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Abstract: The brain’s capacity to respond to changing environments via hormonal signaling is critical
to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a
prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven
by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the
trajectory of myelin production throughout development, and importantly, OPCs maintain the ability
to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis,
the‘creation of new OLs, can be dramatically influenced during early development and in adulthood
by internal and environmental conditions such as hormones. Here, we review the current literature
describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on
several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation
at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall,
the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing
maturation and myelin production in OLs. The mechanisms underlying these processes vary for
each hormone but may ultimately converge upon common signaling pathways, mediated by specific
receptors expressed across the OL lineage. However, not all of the mechanisms have been fully
elucidated, and here, we note the remaining gaps in the literature, including the complex interactions
between hormonal systems and with the immune system. In the companion manuscript in this
issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and
psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the
fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan,
especially in vivo, will progress both basic and translational research.

Keywords: oligodendrogenesis; hormones; mechanisms; steroids; peptides

1. Introduction

The human brain is able to undergo dramatic plasticity throughout life in response to
both internal and external signals. Plasticity can include both structural changes, such as
the formation of new synapses or changes to perineuronal nets, and functional changes,
such as changes in network strength. Classically, neurogenesis, or the generation of new
neurons, is regarded as a major form of plasticity [1]. However, the generation of new
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glia, or gliogenesis, is a lesser explored yet equally important avenue for investigation.
Specifically, oligodendrogenesis, the creation of new oligodendrocytes (OLs), has emerged
as a novel mechanism for experience-dependent plasticity in the developing and adult
brain [2,3].

OLs are a class of glial cells in the central nervous system that produce myelin, a lipid-
rich membrane that enwraps and insulates axons. Myelin is canonically known for its role
in enhancing the speed of neuronal transmission [4]. However, OLs and their associated
myelin have also been found to regulate plasticity. Specifically, myelin proteins inhibit
axonal sprouting and are thought to close critical periods and crystallize circuits [5,6].
In the adult brain, myelin can undergo considerable reorganization in response to neural
activity; this experience-dependent myelination ultimately contributes to motor function,
spatial and motor learning, social behavior, and emotional affect [2,7–11].

Myelin plasticity in the central nervous system occurs via alterations to existing myelin,
the addition of new myelin segments from existing OLs, and the incorporation of new OLs
and myelin through oligodendrogenesis. Oligodendrogenesis occurs heavily during early
development, yet also continues throughout adult life. As with neurons, OLs are originally
derived from multipotent neural stem cells (NSCs) that maintain the capacity for self-
renewal and can differentiate to adopt a neuronal or glial fate. These processes are tightly
regulated by numerous factors, and the progression from NSC to mature OL can be tracked
by the expression of characteristic cellular markers (Figure 1). For example, at the earliest
stages, a subset of Nestin+ NSCs can develop into oligodendrocyte pre-progenitors (OPPs),
proliferative cells that default towards a glial cell fate and express polysialylated-neural
cell adhesion molecule (PSA-NCAM). A subset of OPPs become dedicated oligodendrocyte
precursor cells (OPCs), precursors committed to the OL lineage; OPCs express a character-
istic surface proteoglycan, neuron-glial antigen 2 (NG2), which allows them to be labeled
and tracked in situ [12]. Other markers such as platelet derived growth factor receptor
alpha (PDGFR-α) and the cell surface ganglioside A2B5 are also observed in OPCs and pre-
oligodendrocytes [13]. The proliferation, survival, and differentiation of NSCs and OPCs
can be quantified by tools that tag newborn cells, such as the synthetic thymidine analog
bromodeoxyuridine (BrdU). Exogenously-administered BrdU is incorporated into DNA
during the S phase, permanently labeling cells that were undergoing DNA replication at the
time of BrdU administration. Hence, analysis of BrdU labeling soon after administration
provides a means of quantifying proliferation. In addition, analysis of BrdU labeling at later
time points allows for the quantification of newborn cell survival, as well as differentiation
and fate trajectories through the use of double labeling with additional lineage markers.
For example, a number of transcription factors, such as oligodendrocyte transcription
factor 1 (Olig1), drive OPCs to differentiate into pre-OLs and immature OLs, and along
with additional markers such as O4, Olig1 labels cells that have adopted an OL fate [13].
In contrast to Olig1, oligodendrocyte transcription factor 2 (Olig2) is expressed throughout
the entire OL lineage [13]. At the final stages of maturation, OLs start to produce myelin
and express markers unique to myelination, including myelin basic protein (MBP) and
proteolipid protein (PLP) [13]. These markers are consistent across both developmental
and adult oligodendrogenesis, and their detection is crucial for understanding the stages
and regulation of oligodendrogenesis. It should be noted, however, that the exact delin-
eations of the stages of oligodendrogenesis, e.g., when a cell is considered “immature” vs.
“mature”, varies considerably across the literature, and the majority of studies only utilize
one marker to define cell stage. A growing number of studies suggest that adult neural and
glial precursors are heterogeneous populations, and many of the markers noted above can
be expressed by cell types not of the OL lineage; for example, PSA-NCAM is also found in
neurons and NG2 in pericytes [14,15]. Thus, future work should utilize multiple cellular
markers or additional methods in order to be confident of cellular stage.
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Figure 1. Cellular markers across the (oligodendrocyte) OL lineage.

During mammalian development, OPCs originate from the ventricular germinal zones
of the embryonic neural tube [16]. OPCs proliferate and migrate throughout the devel-
oping brain, and ultimately differentiate into mature, myelinating OLs. As with neurons,
an overabundance of OLs is produced early in development. As these cells compete for
growth factors, a portion ultimately undergoes apoptosis, resulting in a reduced population
of myelinating OLs [17,18]. Although the production of myelinating OLs peaks in the
first few weeks of life, there are regional differences in myelin maturation. For example,
sensory areas myelinate earlier in life, while regions such as the prefrontal cortex extend
myelination through adolescence and early adulthood [19]. Importantly, not all OPCs
differentiate into OLs; a population of progenitors persist throughout the lifespan and
retain the ability to proliferate and differentiate into OLs [20]. In addition, OPPs and OPCs
can be produced from adult NSCs in the dentate gyrus and subventricular zone [21–23].
Importantly, OPCs are sensitive to neural signaling and respond to neural activity by
proliferating and differentiating [24]. The survival and subsequent myelin production of
these newborn OLs can ultimately contribute to the reorganization of the existing myelin
landscape [2]. In addition, OPCs mobilize and differentiate into OLs in response to injury
and demyelination, allowing for new myelination and repair [25–27]. Thus, oligodendroge-
nesis is a lifelong process in the central nervous system (CNS), with ultimate implications
for development, circuit function, behavior, and various brain insults. Understanding how
adult OPCs are regulated could lead to promising therapeutic avenues for demyelinating
disorders such as multiple sclerosis.

Oligodendrogenesis is a complex process, and the mechanisms that control oligo-
dendrogenesis are under active investigation. OPCs and OLs are sensitive to numerous
factors, including growth factors and a wide array of hormones [28–31]. Hormones, at their
broadest definition, consist of a signaling molecule synthesized within an organism that
acts upon an effector via a selective receptor. The distance a hormone travels and its method
of transportation determine its signaling classification; for example, endocrine hormones
are released into the bloodstream to act on distant tissues, whereas paracrine hormones
are released locally to act on nearby cells [32]. Thus, endocrine hormones communicate to
distant organs without the need for direct, neural innervation, and they have wide-reaching
effects on an organism, from cognitive responses to stress to the homeostatic regulation of
blood ion concentration [32]. The production of hormones also changes across development
and at critical stages of life, including during puberty and whilst pregnant. Various hor-
mones, including estrogens and stress hormones, alter neurogenesis in developing and
adult mammals [33–35]. However, the role of hormones in gliogenesis, and in particular,
oligodendrogenesis, is less well understood.
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In this review, we will explore how hormonal factors influence proliferation, differen-
tiation, and survival across the OL lineage. We will restrict our discussion to the “classic”
endocrine signaling molecules, which are typically released from a gland, travel through
the bloodstream, and act upon distant tissues. However, several of the hormones discussed
can also be produced by tissues in the CNS, thus acting in a paracrine fashion. This review
will describe the effects of several major classes of hormones on oligodendrogenesis, in-
cluding amino acid-based hormones (thyroid hormones, peptides, and amines) and steroid
hormones (glucocorticoids and sex hormones). For each hormone, we will describe effects
across the OL lineage in both development and adulthood, noting mechanisms where they
are known. In a second, companion review [25], we discuss the implications of hormonal
regulation of oligodendrogenesis for disorders characterized by alterations in oligodendro-
genesis. We end with a discussion of future directions and additional considerations.

2. Amino Acid-Based Hormones (Thyroid Hormones, Peptides and Amines)

In this section, we discuss the role of amino acid-derived hormones and their receptors
on oligodendrogenesis. These hormones can be genetically-encoded chains of two or more
amino acids (peptides) or enzymatically altered compounds derived from single amino
acids (amines and thyroid hormones). As a result, these hormones are typically stored
in and secreted from vesicles and travel freely through the bloodstream, although some
may be associated with binding proteins that aid in circulatory delivery and regulate
bioavailability of the hormone. Because they are water-soluble, peptide and amine hor-
mones typically act on cell surface receptors that utilize fast-acting second messenger
systems [36]. In contrast, thyroid hormones are hydrophobic; thus, their mechanisms
of action are more similar to steroid hormones than to peptides and amine hormones.
For example, thyroid hormones primarily act through binding of nuclear receptors [37].

Below, we detail the roles of thyroid hormones, peptides (including insulin-like
growth factor 1 (IGF-1), insulin, and prolactin), and the amine hormone melatonin in the
regulation of the various stages of oligodendrogenesis. OLs have been shown through
both transcriptional and histological studies to express the receptors for each of these
hormones. Interestingly, while the downstream actions of these receptors are considerably
heterogeneous, activation of many of these receptors, especially cell surface receptors,
converge upon common signaling pathways, in particular the mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (AKT) signaling pathways. These pathways are broadly
known to regulate cellular growth and survival [38,39], and indeed, although substantial
gaps remain in our understanding of these hormones’ effects across the OL lineage, each of
these hormones has been shown to enhance OPC proliferation and/or OL survival.

2.1. Thyroid Hormones

Thyroid hormones (THs) are tyrosine-based hormones that act on almost every cell
type in the body to regulate CNS development and neuronal maturation, as well as
overall organismal metabolism [40–43]. These two hormones, triiodothyronine (T3) and
thyroxine (T4), are produced and released by the thyroid gland and are essential for the
development and differentiation of cells, including OLs [44]. Their structures are based
on the combination of two tyrosine amino acids that have been enzymatically modified to
incorporate iodine molecules. T4 is the primary circulating TH, and enzymatic deiodination
of T4 by type 2 deiodinase (Dio2) yields T3, the functionally active TH [40,41]. In the rat
brain, Dio2 activity and corresponding levels of T3 increase after gestation and peak just
prior to weaning [42,43,45]. THs cross the blood–brain barrier (BBB) into the CNS via
various membrane transporter proteins [46].

Thyroid hormone receptors (TRs) are part of the nuclear receptor subfamily, and they
bind either as homodimers or heterodimers to thyroid response elements (TREs) in DNA
to alter gene expression [37]. In fact, TR binding to TREs occurs primarily due to het-
erodimerization with the retinoid X receptor (RXR) [47]. Interestingly, in the absence of TH
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or under conditions of low TH, unliganded TRs form a complex with co-repressor proteins,
inhibiting gene transcription [37]. There are two primary classes of TR isoforms—TRα and
TRβ—which are highly homologous but differ in their N-termini and their distribution
across tissues in the body [48]. TRα and TRβ each produce several splice variants, three of
which bind T3: TRα1, TRβ1, and TRβ2. Although nuclear receptors traditionally act at
the level of transcription, TRs can also have non-genomic effects. For example, both TRα1
and TRβ2 can act via PI3K/AKT pathways to exert rapid effects [49,50]. Lastly, in addition
to nuclear TRs, THs can bind to a transmembrane receptor, the integrin αvβ3 dimeric
receptor, to exert non-genomic effects [51].

Nuclear TRs are expressed in OLs, both in vitro and in vivo [52–55]. Interestingly,
expression differs across the OL lineage [56]. Specifically, OPCs express TRα, while dif-
ferentiated OLs express both TRα and TRβ [52,53,57,58]. In addition, TRs dimerize with
other nuclear receptors expressed in OLs [59], including vitamin D3 receptors, peroxisome
proliferator-activated receptors, and the RXR [60–62]. Pre-myelinating, immature OLs
from postnatal day (p) 0–2 rat pups also express the transmembrane receptor, αvβ3 [63],
which regulates OL differentiation through a non-genomic pathway; in particular, bind-
ing αvβ3 activates PI3K/AKT and ERK pathways that help translocate TRs from the
cytosol to the nucleus [64]. Together, expression of these receptors enables THs to affect
oligodendrogenesis [65].

Effects on Oligodendrogenesis

At the earliest stages of the OL lineage, THs regulate proliferation, differentiation,
and cell death of both developing and adult NSCs isolated from rodents. For example,
TH is required for embryonic mouse NSC maintenance and proliferation; pharmacological
depletion of TH inhibits proliferation, and TH binding to the αvβ3 receptor increases
proliferation of cortical progenitors [66]. Excessive TH, however, can also have a nega-
tive effect on embryonic NSC proliferation [67], suggesting that there may be an optimal
amount of TH for NSC proliferation. In addition to effects on proliferation, T3 also pro-
motes embryonic NSC differentiation in vitro, promoting cells to differentiate toward a
mixed glial fate [68]. Specifically, OPC quantities increase three-fold in the presence of
T3 [69]. This effect requires the presence of the glycoprotein transferrin, which increases
TRα1 expression [70]. Similar effects on oligodendrogenesis are observed in adult-derived
NSCs. Consistent with the inverted U function of TH action, hyperthyroidism reduces NSC
proliferation. Furthermore, treating adult-derived NSCs with T3 favors OPC differentia-
tion [71,72]. Lastly, T3 acts not only on NSCs; treating OPPs (PSA-NCAM+) isolated from
newborn rats with T3 enhances fibroblast growth factor 2 (FGF2)-mediated cell growth [68].

TH is also an essential hormone in modulating OPC proliferation and driving OPC
differentiation. In particular, T3 prompts OPCs derived from developing rats to exit the
cell cycle and differentiate into mature OLs [44,73,74]. The mechanisms of this switch are
only partially elucidated and appear to depend in part on TRs [58,75–77]. T3 binding to
TRα1 leads to complete arrest of OPC proliferation in vitro [78], and the absence of TRα1
results in continued proliferation of OPCs [76]. TRα2 mRNA, which encodes a dominant-
negative form of TRα, also decreases as OPCs proliferate, which may create a permissive
state for TRα1 action and subsequent OPC differentiation [58]. Thus, several forms of
TRα are involved in prompting OPCs to exit the cell cycle. TR-dependent effects on
OPC differentiation are a bit more complex. Given that TRβ expression is confined to
differentiated OLs, it is suggested that TRα receptors facilitate the effect of TH on OPC
differentiation, while TRβ aids in terminal differentiation into mature OLs [58]. Indeed,
overexpression of TRα accelerates rodent OPC differentiation in culture [77]. However,
applications of TRβ agonists and TRβ overexpression also increase OPC differentiation; it is
unclear if these effects are truly TRβ dependent or whether this exogenous upregulation
of TRβ acts at the same TREs as TRα [58,75]. Importantly, these studies have all been
conducted in vitro; in vivo studies will be necessary to confirm both the effects of TH on
OPC development, and the role of specific TR variants.
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THs also induce OL maturation and alter OL morphology [71,79–84]. Specifically,
THs promote both morphological and functional maturation of OLs through interactions
with MBP promoter regions and transcriptional regulation of other genes such as myelin
oligodendrocyte glycoprotein and glutamine-synthase [79,81–84]. Consistent with these
findings, TH deficiency shortens the elongation process of mature OLs [80] and delays
expression of MBP and 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNPase), a myelin-
associated enzyme [81]. T3 can also act in conjunction with 9-cis retinoic acid (which binds
to RXR) to increase the number of pre-myelinating OLs, increase OL morphology com-
plexity, and increase MBP expression [85,86]. Interestingly, in rodents, OL maturation is
only influenced by T3 in the first three weeks of life after birth [87]. During that time,
THs also enhance OL survival [88]. This effect may occur through TH’s ability to regulate
survival-specific growth factors such as neurotrophin-3 and IGF-1 [89–92]. Outside of this
time window, OLs no longer require TH to survive [88]. These findings suggest that TH
may no longer have a role in OL maturation and survival in adulthood under physiological
conditions. These differences in TH action across the lifespan are highly unexplored and
are a fruitful area for future study.

Overall, THs potentiate oligodendrogenesis along the OL lineage, from specification
of NSCs towards an OL fate, to cell cycle arrest and differentiation of OPCs, to maturation
of immature OLs and increasing myelination in mature OLs.

2.2. Insulin-like Growth Factor 1 (IGF-1)

IGF-1 is a 70 amino acid peptide that contributes to cell growth and proliferation,
as well as cell survival [93–95]. This peptide is produced in the liver, and its secretion
is stimulated by growth hormone (GH) and the GH receptors [96]. In the bloodstream,
IGF-1 is largely bound to IGF-1 binding proteins [97]. In addition to hormonal delivery
via the bloodstream, IGF-1 can be synthesized locally in the CNS by neurons and glia,
including OLs [98,99].

While no studies to date demonstrate expression of GH receptors in OLs, all CNS cells,
including OLs, express the IGF-1 receptor (IGF1R), a cell surface receptor with tyrosine
kinase activity [94,100–102]. Ligand binding to IGF1R primarily induces the PI3K/AKT
and the MAPK/ERK signaling cascades, which broadly inhibit apoptosis and promote
mitogenesis, contributing to IGF-1’s function in cell survival and tissue maintenance [103].
IGF-1 can also bind with low affinity to the insulin receptor (IR) [104].

Effects on Oligodendrogenesis

Overall, studies performed in vitro suggest that IGF-1 increases oligodendrogenesis
by enhancing OPC survival, promoting OPC differentiation, and inhibiting apoptosis
of developing OLs. At the earliest progenitor stages, IGF-1 promotes the survival of
neonatal rat-derived PSA-NCAM+ progenitors in culture [105]. While IGF-1 alone does
not promote proliferation of these cells [105], IGF-1 can act synergistically with growth
factors such as epidermal growth factor and FGF2 to promote NSC proliferation [105,106].
In addition, IGF-1 biases NSCs towards an OL fate; specifically, IGF-1 greatly increases
oligodendrogenesis from NSCs of the adult rat dentate gyrus, an effect driven by Noggin
and SMAD family member 6 inhibition of bone morphogenic protein signaling [107].

Specifically in the OL lineage, IGF-1 dose-dependently promotes OPC survival in vitro
through PI3K-dependent inhibition of caspase-3 (a crucial mediator of apoptosis) and subse-
quent cell death [17,108,109]. IGF-1 is therefore a potent survival factor for OPCs [108,110,111].
This effect persists past the proliferative phase of OL development, suggesting that IGF-1
promotes survival across the OL lineage [17,108].

While the anti-apoptotic effects of IGF-1 are well established, the mitogenic properties
of IGF-1 on OPCs are less clear. Early in vitro experiments suggested that application of
IGF-1 enhances proliferation of bipotential rat oligodendrocyte-type 2 astrocyte progenitor
cells (O-2A, now commonly referred to as OPCs) [112]. Subsequent studies further demon-
strated that IGF-1 induces [3H] thymidine and BrdU incorporation in neonatal rat cultured
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OPCs, indicating increased proliferation [113,114]. However, additional experiments have
countered this, arguing that application of IGF-1 does not induce proliferation in OPCs
derived from p7 mice or adult humans [17,115].

Differences between these experiments may be explained by OPC purity, experimental
timing, or the age of animals from which cultures were derived. Such differences have
broader implications for future studies of hormonal regulation of oligodendrogenesis.
Firstly, an increasing number of studies demonstrate glia release factors that modulate
neurogenesis [116–118]; hence, contamination of OPC cultures or the use of mixed glial
cultures could influence oligodendrogenesis via indirect effects of IGF-1 on astrocytes or
microglia, an important consideration for in vitro studies. Secondly, while co-applying
BrdU and IGF-1 yields uptake of BrdU in OPCs, application of BrdU 24 h after IGF-1
treatment does not [17,113]. This suggests that IGF-1 may induce a small and/or transient
increase in OPC proliferation. Indeed, in experiments with co-application of IGF-1 and
BrdU, IGF-1-induced proliferation is inhibited by PI3K, MAPK kinase kinase 1 (MEK1),
and Src-like tyrosine kinase inhibitors, which align with the mitogenic role of PI3K and
MEK1 signaling in other cell types, as well as broader mitogenic properties of IGF-1 sig-
naling [119,120]. Furthermore, the age at which primary cultures are obtained should be
considered when comparing literature with cultured OPCs. OPC generation and migration
through the developing rodent forebrain occurs in separate waves, with the final wave
beginning around birth [121]. OPCs from the final wave compete with existing OL pre-
cursors and become the predominant OPC in many brain regions by p10. Although they
maintain similar capacities for myelination, the responses of these separate OPC lineages
to survival and proliferative factors are poorly understood. In fact, neonatal rat-derived
OPCs may differ in their response to IGF-1, showing less IGF-1-induced differentiation
to mature OLs as compared to their adult-derived counterparts [122]. This effect may be
driven by differences in transcriptional profiles of proliferative and survival-related genes
in neonatal- vs. adult-derived OPC cultures [122]. Lastly, culture conditions should be
noted. Again, IGF-1 can act in concert with growth factors to promote the proliferation of
OPCs, but IGF-1 alone may have little effect [123].

Altogether, although the primary effect of IGF-1 is to inhibit apoptosis [114], IGF-
1 may induce a small and transient PI3K/MEK1-dependent proliferative effect on OPCs.
In support of this, loss of IGF1R specifically in Olig1-expressing cells results in a small
decrease in proliferating NG2+ cells in young (2-week-old) mice [111]. Additional experi-
ments with, for example, live cell imaging on highly pure cultures to quantify cell cycle
entry in real time would advance understanding of IGF-1’s effects on OPC proliferation.

These studies demonstrate that IGF-1 stabilizes, and perhaps modestly amplifies,
the OL progenitor pool. Further studies suggest that IGF-1 also promotes the commit-
ment of glial progenitors to an OL fate. Indeed, early in vitro work posited that IGF-1
promotes the maturation of neonatal and embryonic rat-derived intermediate OPCs, as in-
dicated by a higher percentage of O-2A progenitors progressing to immature OLs [112,124].
However, little else has been done to investigate whether and how IGF-1 promotes differ-
entiation and maturation of OLs from OPCs beyond promoting cell survival. Similarly,
few studies have addressed whether IGF-1 promotes the transcriptional or structural
enhancement of myelinogenesis, either in development or during adulthood. While sev-
eral studies demonstrate that IGF-1 upregulation increases myelin content in vitro and
in vivo [124,125], this effect may be explained by greater numbers of surviving and dif-
ferentiated OLs. One study has suggested that IGF-1 enhances transcription of myelin
proteins from OLs [126]; however, this study utilized Northern blots in mouse mixed glial
cultures. Studies with pure OL cultures and more quantitative methods of measuring
transcription would strengthen our understanding of the effects of IGF-1 on OL maturation
and myelinogenesis.

Ultimately, IGF-1 amplifies the number of mature, myelin-producing OLs in cul-
ture [100]. IGF-1 acts on multiple stages of OL development, from stem cell OL com-
mitment to survival of mature OLs. This work in cell culture aligns well with in vivo
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studies in which IGF-1 signaling is either constitutively enhanced or reduced, leading to
enhanced or reduced myelination, respectively. Specifically, mice deficient in GH or IGF-1
display widespread reductions in CNS myelination throughout development [127–129].
Conversely, mice overexpressing IGF-1 have larger brains with greater myelin content [130].
This is true as well when IGF-1 overexpression is restricted to astrocytes and OLs [131,132].
Loss of IGF1R specifically in either immature (Olig1+) or mature (PLP+) OLs results in
developmental reductions in brain weight, OPC density, OL density, and myelination [111].

Each of these experiments utilized transgenic animals with constitutive transgene
expression. Interestingly, while transgenic overexpression of IGF-1 produces a consistent el-
evation in brain weight and myelination throughout development, these measures stabilize
by adulthood, suggesting that there may be a developmental window and/or diminishing
effects for IGF-1 on OLs and myelinogenesis [125,132]. While studies in adulthood are
limited, one study assessed OL turnover in a rat model of adult-onset loss of GH and
IGF-1 production [133]. Following loss of GH/IGF-1 signaling, the total number of pro-
liferating (BrdU+) cells in the corpus callosum decreased, as well as the number, but not
the percentage, of BrdU/PDGFR-
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+ OPCs. Similar results were found for immature
(glutathione-S-transferase-pi, GST-pi+ and adenomatous polyposis coli, APC+) OLs, sug-
gesting a role for IGF-1 on OPC and OL survival in the adult brain [133]. Additional studies
utilizing transgenic lines with temporally controlled genetic manipulation of IGF-1 sig-
naling would greatly enhance our understanding of IGF-1’s role in oligodendrogenesis,
specifically in adulthood. In addition, more detailed analyses of the mechanisms of IGF-1’s
effects on OPC differentiation, OL maturation, and myelination would aid in determin-
ing whether IGF-1’s actions extend beyond survival and might enhance remyelination in
disease contexts.

2.3. Insulin

Insulin is a 51 amino acid metabolic hormone that regulates glucose homeostasis by
enhancing glycogen synthesis as well as the metabolism of other molecules such as lipids
and certain amino acids [134]. In addition, insulin can promote cell division and growth,
while also affecting behaviors such as food intake [135,136]. Insulin can be delivered to the
CNS via circulation and transport across the BBB [137]. However, insulin transcription has
also been detected in neural and glial cultures, suggesting that insulin can act in both an
endocrine and paracrine fashion on CNS cells [138,139]. Insulin binds to the insulin receptor
(IR), a cell surface receptor with tyrosine kinase activity that, in the CNS, is expressed in
the olfactory bulbs, the arcuate nucleus of the hypothalamus, and the hippocampus [140].
The IR is also expressed in all types of CNS cells, including OLs [141,142]. In addition,
insulin can bind to IGF1R, albeit with a lower affinity than IGF-1 [104].

Effects on Oligodendrogenesis

Given the evolutionary relatedness of insulin and IGF-1 and the known crosstalk be-
tween their receptors, it is not surprising that insulin exhibits effects on oligodendrogenesis
that are similar to those of IGF-1. Indeed, insulin promotes adult rat NSC differentiation to-
wards the OL lineage and promotes p6–8 rat OPC and OL survival in culture [107,108,143].
Furthermore, similar to IGF-1, insulin increases the percentage of differentiated OLs from
cultured p6–8 rat OPCs, suggesting enhanced OPC differentiation and/or OL survival [143].
Notably, at the high concentrations (e.g., 5000 ng/mL) used in some of these experiments, in-
sulin can bind IGF1R and act via the mechanisms detailed above. However, dose–response
experiments suggest that insulin can also act independently of IGF1R at physiological
concentrations [108]. In addition, insulin may have the ability to increase MBP levels
in vitro. Specifically, neonatal rat OPCs prepared from mixed glial cultures show an insulin
dose-dependent increase in MBP protein [144]. However, in this study, insulin had no
direct effect on MBP mRNA levels, and similarly to IGF-1, the observed increase in MBP
protein may be due to enhanced differentiation and/or survival of OLs [144]. The specific
actions of IR on oligodendrogenesis remain poorly understood, and future studies should
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determine whether and how insulin modulates OL differentiation, survival, and matura-
tion independent of IGF1R. For example, the effects of insulin could be tested in the absence
of IGF1R signaling, either via genetic ablation or selective receptor antagonism of IGF1R.
In addition, all of the work noted here was performed in vitro. Given the high insulin
levels that accompany disorders such as adult-onset type 2 diabetes, future work should
also seek to determine whether insulin, either through IR or IGF1R, or insulin resistance
modulates adult oligodendrogenesis using in vivo models.

2.4. Prolactin

Prolactin is a 199 amino acid peptide that is best known for promoting lactation but
also regulates diverse functions including sexual and parental behavior, immunomodula-
tion, and osmoregulation [145]. Circulating prolactin is produced by the anterior pituitary
and can cross the BBB; however, prolactin can also be produced locally by tissues such
as the mammary glands, placenta, and brain (including regions such as the cortex, amyg-
dala, thalamus, and hippocampus) [145–149]. Prolactin release by the anterior pituitary is
environmentally modulated by a number of stimuli, including stress, daylength, and in-
fant suckling, and is neurally modulated by a number of signaling molecules that exhibit
stimulatory (e.g., thyrotropin releasing hormone, oxytocin) or inhibitory (e.g., dopamine,
somatostatin) regulation of prolactin release [145,150,151].

The prolactin receptor (PRLR) is a transmembrane receptor of the type 1 cytokine
superfamily [145]. PRLR activation induces a kinase cascade primarily involving the Janus
kinase/signal transducer and activator of transcription signaling pathway, which con-
tributes to cellular growth and proliferation [152]. PRLR can also act via PI3K and MAPK
signaling pathways [145]. PRLR is expressed in several regions of the brain [153,154];
however, only one study to date has examined expression of PRLR in the OL lineage.
Specifically, a subset of PDGFRα+ OPCs in the corpus callosum and spinal cord express
PRLR [155]. This offers a potential mechanism by which prolactin may alter oligodendro-
genesis in the CNS.

Effects on Oligodendrogenesis

Although the entirety of prolactin’s actions on the OL lineage are not known, pro-
lactin may act on OPCs to enhance oligodendrogenesis. In NSC cultures derived from
both the adult mouse subventricular zone and human embryos, prolactin stimulates NSC
proliferation [156–158]. Furthermore, in OPC neurospheres (i.e., clusters of OPCs in culture)
derived from the corpus callosum of adult female mice, prolactin treatment increases the
number and size of OPC neurospheres and increases the proportion of OLs in culture,
suggesting that prolactin enhances OPC proliferation and differentiation [155]. Interest-
ingly, OPC proliferation, OL generation, MBP expression, and numbers of myelinated
axons in the corpus callosum and spinal cord are all increased during pregnancy in mice,
and heterozygous loss of PRLR function attenuates the pregnancy-associated increase in
OPC proliferation [155]. Furthermore, administration of exogenous prolactin to virgin mice
increases OPC proliferation [155]. Although this suggests that prolactin can act either di-
rectly or indirectly on OPCs to promote proliferation, these findings are in contrast to work
performed in OPC-enriched neurosphere cultures derived from the adult rat hippocampus
(with 75% A2B5+ cells), in which seven days of prolactin treatment had no effect on cell
numbers and no effect on differentiation into MBP+ OLs [159]. Whether prolactin acts on
OPCs to enhance proliferation merits further investigation. Interestingly, prolactin may
exhibit some protective effects in demyelinating conditions [25,155]; however, beyond the
few studies cited here, little else has been done to investigate whether and how prolactin
acts on the various stages of the OL lineage outside of disease contexts. Our understanding
of the effects of prolactin on oligodendrogenesis would benefit from work with highly
pure OL cultures, targeted disruption of prolactin signaling in the OL lineage, and a closer
investigation of the intracellular mechanisms that mediate prolactin’s direct and indirect
effects on OPCs and OLs.
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2.5. Melatonin

Melatonin is an indolamine neurohormone derived from the amino acid tryptophan by
way of serotonin. It is produced primarily by the pineal gland, although small amounts of
melatonin may also be produced by other regions of the brain [160]. In addition, retinal and
gut tissue can produce melatonin for local action [161]. Melatonin production is indirectly
controlled by the suprachiasmatic nucleus, and retinal exposure to bright light indirectly
inhibits melatonin production [162,163].

Melatonin is released into circulation and readily crosses the BBB. Melatonin binds
two G-protein coupled receptors, melatonin receptor 1 (MT1) and 2 (MT2). MT1 is coupled
to Gi proteins that inhibit adenylyl cyclase cAMP production and, hence, protein kinase
A (PKA) activity [164]. Additionally, MT1 is coupled to Gq/11 proteins that stimulate
phospholipase C (PLC) activity and MEK/ERK signaling. Melatonin binding to MT1 also
activates Kir3 inward-rectifying potassium channels. MT2 activates similar cascades to
MT1, but also inhibits guanylyl cyclase [164]. Through these receptors, melatonin entrains
central and peripheral tissues to the circadian rhythm, thereby regulating sleep–wake cycles,
circadian hormone release, metabolism, and other daily or seasonal rhythms. In addition,
melatonin exerts anti-inflammatory actions by normalizing pro-inflammatory cytokine
levels, inhibiting inflammatory signaling cascades, and scavenging free radicals [165,166].
One study has shown that neonatal rat OLs express, to some extent, both MT1 and MT2,
suggesting that melatonin may regulate oligodendrogenesis [167].

Effects on Oligodendrogenesis

Interest in melatonin’s effects on oligodendrogenesis began with studies demonstrat-
ing that melatonin is neuroprotective against white matter damage [168,169]. However,
the mechanistic effects of melatonin on oligodendrogenesis are largely unknown. In embry-
onic mouse-derived NSC cell culture, application of melatonin over five days increases the
percentage of MBP+ cells as compared to vehicle or PDGF application [170]. This suggests
that melatonin may enhance NSC-derived OL differentiation or survival. Similar increases
in OL numbers were found with melatonin application to NSC neurospheres cultured from
the adult mouse subventricular zone, suggesting that melatonin acts across development
to enhance OL differentiation from NSCs [171].

Melatonin may also influence OL maturation. In studies of OL lineage cultures de-
rived from neonatal rats, melatonin did not alter the number of immature (O4+) OLs but
significantly increased the number of mature, myelinating (MBP+) OLs [167]. Moreover,
similar effects were found in vivo. Specifically, neonatal rat pups subjected to uterine
artery ligation to induce white matter damage were treated for three days with mela-
tonin. While total (Olig2+) OL cell loss was not affected, mature (APC+) OL numbers
were partially rescued in the cingulate and corpus callosum; this effect was thought to
be through maturation because melatonin treatment did not affect OL cell death [167].
Together, these results suggest that melatonin does not alter OL differentiation but increases
OL maturation. However, these results may be muddled by the fact that, in the in vitro
experiments, the cultured cells included astrocytes and microglia, which also express
the melatonin receptors [167,172]. Specifically, the authors demonstrated that melatonin
attenuates microglial activation [167]. Hence, it is unclear whether melatonin acts directly
on OLs themselves or whether it acts on surrounding microglia to promote OL matura-
tion indirectly. Experiments with highly pure cultures of OLs or OPCs could address
this question.

Interestingly, one study more directly assessed the protective effects of melatonin on
OL survival. Hypoxic conditions induce expression of caspase-3 in OLN-93 cells derived
from p1 rats [173]. Applying melatonin to the culture medium attenuated hypoxia-induced
caspase-3 expression, suggesting that melatonin acts on OLs to inhibit apoptotic cascades.

Overall, melatonin may regulate oligodendrogenesis by promoting NSC commitment
to the OL lineage, OL maturation, and OL survival. However, the number of studies
supporting these claims are small, and several questions remain regarding both the physio-
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logical and mechanistic effects of melatonin on oligodendrogenesis. For instance, the effects
of melatonin on OPC proliferation have not been tested. Given MT1 and MT2’s known
interactions with MEK/ERK proteins, future studies could, for example, test the mitogenic
role of melatonin on OPCs and/or the role of MEK signaling in melatonin’s regulation
of oligodendrogenesis. Furthermore, the effects of melatonin on OL survival have only
been tested under hypoxic condition; whether and how melatonin promotes OL survival
under baseline conditions is not known. In addition, given the expression of melatonin
receptors on microglia and astrocytes, it remains unclear whether results from existing
in vitro experiments are due to direct actions of melatonin on OLs or indirect actions on
contaminating glial cells. Additional studies with melatonin receptor signaling disrupted
specifically in the OL lineage would be interesting and beneficial.

3. Steroid Hormones

Steroid hormones are hydrophobic molecules synthesized from cholesterol that consist
of three cyclohexanes and one cyclopentane with alternating enol and ketone groups [174].
This class of hormones encompasses a wide range of molecules with differing functions,
including the regulation of reproduction, stress, and metabolism. As lipophilic molecules,
steroids bind to carrier proteins in the bloodstream, such as corticosteroid-binding globulin
for the glucocorticoids [175], but readily cross the plasma membrane. Once inside the cell,
steroids bind to intracellular receptors, which may be sequestered in either the cytoplasm
or nucleus. Steroid hormone binding at the ligand-binding domain of the receptor induces
translocation of cytoplasmic receptors to the nucleus. Broadly, ligand-bound intracellular
receptors act as transcription factors. Specifically, the DNA-binding domain of the receptor
recognizes distinct sequences in the promoter regions of genes, for example the glucocor-
ticoid response element or estrogen response element. Binding of the steroid–receptor
complex to these elements ultimately alters gene expression. In contrast to this genomic
route of action, steroids can also bind specific membrane-bound receptors. These receptors
act through fast-acting second messenger systems and allow for rapid induction of kinase
cascades with various cellular functions.

For this review, we will focus on a subset of steroid hormones synthesized primarily in
the adrenal cortex and gonads, namely the stress and sex hormones. Stress hormones such
as glucocorticoids, and sex hormones such as estradiol, progesterone, and testosterone,
impact neurogenesis and gliogenesis in the CNS, as well as OL survival and remyelination
in multiple sclerosis and other myelin-related diseases [25,31,176,177]. As we will discuss
below, steroid hormones influence OL development and myelination in both development
and adulthood. In particular, cells across the OL lineage express the classical nuclear
receptors of each steroid hormone, as well as additional membrane receptors. Through both
genomic and non-genomic mechanisms, then, steroids act to increase OPC differentiation
and enhance maturation/myelination of OLs.

3.1. Glucocorticoids

Glucocorticoids (GCs) are one of the primary stress hormones for almost all animals.
This family includes endogenous cortisol (the primary GC for humans) and corticosterone
(Cort; the primary GC for rodents), as well as synthetic hormones such as dexamethasone
(Dex). GCs are released in a circadian manner, in response to physiological cues, and under
stressful conditions [178]. They are the end product of the hypothalamic–pituitary–adrenal
axis, which starts in the hypothalamus and ends with the release of GCs from the adrenal
cortex into the bloodstream [179,180].

GCs can bind to two receptors: mineralocorticoid receptors and glucocorticoid recep-
tors (GRs), both of which are intracellular receptors typically located in the cytoplasm [181].
The activation of these receptors produces effects across the body, leading to the mobiliza-
tion of energy substrates and the suppression of inflammation, among other functions [178].
GRs are also found in all cell types in the CNS [178]. In particular, GRs, and to a lesser
degree mineralocorticoid receptors, have been identified in both immature and mature
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OLs [142,182–184]. The identification of GRs on OLs provides a direct mechanism by
which stress hormones may alter OL development and myelination. Here, we describe GC
effects on developmental oligodendrogenesis separately from effects in adulthood because,
unlike the other hormones, there is a large amount of literature specifically on GC’s impact
in adult-derived cells and adult animals.

3.1.1. Effects on Developmental Oligodendrogenesis

GCs play an important and complex role in early OL cell development: while GCs can
increase OL differentiation and maturation, their effects may depend on both timing and
dosage. Several seminal studies found that postnatal adrenalectomy profoundly changes
myelination in the developing brain [185,186], providing an initial indication that GCs may
be involved in OL development and myelination. Some of the first evidence from in vitro
studies suggested that GCs promote differentiation and survival of cells along the OL
lineage. In mixed glial cell cultures generated from one-week-old rat pups, hydrocortisone
not only enhanced survival of all glial cells, it also increased the ratio of OLs relative to
other glial cell types [187]. In subsequent studies, an increase in the number of OPCs was
also observed following Cort or Dex application to OPC-enriched cultures (90% A2B5+),
and GCs protected against inflammatory cytokine-induced cell death [188]. However,
administering Dex in vivo to neonatal rats for five days reduced the number of OPC (O4+)
cells in the corpus callosum, and induced morphological changes associated with cell
death [189]. Thus, GC effects on survival may differ in vivo or when levels of GCs exceed
the physiological range.

GCs act to regulate the timing of OPC differentiation into OLs. In cultured OPCs
purified from p8 rat brains, when in the presence of mitogens, GCs induced slowing of
proliferation and increased OL differentiation from OPCs [44]. However, such stimulatory
effects of GCs on OL differentiation are not always observed. For example, in OLN-93,
an oligodendroglial cell line derived from p1 rats, Dex inhibited the expression of CNPase,
a marker of OL differentiation [190]. Differences in GC effects on differentiation may be
dependent on developmental stage. In a study with cells cultured from embryonic rats,
15 days of Dex treatment increased the OL markers CNPase and MBP, while 25 days of
Dex treatment inhibited these same markers [191]. It is unclear, however, whether this
reduction in OL markers was due to the prolonged exposure to Dex or whether this effect
was dependent on cellular developmental age. Furthermore, this study utilized aggregated
cell cultures containing both neurons and glia; thus, interactions between cell types cannot
be ruled out.

GCs may also affect OL maturation and myelogenesis in early development. Hydro-
cortisone treatment of primary cell cultures derived from newborn rat cortices increased
transcripts and protein for three myelin markers: glycerol phosphate dehydrogenase
(GPDH), a general marker of OLs, as well as MBP and PLP, proteins associated with mature
OLs and the myelin sheath [192,193]. These effects of hydrocortisone were only observed
when treating cells that had been in culture for at least nine days [193]. Future studies
should therefore test whether these effects are age-dependent by directly comparing OL
cultures derived from neonatal animals with cultures derived from animals later in devel-
opment.

Importantly, many of the studies described above used mixed glial cultures, and there-
fore, observed effects on oligodendrogenesis could occur indirectly via GC-induced alter-
ations in astrocytes or microglia. Indeed, one study treated purified OPC and OL cultures
derived from neonatal rats with Dex and found that Dex had no effect on oligodendrogene-
sis and altered few gene transcripts [194]. In contrast, Dex led to widespread transcriptional
changes in microglia and astrocyte cultures [194]. Thus, culture purity is an important
consideration for future in vitro studies, and it remains unclear how interactions with other
glial cells might affect oligodendrogenesis.
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3.1.2. Effects on Adult Oligodendrogenesis

GCs can also have an effect on OL differentiation, proliferation, and maturation in the
adult brain. In line with observations in the developing brain, GCs inhibit OPC proliferation
in adults. For example, in adult adrenalectomized rats, prolonged GC exposure (15 days
of 10 mg/kg) inhibits OPC proliferation, leading to fewer NG2+ cells in white and grey
matter across the forebrain, including in much of the hippocampus [195]. A second study
also found that one week of daily Cort injections (40 mg/kg) led to reduced proliferation of
BrdU+/NG2+ OPCs in the adult rat hippocampus in the molecular layer and hilus regions,
but not in the granule cell layer [196]. Furthermore, 15 days of chronic unpredictable stress
decreased the number of BrdU+ OPCs across the cerebral cortex of the adult rat [197];
this effect only appeared three weeks following stress exposure, and while overall numbers
were reduced, the percentage of BrdU+/NG2+ cells was not changed [197]. It is worth
noting that results from these studies are unable to determine whether stress and GCs
have an effect on OPC survival or whether reduced numbers are due to increased OPC
differentiation into mature OLs.

While these studies identified fewer OPCs in the hippocampus following GC admin-
istration, others have found that stress exposure increases OL markers such as GPDH in
the adult hippocampus [198,199]. GPDH is an enzyme that is unique to OLs in the rodent
brain and is known to be upregulated by GCs [200,201]. A study by our own lab found that
seven days of either immobilization stress or Cort injections increased oligodendrogenesis
in the dentate gyrus of the adult rat hippocampus [21]. Specifically, stress and Cort de-
creased neurogenesis and increased oligodendrogenesis, indicated by a greater percentage
of BrdU+ cells co-labeled with MBP. In addition, in a tamoxifen-inducible Nestin–CreER
transgenic mouse line with NSCs fluorescently identifiable by yellow fluorescent protein
(YFP), we found that Cort induces oligodendrogenesis in the hippocampus, with a greater
percentage of YFP+ cells co-labeled with GST-pi, a marker of immature to mature OLs.
Furthermore, exposure of cultured NSCs to Cort increased the pro-OL transcription factors
Olig1 and Olig2 and the percentage of MBP+ cells. These effects were found to be depen-
dent on GR signaling; blocking GRs with a dominant negative viral vector led to lower
numbers of OLs and reduced pro-OL factors compared to controls [21].

Taken together, a complex picture emerges for GC effects, including decreases in OPC
proliferation and increases in OLs. These reported studies utilized different stress timelines
and analyzed different markers along the OL lineage. It is plausible that stress exposure,
and/or stress hormones such as Cort, may reduce the number of dividing OPCs and
instead push OPCs to differentiate into immature or mature OLs. Future studies should
examine OPCs and OLs within the same study to test this hypothesis.

GCs also have an impact on adult OL maturation and myelin morphology. In a study
by Miyata et al. (2011), daily water immersion and restraint stress for three weeks increased
plasma Cort levels and induced morphological changes in OLs in the corpus callosum,
resulting in greater OL arborization compared to control animals. This was replicated
in vitro via administration of Dex for two days in OL cell cultures. These stress-induced
morphological changes are dependent on serum glucocorticoid-regulated kinase 1 (SGK1)
and endogenous N-myc downstream-regulated gene 1 (NDRG1) signaling. Stress exposure
leads to increased SGK1 phosphorylation, and subsequent increases in NDRG1 phospho-
rylation; together, SGK1 and NDRG1 upregulate the expression of adhesion molecules
in OLs, specifically N-cadherin, and alpha- and beta-catenin, molecules involved in the
stabilization of adherent junctions. While many other adhesion molecules expressed in OLs
have been shown to aid in OL–axon signaling, promoting myelination [202], the functional
role for these particular adhesion molecules in OLs remains unknown. In OL cultures
derived from neonatal rats, overexpression of SGK1 and NDRG1 was sufficient to replicate
the effects of Dex and stress, confirming a role for this pathway in stress-induced alter-
ations of OL morphology [203]. A subsequent study found that exposure to acute stress
also led to increased SGK1 expression in mature, MBP+ OLs. This effect was absent in
adrenalectomized mice and restored with Cort injections, indicating that Cort is necessary
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for this effect [204]. Cort-induced changes in SGK1 expression were observed in white
matter OLs, but not in grey matter OLs [204]. Future work could aim to determine why
only grey matter OLs were affected.

3.2. Sex Hormones

Sex hormones, including estrogens, progestogens, and androgens, all modulate oligo-
dendrogenesis and myelogenesis [31,205]. Interestingly, males and females display regional
differences in white matter density [206,207]. Sex hormones might account for some of
these sex-specific patterns of myelination.

3.2.1. Estrogens

Estrogens, the major family of female sex hormones, are produced primarily by the
ovaries. Estrogens have many physiological functions for both male and female animals,
including the promotion of sexual maturation. Estrogen receptors (ERs) are found in
many different cell types, including in OLs [208–211]. There are three major classes of
endogenous estrogens: estrone, estradiol, and estriol. Of these, 17-β estradiol (E2) is
considered to be the most potent and the most prevalent [212]. Interestingly, however,
an optical isomer of E2, 17-α estradiol, is found at higher levels in the brain and can be
produced in both sexes following gonadectomy [213]. While produced at higher levels in
females, males also produce estradiol [214–216]. Specifically, tissues that contain aromatase,
including in extragonadal sites, convert testosterone to E2 [217–219].

Estrogens primarily act at two intracellular receptors, ERα and ERβ, both members of
the nuclear receptor family. While both isomers of estradiol are able to bind to these ERs,
ERα and ERβ differ in their localization in both the body and within the CNS [220,221].
In addition to intracellular ERs, estrogens can activate membrane-bound receptors such
as the G-protein coupled receptor, GPR30, which produce more rapid physiological re-
sponses [222–224]. Binding of GPR30 is estrogen selective; other hormones, including
progesterone, cortisol, and testosterone, are not able to bind to GPR30 [225,226]. Collec-
tively, activation of these receptors leads to the many downstream effects of estrogens.

Importantly, NSCs, OPCs, and mature OLs express all three forms of estrogen recep-
tors: ERα, ERβ, and GPR30 [208–211,227–230]. Interestingly, in addition to being found
in the nuclei, ERα and ERβ can also be localized in the membrane and cytosol of OLs,
and the relative expression and localization of these receptors may change along the OL
lineage [208,211,228]. For example, NSCs display higher expression of ERβ relative to
ERα [230,231]. Localization of ERs may also differ based on OL maturity. For example,
one group identified ERα localized primarily in the nucleus and ERβ primarily in the
cytoplasm of OLs [211]. In contrast, others showed ERα expression in the cell membrane
and perikaryon in addition to the nucleus, while ERβ was located mainly in the nucleus
and only to a lesser extent along the membrane [209]. These discrepancies may arise from
differences in the age or maturity of the cultured cells. For example, while OL cultures
express both ERα and ERβ in the cytosol and nucleus, nuclear compartmentalization of
both ERs increases as cells mature [228]. Interestingly, the relative density of ERs in OLs
also differs based on sex. Levels of ERα in mature OLs are eight-fold higher in females than
males [228], indicating that estrogens may differentially affect males and females in part
due to differences in ER expression. Regardless of localization or relative expression, acti-
vation of these receptors leads to changes in differentiation, proliferation, and maturation
across OL development.

Effects on Oligodendrogenesis

Broadly, estrogens, and in particular, estradiol, regulate proliferation and differenti-
ation across the OL lineage, beginning with NSCs. Specifically, E2 promotes embryonic
rat NSC proliferation and differentiation in vitro. Notably, E2-induced proliferation is
dependent on the activation of nuclear ERs, while E2-induced differentiation is dependent
on membrane-associated ERs [232]. Estradiol’s effects on NSCs may also depend on cell
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culture conditions and interactions with other factors. For example, E2 prompts stem cells
to differentiate into OL progenitors only when there are low levels of mitogens or other
differentiation factors [230]. Under conditions where mitogens are present, and when there
is physiologically appropriate dosing of E2, NSC differentiation is instead biased towards
neuronal, rather than glial, cell fates [227]. Age is also a factor, as E2 only increases the
ratio of neurons to glia in embryonic NSCs, not in adult NSCs [231].

While the above studies did not explicitly test the relative contributions of ERα and
ERβ in E2-mediated effects, others have focused on the specific roles of particular ER
receptors. ERβ ligands inhibit proliferation of mouse embryonic stem cells, and ERβ knock-
out mice display enhanced oligodendrogenesis [233], suggesting that activation of ERβ
in particular may promote stem cell differentiation into neurons and prevent precocious
oligodendrogenesis. Little is known about the specific effects of ERα binding on NSC
development. Indeed, activation of these different receptors may lead to diverging effects
on oligodendrogenesis and requires future investigation.

Like their neural stem cell counterparts, OPCs are also affected by estradiol. In vitro,
E2 delays the exit of OPCs from the cell cycle in a dose-dependent manner in response
to mitogen withdrawal [229]. This allows OPCs to undergo additional rounds of cell
division, and ultimately, can be interpreted as an estradiol-induced increase in OPC prolif-
eration. In the presence of mitogens, however, E2 does not affect OPC proliferation [228].
In addition to effects on proliferation, E2 can also enhance rodent OPC differentiation
and maturation, leading to thicker branching in the subsequent OLs [229]. In one study,
tamoxifen, an ERα selective agonist, mimicked the E2 effect on proliferation, but not its
effect on branching [229]. This indicates that estradiol-induced changes in OPC prolifer-
ation might be mediated by Erα, while changes in cell morphology and maturation are
instead mediated by ERβ. Interestingly, though, in a separate study, tamoxifen promoted
OPC differentiation into OLs, stimulating progenitors to become mature OLs, suggest-
ing that ERα may indeed play a role in OPC differentiation. This effect was abolished
in the presence of a pan-ER antagonist [234]. Similarly, diosgenin, a steroid precursor,
promoted OPC differentiation into mature OLs through an ER-dependent mechanism;
differentiation was blocked by a pan-ER antagonist, but not by either GC or progesterone
receptor antagonists [235]. Estradiol-induced increases in OPC differentiation may also
occur through more rapid activation of a PI3K/AKT/mammalian target of rapamycin
signaling pathway [236]. This pathway has been shown to be required for OPC differ-
entiation into immature OLs [237,238]. Overall, through both genomic and nongenomic
mechanisms, estrogens appear to stimulate OPC differentiation.

Similar to findings in OPCs, estrogens can also stimulate differentiation and matura-
tion of immature and mature OLs, respectively [211,239,240]. In vitro, incubation of OLs
with E2 increases cell branching and increases the number of cells with a snowflake shape,
a stage in OL development that typically precedes formation of myelin sheaths [211]. In ma-
ture and myelinating OLs, estradiol also mediates remodeling of the cytoskeleton, acting via
membrane-bound ERs. Notably, E2 and 17-α estradiol have opposing effects; while E2
induces a loss in microtubules and inactivates actin filaments, 17-α estradiol increases the
percentage of cells with actin filaments, indicating stabilization of the cytoskeleton [240].
This remodeling in mature OLs is important for functions such as OL extension and axon
wrapping, which is relevant not only in a developmental context, but also across the lifes-
pan. Future work should aim to explore these different pathways and how activation of
different membrane ERs and nuclear ERs lead to changes in OL maturation.

3.2.2. Progestogens

The steroid hormone progesterone is part of a larger family of progestogens and
is an important intermediate for other neurosteroids, including androgens and corticos-
teroids [241–243]. Although progesterone is commonly known for its role in the main-
tenance of pregnancy, it also has a wide range of functions in the body and throughout
the CNS, including effects on sleep regulation and immune function [243]. For females,



Biomolecules 2021, 11, 283 16 of 35

the corpus luteum in the ovaries is the major site of progesterone production. However,
progesterone is also produced in the adrenal glands, in the placenta during pregnancy,
and importantly, in the CNS of both females and males after birth and into adulthood [244].
Like all steroid hormones, progesterone is synthesized from cholesterol, which is then
converted to the progesterone precursor, pregnenolone. The enzyme 3-β hydroxysteroid
dehydrogenase (HSD) converts pregnenolone into its primary form, progesterone. Pro-
gesterone can also be metabolized by 5-α reductase to dihydroprogesterone, which is
then metabolized further by 3-α HSD to allopregnanolone [245]. These metabolites have
additional functions throughout the CNS, as will be described below.

As with other steroid hormones, progesterone acts on two primary receptor classes:
classical nuclear receptors and membrane-associated receptors. There are two forms of
nuclear progesterone receptors (PRs): PRα and PRβ. Anatomically, these receptors are
localized throughout the brain and spinal cord [246]. Functionally, PRβ is a more potent
transcriptional activator, while PRα is primarily a transcriptional repressor [247,248]. Pro-
gesterone can also act on two forms of membrane-associated receptors to drive rapid, non-
genomic effects: a seven transmembrane domain membrane progesterone receptor (mPR)
and membrane-associated progesterone receptor membrane component 1 (PGRMC1),
which was previously referred to as 25-Dx [246]. Together, progesterone acts at these
receptors to produce downstream actions in both the periphery and in the CNS.

Nuclear PRs have been identified in glial cells, and in particular, in OLs in both the
brain and spinal cord [239,249,250]. Interestingly, PR expression increases with the addition
of estradiol to primary glial cell cultures, suggesting that PR expression can be regulated
by other sex hormones [239,249]. Membrane-bound PRs have also been identified in the
spinal cord [251]. In the brain, however, mPRs are typically only found in neurons and
are only expressed in OLs following injury, suggesting a selective role for mPRs in injury
recovery [252]. Few have described how PR expression changes across the OL lineage.
This will be an interesting area for further research and will provide insight into the
mechanisms involved in progesterone’s effects on OLs.

Interestingly, OLs not only express PRs, but they also directly synthesize progesterone
and its precursor, pregnenolone. Synthesis of pregnenolone was first observed in glial
cultures containing 60% OLs and occurred at the same time as OL differentiation [253].
Enzymes for progesterone synthesis have since been detected in OL cultures, and changes in
expression of these enzymes coincide with the differentiation of bipotential O-2A cells [254].
Later work confirmed that OPCs, and to a lesser extent mature OLs, express mRNA of 3-β
HSD, the key steroidogenic enzyme that converts pregnenolone to progesterone [255,256].
OLs and their precursors also contain enzymes for progesterone metabolism [256–258].
In contrast to 3-β HSD, the metabolic enzyme 5-α reductase is expressed five-fold higher
in mature OLs relative to progenitors [256]. The enzyme 3-α HSD, which converts 5-α
dihydroprogesterone to allopregnanolone, has also been observed in early progenitor cells,
indicating a dissociation in the timing and pathways of progesterone metabolism in the OL
lineage. The expression of PRs and the synthesis of progesterone and its metabolites across
the OL lineage suggest that OLs may respond to progestogens in both an endocrine and
autocrine fashion to regulate oligodendrogenesis.

Effects on Oligodendrogenesis

In general, progesterone and its metabolites stimulate OL proliferation, differentiation,
and maturation across all stages of development [259]. At the NSC and OPP stage (PSA-
NCAM+), progesterone stimulates cell proliferation. This effect is primarily mediated by
conversion of progesterone to its metabolite, allopregnanolone, as blocking this enzymatic
conversion inhibits progesterone’s effects [257]. Allopregnanolone has also been shown
to directly induce proliferation in both human and rat NSC cultures isolated from early
in development [257,260,261]. These mitogenic effects are mediated by allopregnanolone
acting as a positive allosteric modulator of GABA-A receptors; this in turn activates
voltage-gated L-type calcium channels and drives cAMP response element-binding protein
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signaling [257,260,261]. While allopregnanolone largely stimulates progenitor proliferation,
its effects follow a bell-shaped curve, with high levels inhibiting proliferation [257,261].
Thus, use of progesterone and its metabolites as a neurogenic agent should take into
account hormone concentrations.

In OPCs derived from rodents, progesterone enhances proliferation and differentiation
in vitro, increasing their overall number and prompting OPCs to branch and mature into
OLs [229,256,257,259,262–264]. Unlike findings in OPPs, progesterone’s effects on OPC
proliferation were not mimicked by the metabolite allopregnanolone, even at high concen-
trations [264]. Mechanistically, progesterone’s effects on OPC proliferation and differenti-
ation are mediated through PR signaling, as PR antagonists block these effects [264,265].
One study took these findings further and identified that, while mouse embryonic OPCs
express both PRα and PRβ, signaling through the PRβ receptor mediates progesterone’s
stimulatory effects on OPC proliferation and differentiation [265]. Activation of PRβ leads
to the upregulation of oligodendroglial genes ranging across the OL lineage, such as
NG2, MBP, and CNPase. Indeed, an mPR-specific agonist did not alter OPC proliferation
or differentiation, confirming that progesterone’s effects on oligodendrogenesis during
development occur via a genomic mechanism [265].

Progesterone stimulates the differentiation of OPCs; therefore, it is no surprise that
adding progesterone to cultures derived from rodents increases the number of imma-
ture and mature OLs [236,249,253]. At the immature OL stage, progesterone promotes
MBP expression, presumably indicating increased differentiation into mature, myelinating
OLs [265], but does not increase pre-OL proliferation, as progesterone does not alter the
incorporation of BrdU into A007 or O4+ OLs [229,236]. Interestingly, the same dose of
progesterone increases immature OL numbers to a greater extent in OLs cultured from 2–3-
day-old female mice compared to males, suggesting the magnitude of progesterone’s effects
depends on sex [236]. In addition to increasing numbers of immature OLs, progesterone
also increases the number of mature, myelinating OLs (MBP+/CNPase+ immunoreactive
cells), MBP and CNPase mRNA, and myelin protein expression [67,190,239,254,266–268].
Increases in MBP protein may be due to increased numbers of mature OLs, although there
is some evidence to suggest that progesterone not only increases MBP+ cell numbers, but
also MBP fluorescence intensity within a single mature OL in vitro [267]. The PR again is
implicated mechanistically, especially for progesterone-induced increases in MBP [263,267].
In one study using cell cultures derived from newborn rats, selective antagonism of the PR
did not alter progesterone-induced increases in the number of MBP+ cells; however, it did
reduce overall MBP fluorescence intensity [267]. Furthermore, while progesterone agonists
increased MBP expression, cell cultures from PR knock-out mice treated with progesterone
no longer showed increases in MBP levels [263]. Future studies could aim to untangle
whether progesterone-induced increases in MBP and CNPase represent higher numbers of
myelinating OLs or greater myelination by existing OLs.

3.2.3. Androgens

Androgens are a class of steroid hormones derived from cholesterol by way of the
progestogens. The androgen dehydroepiandrosterone (DHEA) is the primary andro-
gen/estrogen precursor and is the least potent androgen [269]. DHEA can be converted
to androstenedione (A4) or androstenediol (A5), both of which have weak to moderate
androgen activity. Both A4 and A5 can be converted to testosterone, the primary circulating
androgen in males [269]. Testosterone can be further metabolized by 5-α-reductase to the
most potent androgen, dihydrotestosterone (DHT), locally in tissues such as the genitalia,
skin, prostate gland, liver, and brain [269]. Interestingly, isolated myelin sheaths also
display robust 5-α-reductase activity [270,271]. Notably, androgens are the precursors to
estrogens. Via the enzyme aromatase, A4 is converted to estrone, while testosterone is
converted to estradiol. An important consideration in the study of androgens, therefore,
is whether observed effects of androgen administration are due to direct action of andro-
gens or indirect action via conversion to estrogens. Many studies attempt to address this
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by administering DHT, which cannot be aromatized. Notably, however, DHT metabolites
have been shown to bind ERβ, which is an important caveat for all experiments utilizing
DHT [272,273].

Although circulating levels of androgens are higher in males, both males and females
produce androgens [274]. The zona reticularis of the adrenal cortex primarily produces
the weak androgens DHEA, A4, and A5, while the gonads are the primary source of
testosterone. In males, androgen production begins early in development with a fetal
surge of testosterone which (primarily via conversion to DHT or estradiol) masculinizes
the genitalia, brain, and other organs of the developing male [275]. Androgen levels then
remain relatively low until puberty [274]. In females, androgen levels remain low until
puberty, and the absence of androgens is a primary factor determining feminization of the
genitalia, brain, etc. [275,276].

Androgens primarily act on the androgen receptor (AR), an intracellular receptor
sequestered in the cytoplasm [277]. In addition, evidence suggests that androgens can act
via membrane-bound receptors to activate rapid second-messenger systems, including the
PI3K/AKT and MAPK/ERK pathways [278,279]. The AR is expressed throughout the
brain; however, very few studies have addressed whether androgens act directly on OLs via
the AR or indirectly via actions on surrounding cell types. In rodents, one study examined
the brains of rats ranging from embryonic day 20 to p86 and found no AR immunoreactivity
in mature galactosylceramidase (GalC+) OLs at any age [280]. In contrast, one study of the
prefrontal cortex of adult male and female rhesus macaque brains revealed that, while the
majority of AR-expressing cells were astrocytes, roughly 5% of CNPase+ OLs colocalized
with AR [281]. This species difference is reflected in transcriptomic analyses which suggest
that AR expression is essentially undetectable in mouse OLs of any stage, while human
OLs express AR to a low degree [142]. In addition, no studies have examined whether OLs
express fast-acting, membrane-bound ARs.

Effects on Oligodendrogenesis

Despite the low-to-absent expression of AR in OLs, several studies have indicated
that the manipulation of androgens has profound effects on OLs and myelin. Broadly,
male rodents have greater OL cell density in white matter regions such as the corpus
callosum, fornix, and spinal cord [206,282], although females have greater overall glial
proliferation and cell death [206]. These sex differences in rodents arise as early as p5 and
continue into adulthood [282]. Specific manipulation of androgens reveals that these sex
differences occur, at least in part, due to the AR and not simply via conversion to estrogens.
For example, AR inhibition in male mice or DHT administration to female mice from p0 to
p10 reverses the sex differences in corpus callosum OL density, and constitutive genetic
deletion of AR in the CNS of males feminizes OL density and MBP expression throughout
development and adulthood [282]. In humans, estimates of white matter volume correlate
strongly with bioavailable testosterone in male adolescents [283]. Moreover, this relation-
ship is stronger in males with a polymorphism in the AR gene which is associated with
greater androgen-dependent gene expression. Together, these studies suggest a direct role
for the AR in promoting OL and myelin density in white matter tracts of male rodents
and humans.

The mechanism by which androgens and ARs alter oligodendrogenesis to bring
about these sex differences remains somewhat unclear. Rat and human NSCs express
the AR, and human embryonic NSCs transcriptionally respond to DHT in vitro [284–286].
Although some conflicting evidence exists, androgens may increase the proliferation of
cultured NSCs [284–286]. Early work also suggested that sex hormones alter glial prolifera-
tion and/or survival. Specifically, gonadectomy in adult male mice both decreases corpus
callosum OL cell density and increases the number of BrdU+ cells, suggesting a role for
sex hormones in glial proliferation and/or cell death [206]. However, the application of
testosterone to neonatal rat-derived OPCs in culture does not alter BrdU incorporation,
arguing against a direct role for androgens in OL proliferation [229].
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Interestingly, androgens may promote OL cell death. Treating neonatal rat OLs
in culture with testosterone induces a small amount of OL cell death and potentiates
excitotoxicity induced by exposure to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) and kainate [287]. This potentiation of excitotoxicity can be blocked by an
AR antagonist, but not by aromatase inhibitors, suggesting that this effect is dependent on
androgens and AR. The exact mechanism is unclear; while testosterone potentiates AMPA
and kainate receptor-induced calcium influx, testosterone does not appear to alter the
expression of glutamate receptor subunits in cultured OLs [287]. In line with this, exposure
of cultured neonatal mouse OLs to DHT decreases phosphorylated AKT expression and
increases the number of OLs expressing caspase-3, suggesting that androgens can induce
OL cell death [236].

In summary, there are many questions remaining in regard to androgens’ role in oligo-
dendrogenesis. For example, it remains unclear whether OPCs or OLs express cytoplasmic
and/or membrane-bound ARs. Furthermore, multiple lines of evidence suggest that
there is an AR-dependent sex difference in OL density in vivo; however, the underlying
mechanism of this sex difference remains unresolved, as in vitro work suggests that OPC
proliferation is not altered by androgens. Such questions can be definitively addressed
with future well-controlled in vitro studies and transgenic models with AR manipulations
targeted to the OL lineage.

4. Non-Classical Hormones: Neurohormones, Neuromodulators, and Neurotransmitters

This review has focused on “classic” endocrine hormones; however, many hormones
(including some discussed here) are produced in the CNS and can act in a paracrine fashion
in the brain via synaptic or extrasynaptic transmission. Future research could investigate
how neuropeptides that are not deemed to be classic hormones, such as corticotropin
releasing hormone (CRH), the neurotransmitter norepinephrine (NE), and secretin hor-
mones such as vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating
peptide (PACAP), affect oligodendrogenesis.

Existing literature on CRH is limited and only indirectly applies to oligodendrogene-
sis [288,289], although CRH elevates cAMP levels in OPCs [290]. Existing research regard-
ing NE is more abundant, and adrenoreceptors are found across the OL lineage. Specifically,
the α1-adrenergic receptor is prevalent in both OPCs and differentiated OLs [142,291,292],
and β1-adrenergic receptor expression has been detected in mouse OPCs and rat GalC+
OLs [142,293]. NE induces α1-adrenergic receptor-dependent second messenger signal-
ing in neonatal rat OL cultures [291]. However, in rat embryonic day 20 OPC cultures,
signaling through α1 receptors does not affect OPC proliferation [294], and the effects
of these receptors on oligodendrogenesis remain unresolved. In contrast, activation of
β-adrenergic receptors inhibits proliferation and induces the differentiation of cultured
OPCs [294]. Future research should continue to investigate how catecholamines, CRH,
and other neuromodulators affect oligodendrogenesis throughout the postnatal and adult
period and if effects are observed following injury.

Interestingly, there is a growing body of literature suggesting that peptides VIP
and PACAP may also influence oligodendrogenesis. These homologous proteins are
members of the secretin superfamily and have been increasingly implicated in a diverse
set of functions in the body, such as regulation of circadian rhythms, smooth muscle tone,
immune function, and cell proliferation [295,296]. Both VIP and PACAP are expressed
in many regions of the brain [297]. VIP and PACAP bind to the VIP/PACAP receptors,
VPAC1 and VPAC2; in addition, PACAP binds an additional receptor, PAC1, with high
affinity [296]. While no studies have demonstrated protein-level expression of VPAC1 or
VPAC2 in OPCs or OLs, RNA transcriptomic analyses suggest that VPAC2 is enriched
in mouse OPCs, but not mature OLs [142]. In addition, PAC1 mRNA and PAC1 protein
expression have been detected in immature to mature rat OLs in vitro and in vivo [298,299].
Thus, VIP and/or PACAP may influence the OL lineage. Consistent with this, early and
intermediate neonatal rat OPCs respond to VIP and to PACAP by elevating cAMP levels
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in vitro [290]. While the specific actions of these peptides on oligodendrogenesis are
largely unknown, evidence suggests that PACAP increases neonatal rat OPC proliferation
in vitro [299]. PACAP may also delay myelination both in vitro and in vivo [299,300].
Given that the expression of receptors for VIP and PACAP change over the course of the
OL lineage, additional research with selective agonists and antagonists for each receptor
would greatly aid in our understanding of the role of these peptides in the various stages
of oligodendrogenesis.

5. Future Directions

In this review, we have discussed the roles of numerous hormones in the regulation
of oligodendrogenesis; however, there are many avenues for future work in this field.
For example, much of the work we have described has built upon investigations in vitro
that utilize classic, but limited, pharmacological approaches and raw counts of cells from
discrete, but somewhat arbitrary, time points. In addition, many of the studies we described
focused on only a particular timepoint in the OL lineage, often through the use of just
one cellular marker. Future studies will require careful examination across the OL lineage,
utilizing multiple markers of OL staging and ideally looking at markers for proliferation
(such as BrdU) and survival (such as caspase-3) all within the same study. This will
enable optimal interpretation of a hormone’s effects on OLs, and will allow us to determine
whether changes in numbers of OPCs or mature OLs are due to proliferation, differentiation,
or survival.

Furthermore, for most of the hormones discussed, there remain substantial gaps in
our understanding of the fundamental mechanisms governing the intracellular response to
the hormone and the subsequent fate of the OL lineage cell. These gaps could be addressed
with carefully controlled in vitro experiments. In particular, the field is ripe for studies that
utilize modern techniques for targeted manipulation of hormones and their receptors and
precise measurement of proliferation, differentiation, and myelinogenesis to dissect the
role of these hormones on OPCs, OLs, or surrounding neurons, astrocytes, and microglia.

In addition to direct effects on the OL lineage, hormones may indirectly affect oligo-
dendrogenesis through their interactions with other hormones. For example, high levels of
GCs reduce thyroid functioning, leading to less conversion of T4 into the active T3; addition-
ally, thyroid hormones, as previously described, also tend to have pro-oligodendrogenesis
effects [301,302]. Thus, high levels of GCs could in fact inhibit oligodendrogenesis through
indirect interactions with the thyroid system. T3-induced OPC differentiation could also
be enhanced through interactions with other OL differentiation factors such as IGF-1,
among others [44,303,304]. TH levels are positively associated with IGF-1 levels [303,305],
and IGF-1 is upregulated following TH exposure in adult rat brains. Progesterone also
interacts with the IGF-1 system. Specifically, progesterone upregulates IGF-1 and the
IGF binding protein 6 (IGFBP-6) in OPCs [190]. IGF-1, as previously noted, broadly in-
creases oligodendrogenesis; therefore, this upregulation of IGF-1 may contribute towards
progesterone-induced promotion of OL proliferation and differentiation. Furthermore,
DHT increases IGFBP-5 expression in human embryonic-derived NSCs [285], and both
estradiol and DHT increase IGFBP-5 expression in the spinal cord of male mice [306].
Altogether, further work testing combinations of hormones is needed to better explore
and define the complex relationships between hormonal systems and their effects on
oligodendrogenesis.

Furthermore, in vivo work is limited, especially outside of disease contexts, and we
have little understanding of whether and how hormones affect OPCs and OLs differently
based on brain region, cellular age, or organismal age. In many cases, the in vivo experi-
mental designs we describe utilized constitutive overexpression/deletion of hormones or
receptors, which offer little temporal resolution and may be complicated by widespread
alterations to the developmental trajectory of the organism. In addition, most of these
manipulations were not restricted to OL lineage cells. Generating model organisms with
genetic manipulations specifically within the various stages of the OL lineage would offer
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greater insight into direct hormonal modulation of oligodendrogenesis. Designing these
manipulations to be temporally controlled would present the opportunity to test hor-
monal effects on oligodendrogenesis across the full extent of the lifespan, from early life
to transitional periods such as puberty, and throughout adulthood and aging. Ultimately,
understanding the direct vs. indirect effects of hormones on oligodendrogenesis in vivo
will provide greater understanding not only of the mechanisms of hormonal action, but also
of the suitability of hormonal interventions in providing direct, as opposed to off-target,
effects in the CNS.

Lastly, while we have detailed the effects of many different hormones on oligoden-
drogenesis, this is only a small fraction of the hormones that regulate development and
adult plasticity. In the previous section, we discussed studies that focus on hormones that
act in a paracrine fashion in the brain. However, many hormones remain to be explored.
Our review has focused on the existing literature, but the absence of evidence does not
imply that such hormones have no role in regulating oligodendrogenesis.

6. Conclusions

Hormones regulate nearly every stage of human development, and in adulthood,
their levels can be modulated by a host of conditions, including stress, pregnancy, menopause,
and aging. These hormonal fluctuations influence the brain and behavior, in part by al-
tering the birth and development of new cells. As we have described in this review,
hormonal modulation of plasticity extends beyond neurogenesis and into the realm of glia.
Overall, it is clear that hormones across many classes exert robust effects on oligodendro-
genesis, not only during development, but also in adulthood. Many of these hormones,
including IGF-1, thyroid hormones, and the sex hormones, act to increase OPC differen-
tiation and enhance the maturation of mature, myelinating OLs through both direct and
indirect mechanisms (Figure 2). Clearer insight into the mechanisms governing hormonal
regulation of oligodendrogenesis will enable better understanding of experience-dependent
myelination in the human brain, and has important implications for myelin repair in a
range of disorders, which we describe in our companion review in this issue [25].

Figure 2. Oligodendrogenesis is differentially affected by various classes of hormones. Hormones can
affect proliferation, differentiation, maturation, and survival across the OL lineage. Green arrow,
promote; Red arrow, downregulate. Grey shaded sections indicate a process that is not applicable
(N/A) at that cellular stage. Proliferation and differentiation only occur in the first three cellular
stages, while maturation only occurs in the final stages. GC, glucocorticoids; E, estrogens; P, progesto-
gens; A, androgens; IGF-1, insulin-like growth factor-1; INS, insulin; PRL, prolactin; MEL, melatonin;
TH, thyroid hormones.



Biomolecules 2021, 11, 283 22 of 35

Author Contributions: All authors contributed towards writing the original draft and have reviewed,
edited, and approved the final manuscript. J.M.B., K.L.P.L., and M.K.B. generated the visualiza-
tions. D.K. provided supervision. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by NIMH, grant number R01MH115020.

Acknowledgments: Figures were adapted from images created with biorender.com.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

A4 androstenedione
A5 androstenediol
AKT protein kinase B
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
APC adenomatous polyposis coli
AR androgen receptor
BBB blood–brain barrier
BrdU bromodeoxyuridine
CNPase 2’,3’-cyclic-nucleotide 3’-phosphodiesterase
CNS central nervous system
Cort corticosterone
CreER Cre recombinase/estrogen receptor fusion protein
CRH corticotropin releasing hormone
Dex dexamethasone
DHEA dehydroepiandrosterone
DHT dihydrotestosterone
Dio2 type 2 deiodinase
E2 17-β estradiol
ER estrogen receptor
ERK extracellular signal-regulated kinase
FGF2 fibroblast growth factor 2
GalC galactosylceramidase
GC glucocorticoid
GH growth hormone
GPR G-protein coupled receptor
GPDH glycerol phosphate dehydrogenase
GST-pi glutathione-S-transferase-pi
GR glucocorticoid receptor
HSD hydroxysteroid dehydrogenase
IGF-1 insulin-like growth factor-1
IGF1R insulin-like growth factor-1 receptor
IGFBP insulin-like growth factor binding protein
IR insulin receptor
MAPK mitogen-activated protein kinase
MBP myelin basic protein
MEK mitogen-activated protein kinase kinase
mPR membrane-bound progesterone receptor
MT1 melatonin receptor 1
MT2 melatonin receptor 2
NDRG1 N-myc downstream-regulated gene 1
NE norepinephrine
NG2 neural/glial antigen 2
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NSC neural stem cell
O-2A bipotential oligodendrocyte-type 2 astrocyte progenitor cells
OL oligodendrocyte
Olig1 oligodendrocyte transcription factor 1
Olig2 oligodendrocyte transcription factor 2
OPC oligodendrocyte precursor cell
OPP oligodendrocyte pre-progenitor
PACAP pituitary adenylate cyclase activating peptide
PDGF platelet-derived growth factor
PDGFRα platelet-derived growth factor receptor alpha
PGRMC1 membrane-associated progesterone receptor membrane component 1
PI3K phosphatidylinositol 3-kinase
PKA protein kinase A
PLC phospholipase C
PLP proteolipid protein 1
PR progesterone receptor
PRLR prolactin receptor
PSA-NCAM polysialylated-neural cell adhesion molecule
RXR retinoid-X receptor
SGK1 serum glucocorticoid regulated kinase 1
T3 triiodothyronine
T4 thyroxine
TH thyroid hormone
TR thyroid hormone receptor
TRE thyroid response element
VIP vasoactive intestinal peptide
VPAC1 vasoactive intestinal peptide receptor 1
VPAC2 vasoactive intestinal peptide receptor 2
YFP yellow fluorescent protein
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