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Abstract

The prognosis of glioma patients is usually poor, especially in patients with glioblastoma (World Health Organization (WHO)
grade IV). The regulatory functions of microRNA (miRNA) on genes have important implications in glioma cell survival.
However, there are not many studies that have investigated glioma survival by integrating miRNAs and genes while also
considering pathway structure. In this study, we performed sample-matched miRNA and mRNA expression profilings to
systematically analyze glioma patient survival. During this analytical process, we developed pathway-based random walk to
identify a glioma core miRNA-gene module, simultaneously considering pathway structure information and multi-level
involvement of miRNAs and genes. The core miRNA-gene module we identified was comprised of four apparent sub-
modules; all four sub-modules displayed a significant correlation with patient survival in the testing set (P-values#0.001).
Notably, one sub-module that consisted of 6 miRNAs and 26 genes also correlated with survival time in the high-grade
subgroup (WHO grade III and IV), P-value = 0.0062. Furthermore, the 26-gene expression signature from this sub-module
had robust predictive power in four independent, publicly available glioma datasets. Our findings suggested that the
expression signatures, which were identified by integration of miRNA and gene level, were closely associated with overall
survival among the glioma patients with various grades.

Citation: Zhang C, Li C, Li J, Han J, Shang D, et al. (2014) Identification of miRNA-Mediated Core Gene Module for Glioma Patient Prediction by Integrating High-
Throughput miRNA, mRNA Expression and Pathway Structure. PLoS ONE 9(5): e96908. doi:10.1371/journal.pone.0096908

Editor: Ilya Ulasov, Swedish Medical Center, United States of America

Received October 21, 2013; Accepted April 13, 2014; Published May 8, 2014

Copyright: � 2014 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Natural Science Foundation of China (Grant Nos. 81121003), the National Natural Science Foundation of China
(Grant Nos. 61170154, 91129710 and 31200996), the National High Technology Research and Development Program (No. 2012AA02A508), the International
Science and Technology Cooperation Program (No. 2012DFA30470) and the Specialized Research Fund for the Doctoral Program of Higher Education of China
(Grant Nos. 20102307120027 and 20102307110022). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: taojiang1964@yahoo.com.cn (TJ); kang97061@yahoo.com (CS-K); lixia@hrbmu.edu.cn (XL)

. These authors contributed equally to this work.

Introduction

Glioma is the most common form of primary brain tumor,

accounting for 7% of the years of life lost from cancer before the

age of 70 [1,2]. According to the World Health Organization

(WHO) criteria, glioma tumors are histologically separated into

Grade I through IV. Despite significant improvements in

treatments for glioma patients, the median survival remains poor,

particularly for those with glioblastoma (GBM, grade IV). Patients

with newly diagnosed GBM exhibit a median survival of

approximately one year, with generally poor responses to all

therapeutic modalities [3]. Thus, elucidation of the glioma survival

event is important and could potentially aid in the diagnosis and

prognosis of glioma patients.

MicroRNAs (miRNAs) are a class of non-coding RNAs able to

regulate gene expression at the post-transcriptional level by

binding to the 39 untranslated region of target messenger RNAs

(mRNAs) and causing a block of translation and/or mRNA

degradation [4]. Recently, a growing level of attention has been

focused on the biological interplay between mRNA expression in

conjunction with corresponding miRNA data in various cancer

types, including glioma [5,6,7,8]. Thus, the amount of sample-

matched miRNA-gene profiles (miRNA and gene expression

profiles quantified using exactly the same set of biological samples)

is rapidly increasing for such miRNA-gene integrative analysis.

More importantly, the idea that many biological factors are

coordinated at the network level rather than an individual

molecular level has been accepted [3]. And some studies have
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interrogated kinds of networks to understand the complex

regulatory mechanisms in the glioma, for example the miRNA-

TF mediated regulatory network [9]. As a biological network,

pathway provides reliable topology structure information which

could be a platform for multi-dimensional data integration.

Recently, biological pathways have been applied to explore the

mechanism involved in many aspects, including disease occur-

rence, miRNA regulation and drug action [10,11,12].

Focusing on glioma survival event, many experimental studies

have demonstrated that the regulatory function of miRNAs on

genes, which further affects key biological pathways, plays a role in

cell survival process. For example, tumor-suppressive miR-326

regulated Notch pathway, an important glioma cell survival

pathway, by mediating the toxic effects of notch knockdown

[13,14]. MiR-221 and miR-222 induced cell survival in GBM by

targeting pro-apoptotic gene PUMA in the mitochondrial apo-

ptotic pathway [15]. In the present, some microarray studies have

tried to explore glioma cell survival mechanism and identify

signature for predicting patient clinical outcome at the gene level

[16] or miRNA level [17]. In a systematic perspective, the glioma

survival process is also coordinated at the multiple miRNA-gene

regulation interactions. However, the systematic integration of

miRNA and mRNA expression for analyzing glioma patient

survival has not been carefully studied to date. And only a small

part of genes as core factors play an important role in glioma

patient survival prediction. The integrated analysis of multi-

dimensional data has the potential power to identify core and

robust survival signatures, which could effectively predict the

clinical outcome of glioma patients.

In this study, we have profiled sample-matched miRNA-mRNA

expression data from 160 glioma tumors to systematically analyze

glioma survival. In the analytical process, we considered the joint

impact of miRNAs and genes to identify glioma survival related

pathways, and then developed a pathway-based random walk

(PbRW) method to identify a glioma core miRNA-gene module.

After dissecting the core miRNA-gene module, we verified that

one sub-module which consisted of 6 miRNAs and 26 genes

displayed a power to predict the clinical outcome of glioma

patients.

Materials and Methods

Datasets
Our dataset and patient information. The sample-

matched miRNA and mRNA expression profiling upon 160

glioma samples were collected from the Chinese Glioma Genome

Atlas (CGGA, http://www.cgcg.org.cn/) [18,19]. The 160 glioma

cases included 63 WHO grade II patients (50 astrocytomas and 13

oligodendrogliomas), 33 grade III patients (8 anaplastic astrocy-

tomas, 10 anaplastic oligodendrogliomas and 15 anaplastic

oligoastrocytomas) and 64 GBM patients (60 primary GBM and

4 secondary GBM). In this study, we identified a glioma core

miRNA-gene survival module by integrating analysis of the

sample-matched miRNA and mRNA expression data.

Gene Expression Omnibus datasets. Four independent

mRNA expression datasets with patient survival information were

from the following studies: Freije et al. [16], Phillips et al. [20],

Murat et al. [21] and Lee et al. [22]. We extracted corresponding

raw data from Gene Expression Omnibus (GEO) database [23]

(accession number: GSE4412, GSE4271, GSE7696, and

GSE13041). In all datasets, we eliminated the glioma samples

who had survival time less than 30 days, since these samples might

have died for reasons other than the disease itself [17]. Then four

expression profilings of 73, 77, 76, and 191 samples were utilized

in this study. All expression profilings were created and normalized

using RMA algorithm in the Bioconductor affy package (version

1.28.1).

The Cancer Genome Atlas datasets. Independent sample-

matched miRNA and gene expression datasets were downloaded

from TCGA database (http://tcga-data.nci.nih.gov/docs/

publications/gbm_exp/). Level three data gave calls for miRNAs

and genes per sample after quantile normalization and back-

ground correction. The average expression values were calculated

for duplicated samples. Only tumor samples were considered in

our study. In addition, we eliminated samples with Karnofsky’s

score less than 70 and survival time less than 30 days, since these

patients might have died for reasons other than the disease itself

[17]. Finally, a total of 276 patients who fit these criteria and

exhibited common miRNA and gene expression were utilized in

this study.

MiRNA target genes. We acquired miRNA target genes

from eleven common miRNA target predicting datasets: DIANA-

microT [24], mirSVR [25], PicTar5 [26], RNA22 [27], RNAhy-

brid [28], TargetScan [29], PITA [30], MirTarget2 [31],

TargetMiner [32], miRanda [33], and two valid databases

[34,35]. Firstly, we obtained all miRNA-gene regulation informa-

tion from these eleven prediction datasets. In order to improve the

reliability of the predicted target genes, we extracted only the

corresponding target regulations that emerged from at least six of

the datasets listed above.

Biological pathways information. The information regard-

ing biological pathways was obtained from Kyoto Encyclopedia of

Genes and Genomes (KEGG) PATHWAY database [36]. We

applied Bioconductor package iSubpathwayMiner [37,38] to

obtain all the biological pathways, including 150 metabolic

pathways and 150 non-metabolic pathways. We utilized these

pathways to identify glioma survival related pathways.

Methods
The framework. The 160 glioma cases were randomly

divided into a training set (n = 80) and a testing set (n = 80). Table 1

lists the clinicopathological characteristics of patients in both sets,

and the entire set. In the following, we performed an integrated

analysis of the sample-matched miRNA and mRNA expression

data using the training set. As shown in Figure 1, the framework

included following steps. In Step1, we used Kaplan-Meier survival

analysis to identify glioma survival related miRNAs and genes, and

then integrated these miRNAs and genes to further identify glioma

survival related pathways. In Step2, we developed pathway-based

random walk to identify glioma core survival genes from these

pathways based on the pathway structure information. In Step3,

we finally identified a glioma core miRNA-gene module by

integrating all the regulatory interaction between glioma survival

related miRNAs and glioma core survival genes.

Survival analysis. Two kinds of survival analysis were

performed on miRNA (gene) signatures and module signatures.

One is K-mean clustering method [39], the other is nearest

centroid classification method [40]. For above two methods,

glioma samples were both divided into two groups according to

the expression value of the corresponding signature. The survival

differences between two groups were assessed by Kaplan-Meier

estimate, and compared using the log-rank test. We also

performed Cox multivariate analysis to evaluate the contribution

of other independent prognostic factors. The expression signature

and other known factors were used in the multivariate analysis. In

all survival analysis processes, a P-value,0.05 was considered to

indicate a significant result.

Integrated miRNA and mRNA for Glioma Survival

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e96908

http://www.cgcg.org.cn/
http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/


The identification of survival pathways. For pathways

from KEGG PATHWAY database, the more annotated glioma

survival related genes (miRNA’s target genes), the more associa-

tion with the glioma survival. So hypergeometric distribution was

utilized to evaluate the survival significance and the P-value was

calculated for pathways as follows:

P~1�
Xr�1

x~0

t

x

� �
m�t

n�x

� �

m

n

� �

Where m was the number of the human whole genome, and t

was the number of genes included in one pathway. The number of

glioma survival related genes (or miRNA’s target genes) was n, and

r genes out of n genes were included in the pathway.

Pathway-based random walk. We developed pathway-

based random walk (PbRW) method to identify glioma core

survival genes based on the glioma survival related pathways.

Firstly, we reconstructed the glioma survival related pathways

graphically using R-based iSubpathwayMiner package [37]

developed by our previous work. The reconstruction retained

the raw information of these pathways, particularly for the

pathway structure information. We then changed these pathway

graphs into column-normalized adjacency matrices, which con-

sisted of 0 and 1. For each adjacency matrix, we took the glioma

survival related genes and miRNA’s target genes as the seed nodes;

and then utilized random walk algorithms to identify glioma core

survival genes [41]. The formula of random walk algorithms is as

follows:

Ptz1~ 1�rð ÞWPtzrP0

Where W is the column-normalized adjacency matrix of

survival related pathway and Pt is a vector in which a node in

the pathway matrix holds probability of finding itself in this

process up to step t. In this study, the initial probability vector P0

was constructed in such a way that equal probabilities were

assigned to all seed nodes; the sum of their probabilities was equal

to one. Additionally, the restart of the walker at each step is

probability r (r = 0.7). Until the difference between Pt and Ptz1

falls below 1026, the probabilities will reach a steady state. Then,

all genes in the pathway graph were ranked according to the

values in the steady-state probability vector P?.

Results

Identification of glioma core miRNA-gene survival
module

Integration of miRNA and mRNA expression to identify

glioma survival related pathways. For 80 patients of the

training set, we performed Kaplan-Meier survival analysis on the

sample-matched mRNA and miRNA expression data to identify

glioma survival related genes and miRNAs. In this process, glioma

samples were divided into two risk groups according to the mean

expression value of the corresponding miRNA (gene) in each

expression profiling, and P-values were calculated. A total of 115

miRNAs and 1962 genes were identified as glioma survival related

miRNAs and genes, with P-values,0.001. For the 115 survival

related miRNAs, we initially obtained their target genes which

emerged from at least six of the eleven common miRNA target

predicting datasets (see Materials and Methods). And for each

survival related miRNA, we annotated its target genes into

pathways from the KEGG database [36], and the pathway which

was annotated by more target genes was more likely to be

regulated by this miRNA. So hypergeometric distribution was

utilized to identify significant biological pathways regulated by

each survival related miRNAs with a strict cut-off of P-value,

0.01. Similarly, we also identified 18 pathways which were

significantly enriched by 1962 survival related genes. Among these

pathways, 14 pathways were also regulated by more than one

survival related miRNAs. When many pathways were considered,

a high false positive discovery rate was likely to result, and we

therefore calculated FDR corrected P-values for pathways in the

identification procedure using the Benjamini-Hochberg FDR

method (Table S1). The results showed that 14 common pathways

also remained significant at the usual cut-off of FDR,0.15,

suggesting a low false discovery rate. Finally, we regarded these 14

pathways as glioma survival related pathways, which were

identified by integrating gene and miRNA expression level; most

of these pathways were associated with occurrence of glioma

Table 1. Clinicopathological characteristics of patients in the training set, the testing set, and entire patient set.

Characteristic Training set (N = 80) Testing set (N = 80) Entire patient set (N = 160)

Age (Mean6SD) 40.4612.3 41.9612.7 41,2612.5

Gender

Male (%) 48(60%) 48 (60%) 96 (60%)

Female (%) 32(40%) 32 (40%) 64 (40%)

Glioma histopathology (World Health Organization grading)

Grade II (%) 32(40%) 31 (38.8%) 63 (39.4%)

Grade III (%) 16(20%) 17 (21.2%) 33 (20.6%)

Grade IV (%) 32(40%) 32 (40%) 64 (40%)

Patient survival

Alive (%) 41(51.2%) 51 (63.7%) 92 (57.5%)

Deceased (%) 39(48.8%) 29 (36.3%) 68 (42.5%)

Survival days (Mean6SD) 652.56328.3 707.46333.2 679.96332.8

doi:10.1371/journal.pone.0096908.t001
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tumor. Detailed information concerning the 14 glioma survival

related pathways is given in Table S2.

Glioma survival related miRNAs and genes walking in the

pathways to identify core survival module. Biological

pathways provided topology structure information for miRNA-

gene integrative analysis in glioma cell survival. So we developed a

method named pathway-based random walk (PbRW) to identify

more core survival genes at the pathway level. For each glioma

survival related miRNA, we performed PbRW for all survival

related pathways regulated by this miRNA. During this process,

considering the joint impact of miRNA and gene level, we took

glioma survival related genes and survival related miRNA’s target

genes as the seed nodes. Then a random walker started from these

seed nodes to identify more core survival genes in the pathway

Figure 1. Workflow overview. We identified a glioma core survival module based on sample-matched miRNA, mRNA expression and pathways
structure. First, we utilized Kaplan-Meier (K-M) survival analysis to identify glioma survival related miRNAs and genes. Then, we integrated these
miRNAs and genes to further identify KEGG pathways. Finally, we developed a pathway-based random walk method to identify glioma core survival
genes from each pathway, and constructed a glioma core miRNA-gene survival module.
doi:10.1371/journal.pone.0096908.g001
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structure. A detailed description of the PbRW method is shown in

Materials and Methods. Following the PbRW method, all genes

from each survival related pathway received a score; and a higher

score indicated more survival association with glioma patients in

this pathway. We utilized a stringent cutoff (top 3%) according to

the score and thus obtained a set of glioma core survival genes

from each pathway. Take an example, two membrane receptors

(ITGB and RTK) were identified as glioma core survival genes from

the focal adhesion pathway (Fig. S1). And for each survival related

miRNAs, we combined all glioma core survival genes from all

pathways it regulated, and constructed a miRNA-gene relation-

ship. In this study, a total of 194 core survival genes were identified

from all survival related pathways, and these genes were indirectly

regulated by 34 survival related miRNAs. To systematically

analyze glioma cell survival event, we further merged all the

miRNA-gene relationship of 34 survival related miRNAs to

construct a glioma core miRNA-gene module.

Dissecting the glioma core survival module mediated by
miRNAs

The glioma core survival module consisted of 34 survival related

miRNAs and 194 core survival genes (Figure 2). Of these survival

related miRNAs, most regulated fewer core survival genes and five

miRNAs regulated over 60 core survival genes. For example, miR-

590-3p exhibited a regulatory relationship with 79 glioma core

survival genes. MiR-16, miR-206, and miR-15a regulated 68, 67,

and 60 core survival genes, respectively. Among these five hub

miRNAs, miR-16 and miR-15a were found to be dysregulated in

glioma [42]; moreover, they have performed cooperative regula-

tory functions in other cancers [43,44]. Some genes in this survival

module were similarly implicated in the occurrence and develop-

ment of glioma, such as ERBB2, ITGB3, EGFR, and MET

[45,46,47,48]. As illustrated in Figure 2, all genes in the survival

module were divided into 13 classes (12 pathways and 1 multi-

pathway) according to the KEGG pathway classification. It was

shown that some genes derived from multi-pathways, such as the

Figure 2. The glioma core survival module and distribution of miRNAs and genes within the module. (A). The triangles and rectangles in
the core survival module correspond to miRNAs and genes, respectively. MiRNA node size is proportional to the degree of the node. Gene nodes are
colored according to their categories, which include 13 pathway classes from KEGG pathway database. (B). Distribution of survival related miRNAs
with respect to the number of their regulatory genes. (C). Distribution of core survival genes with respect to the number of times the gene is
regulated by miRNAs.
doi:10.1371/journal.pone.0096908.g002
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CDC and PDGFR family genes, implying the pathway cross-talk in

glioma survival process. The distribution of survival related

miRNAs and their regulatory pathways are shown in Fig. S2.

Similarly, miR-16 and miR-15a regulated over 7 survival related

pathways. Some pathways, such as ‘‘Focal adhesion’’, ‘‘Cell cycle’’

and ‘‘Pathways in cancer’’, were also regulated by many miRNAs.

And these pathways, especially focal adhesion, exhibited a close

relationship with glioma tumor [1,2,49]. In a word, the core

miRNA-gene survival module we identified was implicated in the

gliomagenesis process at the miRNA, gene and pathway levels.

It was previously proposed that a higher-order structure is

frequently observed in an integrated network. In our core miRNA-

gene module, some miRNAs and genes were also closely

connected and formed higher-order sub-modules. For mining

the representative sub-modules as survival signatures for subse-

quent analysis, we further performed hierachical clustering on the

bipartite miRNA-gene module. Based on the clustering result and

intrinsic regulatory relationships, we identified a total of four sub-

modules: moduleS1-moduleS4, in this study (Fig. S3). ModuleS3

was located in the center, whereas other three sub-modules were

located in the peripheral part. In content, moduleS3 contained

more hub miRNAs and genes as mentioned above. The miRNAs

and genes in these four sub-modules are shown in Table 2.

Prediction power of the glioma core miRNA-gene
survival module

Validation of the sub-modules for survival prediction by

the testing set. Four sub-modules identified above with proper

size were representative of the entire module as survival signatures,

and their prediction power were further evaluated using the testing

set. We firstly merged sample-matched miRNA and mRNA

expression profiles after row and column normalization and then

performed K-mean clustering (K = 2) to achieve merged expres-

sion profiling with four sub-module signatures. Finally, Kaplan-

Meier survival analysis was applied to evaluate the corresponding

signature’s prediction effect. As shown in Figure 3, these four sub-

modules were all significantly associated with the survival status of

80 glioma patients in the testing set, with P-value = 0.0013, 0.0016,

0.0002, and 0.0002, respectively. Moreover, using the raw miRNA

(gene) expression profiles, the corresponding miRNA and gene

signatures of four sub-modules were also evaluated. Interestingly,

all these miRNA and gene signatures correlated with glioma

patient survival with P-values#0.001, strengthening the clinical

prediction value of our sub-module signatures (Table 3). Further-

more, the prediction power of these four sub-modules in patient

subgroups (high-grade glioma patients, n = 49) from the testing set

were evaluated. In all four sub-modules, moduleS3 signature also

exhibited strong prediction power for high-grade glioma patients

(module signature, P-value = 0.0062; gene signature, P-val-

ue = 0.0163).

ModuleS3 signature from the core miRNA-gene module

displayed the best performance in the survival prediction. To test

the prediction robustness of module signature, we further

performed another survival analysis method based on nearest

centroid classification [40]. Using the expression signature, we

performed K-mean clustering on the testing set except one sample

to form two groups, one high-risk group and one low-risk group.

Then the external sample was assigned to high-risk or low-risk

group according to the nearest centroid classification rule. After all

samples were assigned to risk groups, K-M estimate was finally

used to evaluate the signature’s prediction power. As shown in Fig.

S4, the moduleS3 signature also predicted clinical outcome of

patients in the testing set (P-value = 0.0049) and the high-grade

subgroup (P-value = 0.0056). From the moduleS3 signature, only a

few miRNAs and genes were associated with glioma patient

survival, suggesting the signature set owned prediction power not

individual component (Table S3).

Moreover, to test whether our expression signature predicted

patient survival independently of other prognostic factors in our

cohort, we also performed multivariate analysis (Table S4). It was

shown that all expression signatures predicted outcome indepen-

dently of other factors such as age, gender and IDH1 mutation.

Notably, the survival prediction of 26-gene signature was also

independent of patient stage, a known prognostic factor, with P-

value = 0.034. Taken together, the core miRNA-gene module was

closely related with glioma survival. Especially, one core sub-

module (moduleS3) had strong prediction power for clinical

outcome of glioma patients.

Revalidation of moduleS3 signature for survival

prediction by glioma independent datasets. To further

validate the prediction power of moduleS3 signature, we collected

all public glioma expression datasets with available survival

information from the GEO database [23]. According to Dobbin

and Simon [50], the number of samples required for testing

prognostic signatures was proximately 50 or above for a general

expression dataset. Thus, we chose n = 50 as our minimum sample

size requirement and four gene expression datasets with corre-

sponding survival information from studies by Freije et al. [16],

Phillips et al. [20], Murat et al. [21], and Lee et al. [22] were

obtained. Gene expression signature of moduleS3 was applied to

Table 2. The detailed composition information of four sub-modules in the glioma core survival module.

Sub-module MiRNA signature Gene signature

ModuleS1 let-7b;let-7c;let-7f; miR-92b;let-7d;miR-29c LAMA1-LAMA5;LAMB1-LAMB4; LAMC1-LAMC3;SDC1-SDC4

ModuleS2 miR-590-3p;miR-129-5p;miR-206 BUD31;DDX42;DDX46;DDX5;DHX15; HNRNPA1;HNRNPA1L2;HNRNPA3;HNRNPC;
HNRNPK;HNRNPM;HNRNPU;LSM2-LSM7; MAGOH;MAGOHB;NAA38;NCBP1;NCBP2;
PCBP1;PHF5A;PLRG1;RB1;PRPF40A;SNRPG;PRPF40B;RBM17;RBM25;RBM8A;RBMX;
RBMXL1;SF3B14;SF3B1-SF3B5;SNRNP70; SNRPA1;SNRPB;SNRPB2;TRA2B;SNRPC; SNRPD1-
SNRPD3;SNRPE;SNRPF; SR140;SRSF1-SRSF10;TRA2A

ModuleS3 miR-15a;miR-16; miR-646;miR-186;
miR-455-5p;miR-628-5p

EGFR;ERBB2;FLT1;FLT4;FZD1-FZD10; IGF1R;ITGB1;ITGB3-ITGB8;KDR;MET; PDGFRA; PDGFRB

ModuleS4 miR-193a-3p;miR-141; miR-544;miR-507;
miR-524-5p;miR-586; miR-433;miR-619;
miR-548d-5p; miR-525-5p;miR-301a

ANAPC1;ANAPC10;ANAPC11;ANAPC13; ANAPC2;ANAPC4;ANAPC5;ANAPC7;BUB3; CCNB1-
CCNB3;CCND1-CCND3;CDC16; CDC23;CDC25B;CDC25C;CDC26;CDC27;
CDK4;CDK6;FBXO5;POLA1;POLA2;POLE; POLD1-POLD4;POLE2-POLE4;PRIM1;
PRIM2;RRM1;RRM2;RRM2B;UMPS

doi:10.1371/journal.pone.0096908.t002
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predict clinical outcome of samples within these datasets. For two

WHO grade III and IV datasets (Freije et al. and Phillips et al.),

26-gene expression signature exhibited significant prediction

power for glioma patients, with P-values,0.05 (Figure 4A, B).

For other two grade IV datasets (Murat et al. and Lee et al.), the

expression signature was also associated with GBM patient

survival, with P-values = 0.0463 and 0.111, respectively

(Figure 4C, D). Next, we also obtained sample-matched miRNA

and mRNA expression data of GBM from TCGA database. The

TCGA provided public glioma multi-dimensional expression data

similar to our dataset. Then survival analysis based on K-mean

clustering were performed on miRNAs, genes and moduleS3

signature. As shown in Fig. S5, the 26 genes in moduleS3

exhibited a marginal significant association with GBM survival (P-

value = 0.0663), and could predict the clinical outcome of patients

who had the survival time longer than two years (P-value = 0.019),

further strengthening its survival prediction power.

The 26-gene signature of moduleS3 exhibited robust power to

predict glioma patient clinical outcome in many datasets

mentioned above. We further analyzed the gene signature to

determine whether a subset could also be used to predict patient

survival. Among the 26-gene signature, 3 genes (KDR, PDGFRA,

and IGF1R) were target genes of survival related miRNAs, and 4

genes (PDGFRB, FZD6, ITGB1 and IGF1R) were most significantly

associated with patient survival (P-values,0.001). However, unlike

the 26-gene signature, the corresponding target genes and

significant genes in moduleS3 did not consistently correlate with

glioma patient survival in most cases (data not shown). In addition,

we developed an optimization method for the 26 genes; we first

ranked these genes according to their survival significance, and

regarded the top n genes (n from 2 to 25) as subset signatures. As

shown in Figure 5, the top 9 genes exhibited the best survival

performance. After other survival verification, the 9-gene signature

also predicted the clinical outcome of glioma patients in the testing

set, high-grade subgroup, and three independent datasets.

Discussion

We systematically analyzed glioma survival by considering joint

impact of miRNA and gene at the pathway level. During the

analytical process, we put glioma survival related miRNAs and

genes walking in the pathways to identify glioma core survival

genes, and then constructed a glioma miRNA-gene module.

Following survival verification using the testing set and indepen-

dent datasets, one core sub-module, especially gene signature

included, was shown to be a potential predictor for glioma patient

clinical outcome.

In this study, we divided all the glioma samples randomly into a

training set and a testing set without significant difference in

clinicopathologic features. The single training-testing partition

may not provide the most robust signature results. So we first

permutated partial samples (n = 5, 10, 15 and 20) based on original

training and testing sets and performed our integrated analytical

method to identify glioma miRNA-gene module results. And a

recurrence ratio was defined to show the ratio of miRNAs (genes)

of our original module that were also identified in the new results.

As shown in Fig. S6, there were strong robust results for glioma

miRNA-gene module and core sub-module3, especially the 26

genes in moduleS3 even when n = 20. Also, the gene signatures

exhibited strong predictive power in clinical outcome of glioma

patients from four additional datasets (Figure 5). To further test the

robustness of these expression signatures, we performed another

random permutation analysis named shuffle-and-split analysis; we

shuffled all the 160 glioma samples and randomly splitted into two

pairs of training and testing sets. We repeated this process a total of

500 times. The results showed that the 26-gene and 9-gene

signatures also had high recurrence ratio, further verifying the

robustness of our expression signatures (Fig. S7).

By integrating sample-matched miRNA and gene expression,

we identified 14 glioma survival related pathways using the

hypergeometric distribution method, which had more advantage

for strong significant pathway identification. Among these survival

related pathways, ‘‘Focal adhesion’’, ‘‘Cell cycle’’, ‘‘Pyrimidine

metabolism’’, ‘‘Pathways in cancer’’, ‘‘ECM-receptor interaction’’,

and ‘‘P53 signaling pathway’’ were all known to be related to the

occurrence and metastasis of glioma tumor (Table S2). Notably,

cell-matrix adhesion played an essential role in important

biological processes, including cell survival, proliferation and

motility [2]. It has been previously reported that the focal adhesion

is associated with glioma tumors, and that adhesion receptors

promote glioma cell migration and invasion [2,49]. In our core

survival module, ‘‘Focal adhesion’’ pathway was involved in the

moduleS3, supporting its sound survival predictive effect. More-

over, some disease pathways, such as ‘‘Colorectal cancer’’ and

‘‘Small cell lung cancer’’, were also identified; thus, there might

exist some common biological mechanism or disease genes shared

among these diseases and glioma. In a word, these pathways were

Figure 3. Module signatures predict glioma patient clinical outcome. (A-D). Four sub-modules (moduleS1-S4). K-mean clustering
representation of module signatures in the 80 glioma patients of the testing set. The columns represent tumor samples and rows represent genes
and miRNAs in corresponding module. Red indicates high relative expression levels, whereas green low levels. Horizontal bars above the heat map
indicate the grade status and class of the patient (cyan, deepblue and red box indicated grade II, III and IV; green and darkred box indicated low-risk
and high-risk class). The low-risk and high-risk groups were derived from K-mean clustering (K = 2) and estimated by Kaplan-Meier survival analysis. P-
values were calculated by the log-rank test.
doi:10.1371/journal.pone.0096908.g003

Table 3. The P-value performance of four sub-modules using Kaplan-Meier survival analysis in the testing set.

Testing set (Grade II,III and IV; n = 80) Testing set (Grade III and IV; n = 49)

ModuleS1 ModuleS2 ModuleS3 ModuleS4 ModuleS1 ModuleS2 ModuleS3 ModuleS4

Module signature 0.0013 0.0016 0.0002 0.0002 0.2440 0.6710 0.0062 0.1600

MiRNA signature 0.0068 0.0003 0.0001 0.0000 0.6790 0.5070 0.1710 0.0010

Gene signature 0.0000 0.0009 0.0010 0.0000 0.0929 0.5180 0.0163 0.1170

doi:10.1371/journal.pone.0096908.t003
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of biological importance and PbRW was further developed on

them for mining core survival factors.

During the PbRW method to identify glioma core survival

genes, we simultaneously considered topology information derived

from pathway structure and the joint impact of two levels, miRNA

and mRNA expression. We regarded the glioma survival related

genes and survival related miRNA’s targets as seed genes, and

equal probabilities were assigned to all seeds in this process. Then

a random walker was walking step by step in pathway structure to

identify core survival genes, which were drove by survival related

miRNAs and genes. The PbRW method accounted for both

number and length of multiple paths connecting two nodes in the

pathway structure. Furthermore, this method also allowed the

algorithm to restart walk at the seed nodes in every iteration,

which enabled the choice of a trade-off between the exploitation of

local and global pathway structure. The benefits of random walk

algorithm for node scoring have been discussed and are currently

utilized for disease-gene prioritization [41].

From the glioma core miRNA-gene module, four representative

sub-modules were identified and evaluated using the testing set

and independent datasets. All four module signatures were

significantly associated with clinical outcome of patients with

grade II to IV. Notably, when applied to high-grade subgroup

(grade III and IV), moduleS3 also had a prognostic value for

glioma patients. This implied the assumption that a ‘‘low grade’’

glioma like behaviour existed in high-grade tumor which would be

associated with better outcome. And in the multivariate analysis

with patient stage, the 26-gene signature was an independent

predictor of patient survival with P-value = 0.034. As mentioned

above, many pathways including focal adhesion were involved in

Figure 4. The gene signature from moduleS3 predicts clinical outcome of glioma datasets from GEO. The glioma datasets were
respectively extracted from the studies of (A) Freije et al., (B) Phillips et al., (C) Murat et al., and (D) Lee et al.. The significance of clinical outcome
difference between the low-risk and high-risk groups was estimated by K-M survival analysis. P-values were calculated by the log-rank test.
doi:10.1371/journal.pone.0096908.g004
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moduleS3. So the integration of multi-pathways might have an

implication in discriminating the clinical outcome of high-grade

glioma patients.

By independent survival verification, our 26-gene expression

signature could predict the clinical outcome for glioma patients

from GEO and TCGA databases. Furthermore, we also

performed another survival analysis method [40] to test the

expression signature’s prediction robustness. In these results, the

26-gene expression signature was significantly associated with the

patient survival in the TCGA data set with P-value = 0.018 (Fig.

S8 A). For three of four GEO data sets, our signature also

displayed the prediction power for patient clinical outcome (P-

values,0.05), showing our expression signature’s robustness in

survival prediction. In this study, we looked at survival across

glioma grades to identify robust expression signatures, which

displayed prediction power in high-grade and GBM cohorts. Also,

the grade-specific differences in gene/miRNA expression and

survival difference between different grades were still of impor-

tance, and will be considered in future study.

It is important to predict therapy responsiveness and to spare

certain patients from unnecessary adjuvant therapies that have

adverse side effects. For example, GBM patients with MGMT

promoter methylation who were treated with temozolomide had a

median survival of 21.7 months. In contrast, patients without

MGMT promoter methylation had a significantly shorter median

survival of only 12.7 months [51]. Thus, we further investigated

the relationship between our expression signatures and chemo-

therapy treatment. Of all the datasets analyzed above, only two

datasets (TCGA and study of Murat et al.) contained patient

treatment information and TCGA dataset with adequate samples

(.50) could be utilized for further analysis. Temozolomide is the

most common chemotherapy drug for glioma clinical treatment.

So we extracted temozolomide-treated samples from TCGA

dataset and examined the predictive capacity of 26-gene and 9-

gene signatures for these samples; two sample groups were formed:

high-risk and low-risk groups. As shown in Fig. S9, there was a

significantly different outcome between the two predicted groups,

showing that our expression signatures were also prognostic in

temozolomide treated patients (n = 194; P-values,0.05). More-

over, the multivariable analysis showed that these signatures

predicted patient survival outcome independently of gender and

KPS score (Table S4).

We integrated high-throughput miRNA, mRNA expression,

and pathway structure to systematically identify a glioma survival

module, among which 26 gene signature was capable of predicting

patient clinical outcome. Sample-matched miRNA and mRNA

expression data with patient survival information has recently been

developed; thus, further validation of the expression signature will

help strengthen its clinical value. In the current study, our findings

are potentially useful for understanding the gliomagenesis and

identifying expression signatures for clinical outcome prediction.

Supporting Information

Figure S1 Focal adhesion (path: 04510): a pathway
example. Node colors: blue node, glioma survival related genes

but not survival related miRNA targets; green node, glioma

survival related miRNA targets but not survival related genes;

yellow node, both glioma survival related genes and miRNA

targets. In this pathway, membrane receptor ITGB received the

highest score (0.04925) overall. Another receptor gene KDR

received the second high score (0.04473).

(PDF)

Figure S2 Distribution of glioma survival related miR-
NAs and their regulatory survival pathways. (A). Distribu-

tion of survival related miRNAs with respect to number of their

Figure 5. The survival prediction performance of the 9-gene signature from moduleS3. (A). The identification of top 9 genes from the
moduleS3. (B). The 9 genes in moduleS3. Gene nodes were colored according to the gene class colors used in Figure?2. (C). The survival prediction
power comparison between 9-gene and 26-gene signatures.
doi:10.1371/journal.pone.0096908.g005
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regulatory pathways. (B). Distribution of glioma survival related

pathways with respect to the number of times the pathway is

regulated by miRNAs.

(PDF)

Figure S3 Hierarchical clustering on the glioma core
survival module and four representative sub-modules.
(A). Hierarchical clustering on the glioma core survival module

using the correlation (uncentered) and complete linkage method in

the Cluster3 software package and JavaTreeView imaging

software. The corresponding cell was colored red if there was an

edge between the miRNA and gene. Gene labels were colored

according to the gene class colors used in Figure 2. The bars above

the gene and miRNA labels showed four sub-modules (yellow,

cyan, pink and grey indicated moduleS1 to S4). (B). Four

representative sub-modules (moduleS1-S4) in the glioma core

survival module.

(PDF)

Figure S4 The moduleS3 signature predicts the clinical
outcome of samples from the Testing set using nearest
centroid classification method. (A). Testing set grade II/III/

IV (B). Testing set high-grade sub-group.

(PDF)

Figure S5 The 26-gene signature from moduleS3 pre-
dicts the clinical outcome of samples from TCGA dataset.

(PDF)

Figure S6 The recurrence ratio of glioma miRNA-gene
module results after partial sample perturbation analysis.

(PDF)

Figure S7 The shuffle-and-split analysis of our expres-
sion signatures. The recurrence ratio of core gene signatures in

500 random shuffle-and-split analysis. The genes which were

colored red belonged to the 9-gene signature (see Figure 5).

(PDF)

Figure S8 The 26-gene signature predicts the clinical
outcome of glioma samples using nearest centroid
classification method. (A). TCGA dataset and the study of (B)

Freije et al., (C) Phillips et al., (D) Lee et al., and (E) Murat et al.

(PDF)

Figure S9 The 26-gene signature from moduleS3 pre-
dicts the clinical outcome of temozolomide-treated
samples from TCGA.
(PDF)

Table S1 The biological pathways enriched by glioma survival

related genes (survival related miRNA’s target genes).

(XLS)

Table S2 The detailed information of glioma survival related

pathways.

(DOC)

Table S3 The P-value performance of each miRNA (gene) from

moduleS3 in the testing set.

(XLS)

Table S4 Univariable and multivariable cox regression analysis

of our expression signatures.

(XLS)
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