites
test described in the Methods. Based on the parsimony
gene trees, there was weak but significant support (P =
0.04) for a difference between TL and TP. Of the 577 gene
trees, 403 showed no difference in unrooted duplication
scores between the two trees; 101 had better (lower)
scores for TP compared to TL; 77 had better scores for TL.
On the other hand, there was no significant difference in
support (P = 0.36) based on the likelihood gene tree col-
lection for a difference between TL and TP. Of the 577 gene
trees, 408 showed no difference in unrooted duplication
scores between the two trees; 85 had better (lower) scores
for TP compared to TL; 84 had better scores for TL. These
results are congruent with the bootstrap II comparisons in
that they suggest the parsimony gene tree collection
makes a more decisive claim about the difference in the
species trees than does the likelihood gene tree collection.

Discussion
Phylogenetic sparseness of the EST data
Phylogenomic data sets, whether derived from whole
genome sequencing [15], database mining [18], or EST
assemblies [20,27] have yet to combine into one analysis
more than a few hundred clusters of sequence homologs
("loci"). The reasons for this are many, but a primary one
is the tradeoff between completeness of a data set and lack
of homology that eventually limits cluster construction.

Table 4: Distributions of cluster sizes by number of tentative 
consensus sequences (TCs)

Number of TCs in cluster Number of clusters

1 79122
2–3 8645
4–9 930

10–94 167

Table 3: Distributions of cluster sizes by number of taxa

Number of taxa in cluster Number of clusters

1 86022
2 1986
3 478
4 162
5 90
6 67
7 59
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Sanderson and Driskell [50] and Driskell et al. [18] illus-
trated this graphically by showing the low density of con-
catenated data matrices assembled from GenBank data
mining approaches. Density can be defined as the fraction

of sequences present in a "data availability matrix" con-
sisting of all taxa in an analysis by all clusters. The reason
why phylogenetic data matrices derived from whole
genome analyses do not include all the genes in the

Table 5: Distribution of duplication scores among clusters

MP gene trees ML gene trees

Number of clusters with zero duplications 40 42
Number of clusters with zero out-duplications 211 226
Maximum duplications in any cluster 83 81
Maximum out-duplications in any cluster 20 17

Species tree inferred by gene tree parsimonyFigure 3
Species tree inferred by gene tree parsimony. A. The best species tree obtained using gene tree parsimony based on the 
maximum likelihood gene tree collection. It is identical to the accepted tree in Figure 2. B. The best species tree obtained using 
GTP based on the maximum parsimony gene tree collection. It differs from the accepted tree only within the legumes. Boot-
strap II support values (resampling the gene trees: see text) are shown in plain text for each bipartition in the tree. Bootstrap I 
values (resampling the data within the original clusters) are shown in italics for tree B.
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Distribution of duplication scores across all species treesFigure 4
Distribution of duplication scores across all species trees. Distributions of out-duplication scores across all 945 binary 
angiosperm species trees (all rooted with Pinus). An out-duplication score is the sum of all out-duplications required to recon-
cile all 577 gene trees (or sets of trees) to that species tree. The upper panel shows the distribution of scores when the gene 
trees were estimated using maximum parsimony; the lower panel gives the same for the maximum likelihood gene trees. 
Arrows indicate the bins in which the accepted species tree occurs. For the MP gene trees, the accepted species tree was 
fourth from the best and had a score of 796.3 (the optimal species tree had a score of 771.9). For the ML gene trees, the opti-
mal tree was the same as the accepted tree and had a score of 779.0.
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genome is partly because lack of homology between
sequences in these taxa limits how many taxa actually
share the gene in common (either due to gene loss or
excessive divergence). Clusters used in phylogenetic anal-
ysis are sometimes explicitly constructed to have all taxa
or a minimum fraction of such taxa [51], thus keeping
data density above a threshold, but also greatly limiting
the eventual size of the data matrix.

EST-based studies also seem to fit into this same para-
digm. For example, using small EST libraries to identify
orthologous clusters of ESTs, Hughes et al. [20] con-
structed supermatrices with 71% missing data, and this
was after exclusion of most of the data because of exten-
sive paralogy. In our data, for the cluster set used for most
analyses, we identified 88,864 clusters for the seven taxa.
However, 79,122 of these were singleton clusters, mean-
ing that a whopping 75% of the original 105,453 TCs did
not pass our minimal homology threshold. Moreover, as
only 577 of the remaining clusters were actually poten-
tially phylogenetically informative, the final density in the
phylogenetic data availability matrix could not possibly
exceed 577/88,864 or 0.6%. Higher densities are possible
if the cluster assembly stringency is relaxed, but as we have
seen, this leads to very heterogeneous clusters with few
regions of homology – presumably engendering down-
stream problems in subsequent phylogenetic analysis.

This very small fraction of the EST data that appear to be
potentially useful for phylogenetic studies raises ques-
tions about the relative costs and benefits of obtaining
EST data for phylogenetic work [20]. However, several
other factors are important to consider. First, using avail-
able EST libraries as tools to screen for loci useful for phy-
logenetic inference may justify their expense in a small
number of pilot taxa. Primers can be developed for later
use in extensive taxon surveys (e.g. [52]). Second, as local
alignment tools (e.g. [53]) and phylogenetic inference
algorithms improve, it should be possible to assemble
clusters with more heterogeneity and distant homologies,
and hence exploit more of the original data. Finally, it
may be necessary to view the problem as one that will
eventually be overcome by improvements in technology
and reductions in expense. After all, for many single loci
sequenced in conventional phylogenetic analysis, most
sites are conserved and uninformative. The only factor
that makes this palatable is the (now) relative inexpen-
siveness of sequencing technology.

Extent of duplication and implications for species tree 
inference
Among the 577 phylogenetically informative clusters,
most showed evidence of gene duplication by conflicting
with the accepted species tree. Even if we conservatively
regard inparalogs as multiple alleles or multiple acces-

sions of the same locus, there are 351 clusters that show at
least one out-duplication when reconciled against the spe-
cies tree using the likelihood gene trees. If we take a more
liberal view, counting all duplications, then 535 of the
clusters show evidence of duplication. Similar numbers
obtain if the parsimony gene trees are used. Since duplica-
tions are minimized across all rootings of the gene trees,
our estimated number of duplicated loci is probably
somewhat lower even than the true value. On the other
hand, the fact that the gene trees themselves have error is
unaccounted for by our methods, and, failing to take
uncertainty into account may inflate the inferred number
of duplications [13]. Regardless of these considerations,
the fraction of the phylogenetically useful data in clusters
that are locked up in gene families in plants, as opposed
to single-copy genes, seems to be extremely high. To
exploit the nuclear genome in plants to build species trees
therefore seems to require methods that can handle exten-
sive duplication (and gene loss or failure to sample), such
as GTP or alternative frameworks [11,54].

Performance of species tree inference
Despite the extensive heterogeneity in the data them-
selves, and the complex informatics pipeline that ulti-
mately filtered out most of the original data, remarkably
strong signal for the accepted species phylogeny was evi-
dent in the GTP analysis. The GTP analysis of the likeli-
hood gene trees yielded the correct "accepted" species tree.
The analysis of the parsimony gene trees yielded a species
tree close to the accepted tree (which was ranked fourth
out of 945). We find these results both surprising and
promising for three reasons. First, gene families are sub-
ject to a variety of processes that can destroy the hierarchi-
cal signature of phylogenetic history, such as gene
conversion between paralogs. Methods are available to
detect such events [55,56] and to incorporate them into
phylogenetic inference [57], but the latter are still in their
infancy.

Second, the EST data themselves were "messy" compared
to other data sets we have examined [18]. EST tentative
consensus sequences, which formed the start of our anal-
ysis, are themselves assembled from individual short EST
sequences using complex and assumption-laden infor-
matics protocols [30]. Among the factors that these assem-
blies contend with are filtering contaminants, correct
assembly of pieces of the same paralog in gene families,
and handling of alternative splicing, all in the presence of
the usual issues raised in local and global homology algo-
rithms. Though EST data have been widely used in evolu-
tionary studies (e.g. of whole genome duplications: [48]),
they have rarely been used en masse in phylogenetic anal-
ysis of any taxon [20,51], and it was reasonable to think
that one cause for this was that these complexities over-
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came any underlying signal. Apparently this is not the
case.

Finally, GTP has only been used to build species trees in a
few studies. Although a few issues have been raised in crit-
icism of GTP (see below), one cannot help but think that
GTP has not been used more either because of lack of soft-
ware tools, or lack of data. Although many implementa-
tions of gene tree reconciliation are available [13,40,54],
few tools for GTP itself have been available except for
Page's COMPONENT [38] and later GeneTree programs
[39]. Neither of these is set up to handle large numbers of
loci easily or is scriptable, a necessity for much high
throughput informatics work. Moreover, the search strat-
egies rely only on branch swapping from random starting
trees. If GTP is as difficult an optimization problem as
maximum parsimony, with as messy data, experience sug-
gests that this heuristic is not likely to perform very well.
However, we have not solved that particular problem
either. Instead, we avoided it by implementing an exact
exhaustive enumeration possible only because of the
small species tree in our problem.

Another reason for the lack of GTP studies may be the lack
of available gene family data for many taxa. Phylogeneti-
cists have done their best to filter out gene families in the
search for single-copy "magic bullets" that are easily
sequenced by direct PCR, and to avoid cloning, Southern
blots, or other labor-intensive techniques that are often
necessary to initially identify paralogous copies of loci
[58]. However, large databases of protein families exist
and have been relatively underexploited for species tree
inference (except see Cotton and Page's [12] analysis of
the HOVERGEN database). For many taxa that phyloge-
neticists find interesting, however, such data are simply
not available. The taxa are not model species by and large,
and there has been no compelling reason to seek a diver-
sity of loci in relatively obscure taxa. This will probably
change as more and more sequencing projects and EST
libraries build bridges to nonmodel taxa.

Criticisms of GTP are numerous [59], and many reflect the
same concerns as have been raised about supertree analy-
sis [60] – in particular, that by taking a set of trees as the
input, information about the uncertainty in those trees is
lost (and hidden information within each data set cannot
synergistically emerge). Certainly some number of dupli-
cations are inferred incorrectly simply because the gene
tree is wrong [13]. To address this, relative clade support
scores can be incorporated when reconciling gene trees
with species trees [13]. However, the sheer volume of gene
trees used here apparently overcame the errors associated
with any one incorrect gene tree, implying a lack of sys-
tematic bias in the gene tree estimates, at least when like-
lihood was used to infer the gene trees. A more niggling

issue is that the standard GTP algorithms all still require
binary input trees. Chang [61] has developed an algo-
rithm that solves this problem, but it is not yet imple-
mented. Both of these problems can be addressed at least
partly through bootstrap procedures [12], which, when
constrained to generate binary gene trees, sample across
much of the diversity that is entailed by multifurcations
arising from either lack of data for that node or conflicting
signals.

Future work
Currently the main factor limiting the application of GTP
to species tree inference seems to be a paucity of imple-
mented tree search heuristics. Three related algorithmic
challenges remain in this arena. First, gene tree uncer-
tainty has to be integrated more directly into the tree rec-
onciliation calculations. Durand et al. [13] developed
algorithms to calculate improved duplication scores in the
presence of gene tree uncertainty and demonstrated the
dramatic reduction in estimated score that can ensue.
These or similar approaches must ultimately be imbedded
in GTP algorithms. Second, multifurcations in the gene
tree and species tree have to be accommodated [61].
Finally, to address the growing size of data sets, it will be
necessary to integrate these aspects of the GTP problem
with whatever tree search heuristics are developed, so that
redundant re-calculation of scores for subtrees are
avoided.

On the data analysis side, the size and taxonomic diversity
of EST libraries will continue to grow, and our results sug-
gest that these will be useful sources of data in the future
for inferences about phylogeny. However, much work
remains on the pre-processing side of the analysis, prior to
gene tree construction and GTP analysis. The assembly of
ESTs is a computationally and biologically challenging
problem, especially in light of the high frequency of dupli-
cation in plant genomes, and the not infrequent occur-
rence of alternative splicing [30]. Perhaps the greatest
challenge will be to develop methods that properly
account for ascertainment bias: the failure to sample all
paralogs in a gene family for some or all taxa. Although
model-based approaches (e.g. [54]) to gene tree reconcil-
iation offer a direct route to incorporate models of sample
bias into the problem, these are computationally expen-
sive methods, and it may be possible to use faster weight-
ing schemes in some modification of the GTP framework.

Finally, the ubiquity of whole genome duplications (e.g.
[5,62]) has important implications for inferring species
trees from gene families. Page and Cotton [63] looked for
clustering of episodes of duplication in vertebrate gene
families but found little evidence for it based solely on the
phylogenetic position of the duplications. Subsequently
[64] they added to their phylogenetic approach inferred
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(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7(Suppl 1):S3
duplication times and then found support for an ancient
round of accelerated duplication rates in vertebrates,
though not the recent episode that has been reported else-
where [65]. Their approach complements a much more
widely used approach of examining the distribution of
duplications ages for peaks at different points in time (e.g.
[66]). In addition to providing insights into genome evo-
lution, these approaches suggest that supplementing the
GTP inference problem with divergence time information
to constrain its structure may be profitable, if only the
accuracy of such information can be assured.

Methods
Sequence data and gene trees
We downloaded EST data for seven plant taxa, including
six angiosperms (Oryza sativa, Solanum tuberosum, Arabi-
dopsis thaliana, Glycine max, Lotus japonicus, Medicago trun-
catula) and one conifer, Pinus (Fig. 2) to serve as an
outgroup. Data were obtained from the TIGR Gene Indi-
ces Database [67,68] (Table 1). Initial data analysis proto-
cols were similar to those reported in [48]. We extracted
all TCs (tentative consensus sequences) for each taxon
and used the EMBOSS program getorf [69] to find open
reading frames of at least 500 nt in length in the sense
direction. Default settings were used (ORF defined as a
region between stop codons according to the standard
genetic code). These filtered TCs were then used in subse-
quent analyses.

Clusters of homologous TCs were obtained using all-by-
all BLAST nucleotide similarity searches [70] on the fil-
tered and trimmed TCs (low-complexity filter DUST
turned on; maximum Expect (E) value of 1.0e-10). BLAST
was undertaken on nucleotide sequences despite the high
level of divergence at third codon positions because of the
possibility of mistaken amino acid translations based on
incorrect ORF identifications in these data in which alter-
native splicing was not uncommon. Single-linkage clus-
tering was used to assemble clusters based on BLAST
output (program blink available at MJS's web site [71];
additional utility scripts available from authors). High
levels of within-cluster heterogeneity among sequences
can lead to severe alignment problems [72]. Therefore, a
pair of sequences was considered as a hit if it was reported
as a BLAST hit and it surpassed a minimum "hit fraction"
of 0.70 for each sequence, i.e., at least 70% of each
sequence must align to the other sequence with E values
lower than the threshold – though not necessarily in a sin-
gle contiguous hit. The threshold was imposed symmetri-
cally for both query and target sequence. The value 0.70
was experimentally determined by simultaneously
attempting to maximize the number of sequences
assigned to clusters and minimizing the heterogeneity,
both in terms of sequence divergence and length differ-
ences, of the resulting clusters.

Resulting clusters were screened for potential phyloge-
netic informativeness. To provide potential information
in a GTP analysis, which fundamentally requires a rooted
species tree and one or more rooted gene trees, the gene
trees and the clusters used to construct them must consist
of three or more sequences from three or more species.
However, because we are not using external evidence to
root the gene trees but rather are examining all duplica-
tion scores across all possible rootings, our gene trees
must have at least four sequences. If a gene tree with three
sequences only is rerooted, it will be congruent with all
rooted species tree for some gene tree rooting, and there-
fore it will not provide any information to discriminate
among species relationships in the GTP analysis. If on the
other hand, the gene trees were rooted using a molecular
clock or midpoint rooting, for example, then clusters with
only three sequences could potentially incur duplication
scores that differed from species tree to species tree.

Once the clusters were screened for informativeness (with
specific regard to gene tree parsimony), we used the global
alignment program Clustal W [73] to align nucleotide
sequences within the clusters. A sample of alignments was
checked manually for obvious alignment mistakes, none
were found, and consequently the alignments were not
edited further. Gene trees were reconstructed for each clus-
ter using heuristic maximum parsimony and maximum
likelihood implemented in PAUP* 4.0b10 [74]. Because
only binary trees may be used in available algorithms for
gene tree parsimony, zero-length branches were not col-
lapsed in either method. Heuristic parsimony searches
consisted of simple-addition sequences with tree-bisec-
tion-reconnection branch swapping, keeping a maximum
of 10000 equally parsimonious trees (which was never
exceeded). Heuristic maximum likelihood searches used a
neighbor-joining starting tree followed by TBR branch
swapping, time-limited to 6 hours, using an HKY85 + Γ
model of evolution in which all parameters were esti-
mated from the data. All phylogenetic analyses were con-
ducted on a dual Xeon 2.80 Ghz CPU with 3 GB of RAM
or on a 35 node Linux cluster, in which the head node is
a dual Xeon 2.66 ghz CPU with 3 GB RAM and each node
is a dual AMD 1.4 Ghz CPU with 1 GB RAM.

To construct a confidence set of trees for each cluster in
parsimony analyses, we bootstrapped the sequence data
(100 pseudoreplicates, saving each gene tree, or set of
trees, each weighted by the inverse of the number of trees
found for that particular replicate). Searches were con-
ducted with the same settings as for searches on the origi-
nal clusters. The computational overhead was too high to
do the same for maximum likelihood (worst case running
time: six hours × 100 replications × 557 data sets).
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Gene tree reconciliation: duplication scores on the 
accepted species tree
To reconcile the gene trees to species trees by minimizing
the number of duplication events, we implemented the
algorithm of Zmasek and Eddy [32] in a C program avail-
able from MJS at his web site [71]. This algorithm runs,
under the rarely expected worst case, in O(n2) time [32],
but its average behavior is much better, as shown both by
Zmasek and Eddy's experimental results [32] and our
experience with the present data set. We implemented
their algorithm in C to run quickly for the large numbers
of gene trees and species trees analyzed in this paper: each
gene tree parsimony analysis had to reconcile 557 gene
trees under all possible rootings for each of 945 species
trees. Although Durand et al.'s [13] recently released
NOTUNG 2.1 program is quite full featured and would
have been an appropriate tool for this task, its Java imple-
mentation and requirement that it be re-executed for each
species tree/gene tree pair made it too slow for this prob-
lem.

Other criteria can be used to reconcile gene trees to species
trees such as the sum of duplications plus losses or, for
recently diverged lineages, coalescent depth [75]. We
chose not to incorporate the number of losses into the
optimality criterion because the data sets for the current
study, largely derived from ESTs, are exceptionally prone
to incomplete sampling, and a true evolutionary loss is
therefore difficult to distinguish from mere ascertainment
bias. Moreover, adding losses to the optimality criterion
introduces the difficult problem of weighting the relative
importance of duplications, losses due to evolutionary
deletion, and "losses" due to sampling omissions. The
duplication score alone is expected to be a more robust
indicator of gene family diversity in these circumstances
[12].

Reconciliation of a gene tree to a species tree requires that
both trees be rooted [8]. The species tree of angiosperms
is rooted with an outgroup to angiosperms among seed
plants, the conifer, Pinus. However, outgroup rooting is
not possible for the gene trees, because, for example, a
gene tree might have two paralogs from Pinus in different
parts of the tree, leaving the position of the root uncertain.
Occasionally, the root may be inferred in simple scenarios
in which a single duplication has occurred prior to all taxa
in the analysis and the root is clearly between the two par-
alog trees, but in general, this will not be the case. There-
fore, as suggested previously [13,32], we reconciled the
species and gene tree by evaluating the duplication score
for all possible roots of the gene tree, selecting the root(s)
that minimize the number of duplications inferred. Some
EST clusters produced multiple equally parsimonious
trees. In these cases an average duplication score was con-
structed across the set of equally parsimonious trees.

Because clusters lacking duplications are of special signif-
icance to species level phylogenetics, e.g. they can poten-
tially be concatenated in "supermatrix" analyses, we
estimated their occurrence in the data. A cluster was
scored as lacking duplications if all equally parsimonious
trees for that cluster had an unrooted duplication score of
zero. These values are reported both for all duplications
and for only out-duplications.

Gene tree parsimony: finding the optimal species tree
Because of the relatively small size of the species tree, gene
tree parsimony searches for the optimal species tree were
implemented by exhaustively enumerating all 945 species
trees (rooted with Pinus), and calculating the summed
gene duplication scores across all gene trees for each of
these species trees. This procedure was repeated for both
parsimony and likelihood collections of gene trees. This
strategy obviously would not be feasible for species trees
much larger than this. A benefit of exhaustive enumera-
tion is that it provides the exact distribution of GTP scores
across all the species trees. This allowed, among other
things, a ranking of all species trees according to GTP
score and a comparison of the relative position of the
optimal GTP tree and the true tree.

Support levels and hypothesis tests
Little work has been done to develop confidence assess-
ments in GTP analyses, per se, although several authors
have taken a bootstrap approach to identification of
orthologs with gene tree reconciliation [32]. Cotton and
Page [12] suggested a bootstrap analysis to account for
gene tree uncertainty, in which each of k data sets used to
generate the k gene trees is bootstrapped N times, generat-
ing a set of k bootstrap profiles. Then a higher level GTP
bootstrap analysis is done by taking the ith tree from each
of the k profiles and performing a complete GTP search
for the species tree, generating species tree i, and repeating
this for i = 1, ..., N. The collection of N species tree then
forms a confidence set of species trees, and majority rule
consensus is used to summarize support, as in conven-
tional bootstrapping [76]. We refer to this as Bootstrap I.

An alternative bootstrap procedure uses the gene trees
themselves as the sampling unit. In a single bootstrap rep-
licate, a set of k gene trees is assembled by sampling from
the original set of k gene trees randomly with replace-
ment. Then a species tree is built by GTP, and the process
is repeated N times. Again a majority rule tree can be con-
structed. We refer to this as Bootstrap II.

Finally, because the optimal species tree may be different
from the accepted species tree in Figure 2, it is useful to
test whether there is a significant difference in support
from the gene duplication data. For this, we propose a
simple analog to paired sites tests used extensively for par-
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simony and likelihood tree inference (reviewed in [77]).
For each gene tree, we calculate the duplication score on
tree 1 and tree 2. Under the null hypothesis of equal sup-
port for the two trees, the mean difference in score of these
across sites should be zero. A paired t-test provides a test
of significance taking the variance into account. As is now
well known however, if one of the two trees is the optimal
tree (as it will be here), the test is one-sided and the P-
value must be the appropriate one-sided version [77].
Additional analogous tests presumably could be con-
structed to account for multiple test issues that might arise
if we examined many trees [78].
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