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Abstract: Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortal-
ity. Adjunct hemoadsorption is increasingly utilized to target underlying hyperinflammation derived
from ARDS. This article aims to review available data on the use of CytoSorb© therapy in combi-
nation with V-V ECMO in severe ARDS, and to assess the effects on inflammatory, laboratory and
clinical parameters, as well as on patient outcomes. A systematic literature review was conducted and
reported in compliance with principles derived from the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement. When applicable, a before-and-after analysis
for relevant biomarkers and clinical parameters was carried out. CytoSorb© use was associated
with significant reductions in circulating levels of C-reactive protein and interleukin-6 (p = 0.039
and p = 0.049, respectively). Increases in PaO2/FiO2 reached significance as well (p = 0.028), while
norepinephrine dosage reductions showed a non-significant trend (p = 0.067). Mortality rates in
CytoSorb© patients tended to be lower than those of control groups of most included studies, which,
however, were characterized by high heterogeneity and low power. In an exploratory analysis on
90-day mortality in COVID-19 patients supported with V-V ECMO, the therapy was associated with a
significantly reduced risk of death. Based on the reviewed data, CytoSorb© therapy is able to reduce
inflammation and potentially improves survival in ARDS patients treated with V-V ECMO. Early
initiation of CytoSorb© in conjunction with ECMO might offer a new approach to enhance lung rest
and promote recovery in patients with severe ARDS.

Keywords: hemoadsorption; ARDS; lung failure; inflammation; CytoSorb; ECMO

1. Introduction

Acute respiratory distress syndrome (ARDS) represents one of the greatest challenges
in intensive care medicine and mortality remains high [1]. ARDS can be precipitated by
a variety of underlying disorders which can cause direct or indirect pulmonary injury
via a dysregulated systemic inflammatory response. Released cytokines such as inter-
leukin (IL)-1, IL-6, IL-8, and tumor necrosis factor activate neutrophils in the lung and
fuel the inflammatory cascade [2]. As with septic shock [3,4], hyperinflammation and
elevated cytokines play a major role in both hemodynamic instability and altered capillary
permeability. The latter is a hallmark of ARDS and causes alveolar edema and diffuse
atelectasis, resulting in life-threatening hypoxemia [5]. During the Coronavirus Disease
2019 (COVID-19) pandemic, we have seen a new type of ARDS that, while falling under the
Berlin definition, differs from “normal” ARDS with distinctive features such as frequently
preserved compliance, despite severe hypoxemia and widespread coagulopathy [6–8].
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The use of veno-venous extracorporeal membrane oxygenation (V-V ECMO) to re-
solve severe acute hypoxemia in severe cases of ARDS regardless of etiology has gained
substantial interest over the last decade, but mortality in these patients still remains high [9].
Hemoadsorption with CytoSorb© (CytoSorbents, Princeton, NJ, USA) is increasingly uti-
lized as an adjunct therapeutic option in this heterogenous and very sick patient population.
The CytoSorb© whole blood adsorber is a CE-marked medical device. It can be integrated
as a bypass circuit within the ECMO circuit itself (Figure 1) or can alternatively be inserted
in concomitant continuous renal replacement therapy (CRRT) or hemoperfusion circuits. Of
note, integration into the ECMO circuit typically leads to higher blood flow rates through
the adsorber compared to hemoperfusion or CRRT circuits, and thus likely more effective
substance clearance and a higher dose of hemoadsorption treatment [10].
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Figure 1. Integration of the CytoSorb© hemoadsorption in the ECMO circuit. Used with permission
from CytoSorbents Europe GmbH.

Extracorporeal hemoadsorption attenuates an excessive systemic inflammatory re-
sponse [11] by reducing circulating levels of inflammatory mediators, which may result in
hemodynamic stabilization [12] and improved oxygenation [13]. In addition to cytokines,
CytoSorb© adsorbs various pathogen associated molecular patterns (PAMPs), as well as
damage-associated molecular patterns (DAMPs) [14], further downregulating immune
activation [15].

Observational studies suggest that hemoadsorption facilitates faster hemodynamic
stabilization and reduced need of vasopressors in patients with septic shock [16–19]. Early
combined use of ECMO with CytoSorb© might reduce ventilator-induced injury by en-
hancing lung rest and at the same time treating the overshooting hyperinflammation and
thus avoiding further deterioration of organ function [20]. Furthermore, data suggest
that CytoSorb© use in combination with V-V ECMO may result in reduced SOFA scores
already 24 h after start of CytoSorb treatment [13]. The effects on mortality in published
reports vary: several data demonstrate lower observed versus predicted mortality [21–24],
while studies showing higher mortality in CytoSorb©-treated patients have also been pub-
lished [20]. Here, we aimed to analyze all available data to assess the effect of CytoSorb©
adjunct therapy in patients with severe ARDS receiving V-V ECMO support.
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2. Materials and Methods

This systematic review was conducted in compliance with the PRISMA Preferred
Reporting Items Systematic Reviews and Meta-Analysis (PRISMA) guidelines [25] (see
PRISMA 2020 checklist, Supplementary).

We performed a free-text terms literature search on PubMed using the search string
(ECMO AND (hemoadsorption or Cytosorb)) for studies published from 2012 to today.
Regardless of the study design, we retrieved full texts and abstracts of clinical studies.
Studies had to be published in English language and conducted on patients treated con-
comitantly with CytoSorb© and V-V ECMO, irrespective of ARDS etiology or the type
of circuit used for hemoadsorption. Studies were included into the final analysis if they
reported at least on one of the following changes before and after treatment: inflammatory
biomarker levels, including IL-6 (expressed as pg/mL), C-reactive protein (CRP) (mg/dL),
procalcitonin (PCT) (ng/mL), D-dimer (mg/L) and ferritin (ng/mL), PaO2/FiO2 ratio
(mmHg), norepinephrine dosage (µg/kgBW/min) and mortality. For biological markers
and organ support parameters, all data that could be converted to the reference measure-
ment scale were included. In order to account for the concentration-dependent adsorption
rate of the device, only data from studies with baseline IL-6 levels equal to or higher
than 150 pg/mL were considered [26]. Studies were excluded when the target patient
population represented only a subgroup of the total sample, and when specific data for the
ECMO subgroup could not be retrieved. Finally, the literature search was complemented
by screening abstracts and articles submitted to or published in the context of relevant
international conferences. Two authors (CR and TK) searched for and screened the litera-
ture independently. Controversies were solved with discussion and inclusion of a third
author (JS).

A formal assessment of the risk of bias of included studies through available tools,
such as the revised Risk of Bias tool (RoB 2) tool for randomized trials and the Risk Of
Bias In Non-randomized Studies of Interventions (ROBINS-I) tool recommended by the
Cochrane Library [27,28], was not possible due to the characteristics of most retrieved
studies, which included non-interventional studies (i.e., case series, case reports) without
distinct treatment groups. The risk of bias was assessed graphically through a funnel plot
of the effects on the risk of mortality against standard errors.

We analyzed the potential effect of hemoadsorption on relevant parameters by conduct-
ing a before and after analysis using the paired-sample t-test [29]. Data were summarized as
mean ± standard deviation. An exploratory analysis was conducted to assess the potential
effect on mortality; we did so by comparing mortality observed in the CytoSorb© treated
patients to mortality observed in control groups, wherever available. If no control group
was available in the study, mortality as reported by the Extracorporeal Life Support Orga-
nization (ELSO) registry for COVID-19 patients, or, for studies not involving COVID-19
patients, mortality predicted by severity scores were used as controls. Specifically, a sub-
group analysis was carried out to compare 90-day mortality observed in COVID-19 patients
treated with CytoSorb© with mortality as expected based on geography-specific 90-day
mortality reported in the ELSO registry for COVID-19 patients. The treatment effect on
mortality was expressed as the mortality risk ratio of the treatment compared to the control
group. All data were analyzed using Microsoft Excel version 16 (Microsoft Corporation.
2019. Redmond, WA, USA) and STATA statistical software, release 16 (StataCorp LLC. 2019.
College Station, TX, USA) [30].

3. Results

The literature search was conducted in PubMed on 14 June 2022. After excluding
irrelevant articles (i.e., reviews, meta-analyses, protocols, letters), 60 studies were retrieved
(Figure 2). Of these, 22 were excluded due to their focus on veno-arterial ECMO (V-A
ECMO) or extracorporeal cardiopulmonary resuscitation (ECPR) [31–52]. Fourteen studies
were excluded for lack or scarcity of data on CytoSorb© use [53–66], four because of the
lack of specific data for the ECMO subgroup [67–70], four because CytoSorb© was not



J. Clin. Med. 2022, 11, 5990 4 of 16

used concomitantly with ECMO therapy [71–74], two because outcomes of interest for the
simultaneous use of CytoSorb© and ECMO were not reported [75,76], and one because
it focused on a different device [77]. One study was excluded because it only reported
preliminary findings from other articles [78]. In total, twelve studies were included at
this stage.
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Finally, a dedicated search for presentations at international conferences that may not
be published yet resulted in one abstract that was included for the analysis of mortality [79].

In summary, thirteen eligible studies [13,20,79–89] with sufficient data on the outcomes
of interest were included (Figure 2).

The key features of the studies are summarized in Table A1 in the Appendix A.
Most included studies consisted of observational studies; two prospective randomized

trials with small sample sizes were also included [20,81].
Table 1 reports results of the before-and-after analysis for inflammatory markers and

clinical parameters of interest, which are also presented graphically in Figures 3 and 4.

Table 1. Effect of CytoSorb© on parameters of interest.

Before CytoSorb
Mean ± SD

After CytoSorb
Mean ± SD p-Value Patients n

CRP, mg/dL [80,83–87,89] 39.35 ± 36.2 20.39 ± 20.24 0.039 74
PCT, ng/mL [80,84,85,87] 6.90 ± 7.01 2.98 ± 4.10 0.299 36

IL-6, pg/mL [20,86–88] 439.50 ± 194.45 120.65 ± 19.72 0.049 39
D-dimer, mg/L [20,83–86,89] 12.07 ± 11.69 11.07 ± 11.94 0.292 70

Ferritin, ng/mL [84–87,89] 1860 ± 492.50 1249.12 ± 511.32 0.15 41

Norepinephrine, µg/kg BW/min [20,80,82,86,88] 0.391 ± 0.319 0.036 ± 0.035 0.067 56
PaO2/FiO2, mmHg [13,83,88,89] 96.55 ± 10.62 166.08 ± 24.66 0.028 59

CRP, C-reactive protein; PCT, procalcitonin; IL-6, interleukin 6; BW, body weight; SD, standard deviation. The
paired-sample t-test for equality of the mean (±SD) was used considering the normal distribution of most
variables included.
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3.1. Effects on Circulating Biomarkers, Organ Function and Organ Support

After the use of hemoadsorption, levels of all inflammatory markers were reduced
from baseline. While reductions were most pronounced and reached statistical significance
for CRP (p = 0.039) and IL-6 (p = 0.049), reductions in PCT, D-dimers and ferritin did not
reach statistical significance.

Data on vasopressor dosage before and after CytoSorb© treatment were available from
three case series [80,82,88], a randomized controlled trial [20] and a case report [86]. There
was a non-significant trend towards reduction in norepinephrine dosage (p = 0.067). Data
on oxygenation requirements from three case series and a registry analysis [13,20,88,89]
showed substantial and statistically significant increases in PaO2/FiO2 (p = 0.028).

The study by Akil et al. showed shorter mean duration of V-V ECMO support in the
CytoSorb© group compared with the control group (8.2 days, range 2–23 days vs. 19.3 days,
range 13–30 days, p-value not available) [80]. In an exploratory analysis of the multicenter
CTC registry on the use of CytoSorb© in COVID-19, two post hoc groups were created
according to the median time to start of CytoSorb© after ICU admission, which was 87 h.
A trend towards shorter ECMO duration was observed with earlier initiation of CytoSorb©
following ICU admission [90].

3.2. Effect on Mortality

Whenever control data were not available, mortality observed in CytoSorb© patients
was compared with mortality as recorded by the ELSO-registry for COVID-19 patients,
or to mortality predicted by severity scores for non-COVID-19 patients (see Table 2), as
stated in the methods section. As of May 2022, 90-day mortality was 49% in more than
8000 adult COVID-19 patients included from North America in the ELSO registry. In
contrast, mortality was 30% at 30 days and 42% at 90 days in 2500 adult European COVID-
19 patients [91].
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Table 2. Characteristics of studies reporting mortality of ARDS patients treated with CytoSorb© and
V-V ECMO.

Study Indication Mortality
Reported at Control Group

Akil et al., 2021 [80] ARDS; sepsis 30 days Reported cohort
Supady et al., 2021 [20] COVID-19 30 days Reported cohort

Akil et al., 2022 [88] COVID-19 90 days Reported cohort
Stockmann et al., 2022 [81] COVID-19 30 days Reported cohort

Rieder et al., 2021 [82] ARDS ICU Reported cohort

Hayanga et al., 2022 [79] COVID-19 90 days ELSO registry for
COVID-19 in the US

Pieri et al., 2021 [83] COVID-19 30 days ELSO registry for
COVID-19 in the EU

Geraci et al., 2021 [84] COVID-19 90 days ELSO registry for
COVID-19 in the US

Paisey et al., 2021 [85] COVID-19 90 days ELSO registry for
COVID-19 in the EU

Kogelmann et al., 2020 [13] ARDS; sepsis 30-day; hospital APACHE II
ARDS, Acute Respiratory Distress Syndrome; ELSO, Extracorporeal Life Support Organization; ICU, Intensive
Care Unit; RCT, Randomized Controlled Trial.

In comparison to control groups or to predicted mortality as described above, Cy-
toSorb© treatment was associated with lower mortality in 7 out of 10 studies (Table 3).

Table 3. Mortality in ARDS patients treated with CytoSorb© and V-V ECMO vs. control or predicted
mortality.

Study Study Design CytoSorb©
Patients, n

Mortality
%

Source of
Control/Predicted

Mortality

Control
Patients n

Mortality
%

∂
Mortality

ARR

Akil et al., 2021 [80] Retrospective,
observational 13 0% Control group 7 57% −57%

Supady et al., 2021 [20] * RCT 17 82% Control group 17 24% +58%

Akil et al., 2022 [88] * Retrospective,
observational 16 38% Control group 10 30% +8%

Stockmann et al., 2022 [81] * RCT 9 78% Control group 7 100% −22%

Rieder et al., 2021 [82] Retrospective,
observational 9 44.4% Control group 9 78% −33%

Hayanga et al., 2022 [79] * Retrospective,
observational 100 26% ELSO US registry 100 49% −23%

Pieri et al., 2021 [83] * Retrospective,
observational 15 54% ELSO EU registry 15 30% +24%

Geraci et al., 2021 [84] * Retrospective,
observational 10 10% ELSO US registry 10 49% −39%

Paisey et al., 2021 [85] Retrospective,
observational 10 20% ELSO EU registry 10 42% −22%

Kogelmann et al., 2020 [13] Retrospective,
observational 7 43% APACHE II (39) 7 91% −48%

ARDS, acute respiratory distress syndrome; ARR, Absolute risk reduction; * Indicates studies on patients with
COVID-19-related ARDS.

The studies were highly heterogenous with regard to indication, study design and
sample size. Neither of the two RCTs were adequately powered to detect any difference in
mortality [20,81] and other articles consisted of non-interventional, retrospective studies.
Figure 5 reports the funnel plot for the expected publication bias of the include studies. The
asymmetry of the funnel plot of the log risk ratio of dying in the treatment group against
their standard errors suggests a high level of bias exists within the studies.
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CytoSorb© and V-V ECMO in COVID-19 Patients

Acknowledging the limitations in terms of heterogeneity, small sample size and
potential bias observed in the analysis above, we conducted an exploratory analysis of
the treatment effect on mortality in the subgroup population of adult COVID-19 patients
receiving V-V ECMO support.

Out of the studies presented above, five articles [80,84,85,88,92] assess the effect on
90-day mortality of CytoSorb© as adjuvant therapy in the stated population. Observed
results were compared to the “expected” mortality of 49% (for US studies) and 42% (for EU
studies) reported in the ELSO registry (i.e., if these patients had followed the same course
of disease as those included in the registry). The mortality rates from the ELSO registry
were chosen as relevant historical control data, being ELSO the largest international registry
on ECMO. Of note, we used the ELSO European mortality data to calculate mortality for
the control group of studies conducted in Europe, specifically one study from the United
Kingdom [85] and one from Germany [88]. In the patient population under question, for
Germany higher mortality rates than in other countries have been observed and widely
discussed [93–95], and this might be relevant and should be considered when appraising
mortality data from studies conducted in Germany and the ELSO European mortality
rate itself.

The result of the pooled treatment effect is presented graphically in a forest plot
(Figure 6).

The analysis suggests that the treated patients might have a significantly lower risk of
death compared to the control group (risk ratio, RR: 0.55. 95% CI: 0.40–0.78, p < 0.001). The
data from the unpublished poster on the CTC registry have by far the largest impact and
weight on the results of the analysis, which should be taken into account when considering
and generalizing these results.
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4. Discussion

In 1976, Dr. Robert Bartlett reported the first successful use of ECMO in the famous case
of ‘Baby Esperanza’ [96]. Over the last 10 years, global ECMO use has increased significantly
and is expected to further increase in the future, in light of improving clinical outcomes,
increasing familiarity by institutions, and technological advances in ECMO circuits. This
utilization trend may hold true especially for the management of novel respiratory viruses
that are likely to emerge in the future [97]. However, it has also been suggested that the
use of ECMO itself may evoke an inflammatory response [98]. Various mechanisms have
been postulated as contributing to this process, including cellular activation, fibrinolysis,
complement activation, secondary von Willebrand syndrome, hemolysis, molecules that
are instigated by the surfaces of the circuit tubings, and the rotor/oxygenator, but also end-
organ hyperperfusion/hyperoxygenation related to ECMO-derived non-pulsatile flow [99].

The current study reviewed the available evidence on the effects of adjunctive Cy-
toSorb© therapy and V-V ECMO on several key inflammatory and clinical markers. The
findings demonstrate that use of CytoSorb© therapy results in reduced levels of inflamma-
tory and biological markers, presumably due to active removal by hemoadsorption (for IL-6
and PCT), or, as a secondary effect, due to improved inflammatory status. With regard to
the latter, however, it is not clear to what extent the effect is directly and solely attributable
to the hemoadsorption therapy. In addition, the mean baseline levels of CRP do not seem ex-
cessively high, which poses a necessary reflection on the extent of inflammation at baseline
and the interpretation of the results in the different clinical conditions considered.

Although not reaching statistical significance, reduction in ferritin was also observed
which is in line with recent data on the use of CytoSorb© in COVID-19 patients [100].
Ferritin is involved in regulation of iron in the oxidative stress response [101] and a known
predictor in the development of ARDS [102]. Furthermore, the therapy showed the potential
to improve lung function and improve hemodynamic stability, with increased PaO2/FiO2
ratios and reduced vasopressor dosages. Of note, with regard to the respiratory function, it
cannot be ascertained how much of the improved oxygenation should be ascribed to the
effect of V-V ECMO itself. Likewise, when interpreting changes in vasopressor dose, details
on fluid therapy and fluid balance would need to be considered, but this was not possible
based on the data presented in the available publications. Although these findings are
encouraging, proof that CytoSorb© improves survival is still preliminary. Among available
datasets, five studies had control groups [20,80–82,88]. In one study on sepsis-associated
ARDS, 13 patients in the CytoSorb© group had a survival rate of 100%, which endured
through follow-up at 3–10 months, while 4 out of 7 patients (56%) in the control group died
due to sepsis with multiorgan failure [80]. This exaggerated effect on mortality needs to
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be interpreted with caution, since it is derived from a small observational single-center
study. However, it is generally consistent with the findings of another study [13] that
showed a relative risk reduction of more than 50% when comparing observed (43%) with
predicted mortality (91%), based on the Acute Physiology and Chronic Health Evaluation
(APACHE) II score. Additionally, Simplified Acute Physiology Score (SAPS) II scores
decreased significantly in the CytoSorb© group, which was not observed in the control
group [80].

In the study by Rieder and colleagues, nine all-comers with severe ARDS predomi-
nantly from infectious causes, who were treated with V-V ECMO and cytokine adsorption,
were compared with a control group of nine propensity-score-matched patients who had
undergone V-V ECMO support without cytokine adsorption. Even though scores pre-
dicted a higher mortality in the hemoadsorption group, mortality was reduced in the
CytoSorb© plus V-V ECMO group compared with V-V ECMO alone. In total, five patients
in the CytoSorb© group survived (55.6%), compared withtwo2 (22.2%) from the matched
control group.

The single-center CYCOV randomized study reported that CytoSorb© therapy in
combination with V-V ECMO was associated with higher mortality than ECMO alone in un-
selected COVID-19 patients [20]. Due to the small sample size (n = 34), the two randomized
groups were severely imbalanced, including markedly higher D-dimer levels in the Cy-
toSorb© group. Elevated D-Dimers suggest diffuse thrombotic microangiopathy with
high thrombotic burden, causing diffuse ischemic organ injury and failure, and have been
established as an independent marker of mortality in COVID-19 [103]. In addition, the
study was powered for the primary endpoint of IL-6 reduction, which was negative, and
not for clinical outcomes. The CYCOV study has been subject to controversial scientific
discussions highlighting that—even in an RCT setup—uncertainties regarding equality of
study groups as well as timing and dosing of hemoadsorption therapy should prevent any
precipitous conclusions [104,105].

Recently, the multicenter CTC Registry reported high survival rates among 100 COVID-
19 patients treated at five US centers under the FDA Emergency Use Authorization (EUA)
(90-day mortality, 30%) [106].

Data have also shown shorter V-V ECMO support duration in patients treated with
adjunctive CytoSorb© therapy [80]. Duration seems to be shorter when CytoSorb© is
initiated earlier [90]. The potential to reduce ECMO duration could translate into significant
economic benefits associated with the use of CytoSorb©, given the shorter ECMO duration
and the high costs of V-V ECMO therapy in general.

This analysis summarizes the current status of published articles on patients treated
with V-V ECMO and CytoSorb©; however, it has several limitations. First, due to the
limited number of data available, studies were included without any consideration of the
study design and characteristics or etiology of ARDS. Secondly, the overall number of
patients observed is relatively small, while the heterogeneity and potential bias of studies
is high. This should be carefully considered when appraising the findings from the pooled
analysis. In addition, the study contributing the most to the pooled exploratory analysis
was a registry-based one which not peer-review published yet. Finally, the magnitude of
effects of the concomitant extracorporeal therapy itself (ECMO and CRRT) on the patient
course could not be assessed in this study.

5. Conclusions

To the best of our knowledge, this is the first comprehensive summary of the avail-
able data on the clinical effects of combined CytoSorb© and V-V ECMO treatment. The
safety and feasibility of the device have previously been demonstrated in multiple clinical
scenarios with various technical setups. Despite low patient numbers, there was a trend
towards effective inflammatory biomarker reduction, decreased vasopressor dosage and
improved lung function with adjunctive hemoadsorption. Exploratory analyses suggest
that the aforementioned clinical benefits may also translate into lower mortality. These
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results, although preliminary, warrant prospective controlled studies to further investigate
the effect of CytoSorb© in patients on V-V ECMO for severe ARDS, in order to better
characterize the clinical effects of this novel therapy in this very high-risk population.
Combined and early use of extracorporeal membrane oxygenation and hemoadsorption
could represent a novel strategy to promote enhanced lung rest in patients with ARDS.
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Appendix A

Details of studies included.

Table A1. Characteristics of studies included in the analysis. PCT: procalcitonin; CRP: C-reactive
protein; IL-6: interleukin-6; ICU: intensive care until. Patients treated, n, include only patients
in the study that have been treated with CytoSorb and V-V ECMO. For inflammatory markers,
norepinephrine and PaO2/FiO2 ratio, only studies reporting on both before and after CytoSorb
treatment are considered.

Reference Indication Patients
Treated n Controls n Mortality

Reported At
Inflammatory

Markers
Norepinephrine
Dosage Reported

PaO2/FiO2 Ratio
Reported

Akil et al., Thorac Cardiovasc Surg
2021; 69(3):246–251 [80] ARDS 13 7 30 days PCT, CRP X -

Song et al. Front Med 2021; 8:773461
[interim analysis] [89] ARDS/COVID 52 ICU, 30 days,

90 days
CRP, ILs-6,
D-dimer - X

Kogelmann et al., J Intensive Care
Society 2020: 21(2):183–190 [13] ARDS 7 28 days, ICU

and hospital - X

Hayanga et al., 2022 Abstract No
000494, The European Society of
Intensive Care Medicine (ESICM)

2022 [79]

ARDS/COVID 100 90 days PCT, CRP, IL-6,
D-dimer - (X)

Geraci et al., J Cardiac Surg 2021;
36(11):4256–4264 [84] ARDS/COVID 10 Overall PCT, CRP, IL6,

D-dimer - -

Pieri et al., Int J Artif Organs. 2022;
45(2):216–220 [83] ARDS/COVID 15 ICU CRP - X

https://www.mdpi.com/article/10.3390/jcm11205990/s1
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Table A1. Cont.

Reference Indication Patients
Treated n Controls n Mortality

Reported At
Inflammatory

Markers
Norepinephrine
Dosage Reported

PaO2/FiO2 Ratio
Reported

Supady et al., Lan Resp Med 2021;
9(7): 755–762 [20] ARDS/COVID 17 17 30 days IL-6, D-dimer X -

Rieder et al., Artif Organs 2021;
45(2):191–194 [86] ARDS/COVID 1 - IL-6 D-dimer X -

Rodeia et al., Blood Purif 2021;
epub [87] ARDS/COVID 5 Overall/unspecifiedPCT, CRP, IL-6 - -

Rieder et al., ASAIO J. 2021 Mar
1;67(3):332–338 [82] ARDS 9 9 ICU - X -

Paisey et al., Int J Artif Organs. 2021
Oct;44(10):664–674 [85] ARDS/COVID 10 ICU

PCT, CRP, IL-6,
D-dimer,
Ferritin

- -

Stockmann et al., Crit Care Med.
2022;50(6):964–976 [81] COVID 9 7 30 days - - -

Akil et al., Int J Artif Organs 2022
Jul;45(7):615–622 [88] ARDS/COVID 16 10 90 days IL-6 X X
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27. Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.;

Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ Open 2016, 355,
i4919. [CrossRef]
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