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Abstract

Broadly neutralizing antibodies (bNAbs) are promising agents to prevent HIV infection and

achieve HIV remission without antiretroviral therapy (ART). As with ART, bNAb combina-

tions are likely needed to cover HIV’s extensive diversity. Not all bNAbs are identical in

terms of their breadth, potency, and in vivo longevity (half-life). Given these differences, it is

important to optimally select the composition, or dose ratio, of combination bNAb therapies

for future clinical studies. We developed a model that synthesizes 1) pharmacokinetics, 2)

potency against a wide HIV diversity, 3) interaction models for how drugs work together, and

4) correlates that translate in vitro potency to clinical protection. We found optimization

requires drug-specific balances between potency, longevity, and interaction type. As an

example, tradeoffs between longevity and potency are shown by comparing a combination

therapy to a bi-specific antibody (a single protein merging both bNAbs) that takes the better

potency but the worse longevity of the two components. Then, we illustrate a realistic dose

ratio optimization of a triple combination of VRC07, 3BNC117, and 10–1074 bNAbs. We

apply protection estimates derived from both a non-human primate (NHP) challenge study

meta-analysis and the human antibody mediated prevention (AMP) trials. In both cases, we

find a 2:1:1 dose emphasizing VRC07 is nearly optimal. Our approach can be immediately

applied to optimize the next generation of combination antibody prevention and cure

studies.

Author summary

Some people living with HIV generate antibodies that can neutralize an extremely wide

variety of HIV variants. Using these “broadly neutralizing antibodies” as drugs is an excit-

ing development for HIV prevention and therapy. They are safe and well-tolerated, are
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relatively long-lasting, and hold the promise of one day being vaccine-induced. As broad

as they are, early studies have shown that multiple antibodies will need to be combined to

be most effective. Combinations can be complicated because some antibodies neutralize

some variants better than others, and some last longer than others. We investigated how

to balance these advantages and how to choose the ratios of antibodies to make the best

combination drug. Our approach can immediately be used to optimize the coming gener-

ations of trials in humans.

Introduction

Broadly neutralizing antibodies (bNAbs) are powerful agents that may become crucial for next

generation HIV prevention [1]. Their utility is strengthened by their generally long half-lives

compared to small molecule drugs, as well as the eventual promise of inducing bNAb produc-

tion by vaccination [2,3].

The recent antibody mediated prevention (AMP) studies directly tested the hypothesis that

the bNAb VRC01 could prevent HIV acquisition [4,5]. Viruses acquired by placebo recipients

were more sensitive to neutralization by VRC01 than viruses acquired by VRC01 recipients.

The prevention efficacy against sensitive viruses, defined as an 80% inhibitory concentration

(IC80) < 1 μg/mL, was estimated at 75.4% (95% confidence interval 45.5 to 88.9%). More-

resistant variants similarly infected placebo and control recipients. This study implies global

HIV diversity [6]) remains beyond the breadth of any single current bNAb. As with antiretro-

viral treatment (ART) and pre-exposure prophylaxis (PrEP), combinations of products are

likely needed [7–9].

Optimal bNAb combinations to achieve potency and breadth has been modeled previously

[10,11]. The best bNAb combination to suppress viremia was also explored using a detailed

model of viral fitness costs and bNAb escape [12]. However, these previous works do not

include pharmacokinetic models or project in vivo potency. We previously integrated pharma-

cokinetic (PK) and multi-strain pharmacodynamic (PD) models to determine longitudinally

varying potency of VRC01 and simulate the AMP studies [13]. Here, we extend and expand

our PKPD model [13] into a combination bNAb study framework (Fig 1). In a triple antibody

combination case study, we then apply the latest clinical correlates from non-human primate

challenge studies [14] and the AMP studies [5] to best predict clinical efficacy from in vitro
neutralization.

Our framework is designed to answer a design consideration for future studies with combi-

nation bNAbs for HIV: what is the optimal ratio of multiple antibodies to deliver? We show

the optimal ratio can depend on many inputs and assumptions—precluding a one-size-fits-all

solution. Instead, we provide a framework and a publicly available tool to determine the best

dose plan given the specific antibodies, existing information about their interaction in vivo,

and the PKPD outcome marker of interest for a proposed study. As knowledge of these com-

ponents gets refined, the model framework will become more predictive.

Results

Pharmacokinetics (PK) for bNAb levels

The first component of the PKPD framework is the PK, describing concentrations of each

antibody i over time, t: Ci(θi,t,di) where θi are the bNAb specific PK parameters and di is the

initial dose (PK model in Fig 1). Individual initial dosing for each bNAb is then constrained
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by a total dose (D = ∑idi). For simplicity, we assume a population-level fixed total dose and

independent models of PK for multiple bNAbs (denoted Ci(t) from here on). The model could

be extended to implement individual-specific total dosing (e.g., bodyweight-adjusted) and

joint, dependent models.

Pharmacodynamics (PD) for bNAb potency

Two pharmacodynamic (PD) quantities are often used to discuss potencies given concentra-

tion: 50% inhibitory dose or dilution neutralization titer (ID50 Titer) and percent neutraliza-

tion. Potency measures incorporate concentration and 50% inhibitory concentration (IC50)

measurements across a panel of viruses (PD model in Fig 1).

Experimental neutralization titer (ID50), τij(t), is a common measurement arising from

titrated neutralization experiments. In practice, experimental ID50 represents a dilution factor

applied to sera containing antibodies that reduces in vitro neutralization to 50%. Titer, and the

similarly derived ID80, are important immunological endpoints that are proven correlates of

protection [4,14]. Experimental titer can be theoretically predicted from the ratio of i-th drug

concentration to j-th virus IC50 as

tij tð Þ ¼
CiðtÞ
IC50ij

Eq 1

a relationship that has been empirically confirmed for single bNAbs [15,16]. As a potency mea-

sure, titer expresses the fold-relationship between concentration and viral IC50 as a measure

of ‘protection’ against that virus.

Experimental in vitro neutralization for a single bNAb against a virus is also theoretically

related to the titer (Fig 1). Percent neutralization (% neutralization) has the mechanistic

Fig 1. PKPD model schematic for optimizing combination bNAb treatment against a genetically diverse pathogen like HIV. The model

incorporates: pharmacokinetics (PK), pharmacodynamics (PD), and interactions between broadly neutralizing antibodies (bNAbs). PK quantifies

bNAb concentrations over time after administration. PD quantifies potencies at a given concentration for each antibody against many viral strains

with sensitivity determined by IC50ij, the level of the i-th drug needed to achieve 50% neutralization of the j-th viral strain–with some fraction ω of

strains completely resistant. Titer, or the ratio of concentration to IC50 of each antibody against a certain strain, maps to neutralization

proportion (0–1 scale) of viral infection events that are blocked. Interaction model includes taking either the worst (minimum) or the best

(maximum) titer/neutralization between two products. Two more mechanistic interaction models combine titers (additivity) or neutralization

(Bliss Hill), and generally mean combinations outperform the best single bNAb. Depending on the PKPD outcome measure of interest and when

that measure is evaluated (throughout the study = AUC, at the low point = trough), we identify the optimal ratio of bNAbs.

https://doi.org/10.1371/journal.pcbi.1010003.g001
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interpretation as the fraction of blocked cellular infection events by the j-th virus. Titer and %

neutralization, ν, can be related through the logistic Hill function (or median-effect equation)

as follows

nijðtÞ ¼ f1þ tijðtÞ
� hijg

� 1

: Eq 2

Neutralization requires an additional parameter, the ‘Hill coefficient’ hij, that describes

the steepness of the neutralization curve. Through Eq 2, any generalized titer (e.g., ID80,

ID99) can be predicted from the ID50 titer and a given Hill slope, where the Hill slope can be

estimated from IC50 and IC80 measurements (see S1 Text). Using the CATNAP database

[17] of IC50 and IC80 neutralization estimates for HIV virus/antibody combinations, we

estimated the distribution of Hill slopes and generally found values near 1 (see Methods and

S1 Fig). Henceforth in our analysis, and consistent with previous measurements [13], we set

hij = 1 and it is dropped from equations. Under this assumption, the IC80 is theoretically pre-

dicted to be 4-fold higher than the IC50, and, subsequently, the ID80 is predicted to be

4-fold lower than the ID50 for single bNAb and virus combinations (see S1 Text for more

details).

bNAb interaction models

For bNAb combinations, we considered 4 PD interaction models. The first, Bliss-Hill indepen-

dence (BH), is the best-case multiplicative interaction where bNAbs cover missing breadth of

one another and co-neutralize strains, i.e., to establish infection virions must escape indepen-

dent binding events from each antibody. BH is encouragingly observed from in vitro studies

[10,18]. We also consider weaker cooperation with the additivity interaction model, where

antibody effects are combined via mass action(10); i.e., the total titer is sum of individual titers.

Finally, maximum and minimum models assume that the more or less potent antibody for

each strain operates as a single product. The maximum interaction potentially represents a sce-

nario where only the most potent bNAb neutralizes a given virus; however, outcome devia-

tions between the maximum and the BH or additivity model also highlight where interactions

improve neutralization due to combined coverage. On the other hand, the minimum model is

mechanistically unrealistic but provides a boundary for the worst-case scenario where the

combination regimen is only as strong as its weakest link, specifically penalizing poor com-

bined coverage of viruses.

The interaction models are mathematically summarized in Table 1 and all derivations of

combinations titers are included in the S1 Text. We extend interactions to include synergy in

the bi-specific antibody case study, but do not consider antagonism among clinically viable

bNAb combinations here.

Other options exist to quantify antibody potency, including instantaneous inhibitory

potential (IIP [19]), the log-fold reduction in virus infectivity at a given concentration, which

linearizes high neutralization on the log-scale (e.g., 99% neutralization -> IIP of 2, 99.9% -> 3)

Table 1. Summary of equations for PD interaction models relating bNAb (i) to virus (j). Formula for Bliss-Hill ID50 illustrated for 2-bNAb combinations only.

PD Outcome Bliss Hill (BH) Additivity Maximum Minimum

Titer (ID50)

τj(t), Eq 1

2t1jt2j

� ðt1jþt2jÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt1jþt2jÞ

2þ4t1jt2j

p
P

itijðtÞ maxi[τij(t)] mini[τij(t)]

% Neutralization

νj(t), Eq 2

1 �
Q

i½1 � nijðtÞ� 1 � ½1þ
P

itijðtÞ�
� 1 maxi[νij(t)] mini[νij(t)]

https://doi.org/10.1371/journal.pcbi.1010003.t001
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in the important range for ART efficacy [19].

IIPijðtÞ ¼ � log10
½1 � nijðtÞ� ¼ log

10
½1þ tijðtÞ�: Eq 3

A generalized version of IIP when hij6¼1 is described in the S1 Text.

Alternatively, the potency of an antibody combination can be quantified by its “viral cover-

age”. Here, potency is dichotomized: a given virus is defined as “covered” if the continuous

potency measure (% neutralization, IIP) is above a specified threshold value. Viral coverage is

then the fraction of viral strains above the threshold. For example using % neutralization, for n
strains and a neutralization threshold ν�, we define the neutralization coverage fraction

f t; n�ð Þ ¼ 1

n

Pn
j¼1

Iðnij tð Þ > n�Þ where I is the indicator function equal to 1 if the inequality

holds and 0 otherwise.

Mathematical model for optimizing antibody combination doses

Finally, we summarize these measurements of potency over time, which we collectively term

PKPD outcomes. We consider PKPD outcomes at trough (pre-specified final time) or

throughout time (area under the curve, AUC) (Fig 1).

In practice, for a specified antibody combination, we obtain their PK parameters and the

best estimate of their distribution of IC50s to a relevant panel of circulating viruses. We can

then choose an interaction model and specify an outcome that we want to optimize. From this

we uniquely determine the optimal ratio of the antibodies. Potential combinations of bNAbs—

varying by their input PK and PD profiles—can then also be evaluated and compared via

mathematical PKPD simulations at the optimal dosing ratios, which may be combination-

dependent, as illustrated in the in silico studies below.

Global sensitivity analysis

We performed a global sensitivity analysis varying all input PKPD model parameters (142,560

total combinations) to assess correlation between all PKPD outcomes and optimized dosing

ratios (see Methods). Briefly, we varied one-compartment exponential PK models for each

antibody summarized by their half-life hli. One bNAb was simulated to always have equivalent

or better half-life than the other to avoid redundancy. We chose a log-normal distribution for

IC50s for each bNAb parameterized by its mean μi and standard deviation σi on the log10

scale, also allowing for a fraction ωi that are completely resistant (infinite IC50). We also varied

the ratio of doses r and the total dose D. The ranges explored for each sensitivity analysis

parameter are collected in Table 2.

The maximum and additive interaction were highly correlated (Spearman mean ρ = 0.85,

range: 0.55–1). Henceforth the maximum is dropped and the additive model, which is more

biologically established, is presented as a surrogate for both.

Table 2. Parameter settings for global sensitivity analysis combining two bNAbs.

Parameter Sensitivity analysis values

Initial dose (mg) {150, 300, 600, 1200}

Half-life (days) {7, 28, 42, 84}

Total simulated viruses 500

% viral resistance {67, 33, 0}

Mean log10 IC50 (μg/mL) {-3, -2, -1}

SD log10 IC50 (μg/mL) {0.25, 0.5, 1}

https://doi.org/10.1371/journal.pcbi.1010003.t002
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Publicly available tool for ratio optimization

Any individual simulation from the results can be generated using the following R shiny app:

https://bnabpkpd.fredhutch.org.

PKPD outcomes cluster into categories

Using global sensitivity analysis output, we calculated Spearman correlations among all end-

points at trough (Fig 2A). By hierarchical clustering, we determined six main categories of out-

comes (Fig 2A): All models with the minimum interaction (i.e., worst-case bNAb penalizing

lack of combination viral coverage) and raw titer (ID50) endpoints for the non-minimum

Fig 2. Correlations among PKPD outcomes and between model parameters and outcomes. A) Many metrics for

PKPD outcomes are highly correlated (yellow in heatmap) and cluster into approximately 6 distinct categories: see

labels. The minimum interaction was distinct across all outcomes. B) Of the 10 varied model parameters (Table 2),

half-lives and resistant fractions had the largest impact on representative members of each of 6 categories from A. All

categories were similarly sensitive to half-lives, whereas titer and minimum categories were less sensitive to resistance

fractions. The ratio does not strongly predict any outcomes relative to variation in all other parameters, a sign that

there is no general solution to optimizing the ratio and it must be adjusted on a case-by-case basis.

https://doi.org/10.1371/journal.pcbi.1010003.g002
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interaction were distinct. The remaining outcomes were correlated but further categorized as

neutralization, log10 titer, coverage metrics (% of viruses neutralized > 99%), and IIP. Results

were similar for AUC and trough, see S2 Fig. As the model used a monotonic PK curve, the

final value was roughly representative of the entire time-course.

Correlations among PKPD outcomes and antibody features

We next explored the associations between a representative member of each outcome category

and model parameters (Fig 2B). All categories were sensitive to PK (half-life), and generally

more to the half-life of the shorter-lived bNAb (hl2). Increased resistance negatively correlated

with the outcomes, particularly with neutralization, log10-transformed titer, coverage metrics,

and IIP. Additionally, a stronger negative correlation was found with the resistant fraction for

the bNAb with longer half-life–this pattern was weaker for mean IC50. Total dose correlated

positively with all outcomes but was generally less influential than other model parameters.

The ratio of antibodies did not strongly predict any outcome after accounting for variation in

all other parameters, highlighting that there was no generally optimal ratio; optimization is

determined on a case-by-case basis based on many antibody features.

Sensitivity of the optimal ratio for each outcome

Next, for each parameter set, we determined the optimal ratio r for each outcome. Fig 3A

shows an analogous clustering analysis to Fig 2 but with correlations of the optimal ratio of

each outcome across the inputs. Importantly, the same general categories emerged such that

correlations among all outcomes agreed generally with correlations among optimal ratios.

However, for the BH and additive interactions, the log10 titer and IIP now cluster together.

Additionally, the minimum interaction model clustered into 2 categories based on the potency

and coverage outcomes. Interestingly, the optimal ratio for minimum (non-coverage) is often

negatively correlated to the others. This suggests that optimizing for minimum interaction

(i.e., maintaining consistent combination coverage) may require a very different ratio. For the

other interactions, once an outcome is selected, the optimal ratios generally agree among the

additive and Bliss-Hill interaction models.

Fig 3B shows correlations among model parameters and optimal ratios from a representa-

tive outcome from each category. In this plot directionality of correlation has additional mean-

ing: positive and negative correlations imply less or more of the antibody with worse half-life,

respectively. The sensitivity to PK and viral PD inputs (complete resistance and mean IC50)

followed the same pattern as in Fig 2A: all the outcomes showed some sensitivity to PK, titer

and minimum interaction outcomes were sensitive to mean IC50, and the remaining were sen-

sitive to resistance fractions. For ratio optimization, the PK sensitivity was specifically driven

by the half-life of the shorter-lived bNAb.

We next sought to understand what is gained by using the optimal ratio as opposed to a

more practical solution near the optimum. Therefore, we measured how many parameter

combinations admitted an outcome within 95% of the outcome value achieved by the optimal

ratio (Fig 3C). That is, if many simulations were within 95% of the optimum, it means the opti-

mum is not substantially better. Indeed, for the parameter ranges we considered, some out-

comes were not particularly sensitive to the choice of the optimal ratio such that other

practical considerations could be promoted in a trial design. However, some outcomes were

much more strongly affected by optimization (with fewer than 1/104 runs being in the 95%

optimal scenario). So, although there are cases of insensitive systems (e.g., two poor products,

two highly effective products), this reinforces that optimization should be case-specific.
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Dual parental antibodies outperformed the bispecific product without

synergy enhancement

Bi-specific antibodies, synthesized combinations of two antibodies into one product, exhibit

superior neutralization compared to their parental components in vitro [20,21]. However, bio-

chemical properties (e.g., molecular weight, valence, structure) change when parental Abs are

synthesized into a single unit) [22]. Whether these changes influence in vivo pharmacokinetics

remains to be seen. For example, the clinical candidate 10e8/iMab [NCT03875209] has excel-

lent HIV neutralization [21,23], but includes ibalizumab (iMab), which has complex PK with

fast clearance (effective half-life < 1 week) [FDA Biologic License Application 761065]. In that

context, we sought to test a worst-case scenario in which a bi-specific inherits the worse (faster)

parental half-life. We assumed two parental antibodies: one with a 3-month half-life and medi-

ocre potency and another with higher potency but short (1 week) half-life. We compared the

Fig 3. Sensitivity of the optimal ratio to PKPD outcome choices and antibody features. The optimal ratio was calculated for each parameter set and each

outcome. A) Optimal ratios cluster by outcome similarly to the general analysis in Fig 2 with differences being that coverage and IIP can be grouped together

whilst the minimum interaction model separates into 2 categories. B) Different variables drive optimization of different outcomes. Among viral

pharmacodynamic inputs, the geometric mean IC50 is most influential on titer and minimum potency outcomes, while the fraction resistant is most

influential for the remaining outcomes. C) A low percentage of parameter sets admitted outcomes within 95% of the optimal value.

https://doi.org/10.1371/journal.pcbi.1010003.g003
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bi-specific version inheriting the best potency but worst half-life with theoretical combinations

of the drugs separately using a realistic design administering 300 or 1200 mg of total bNAbs

over a 3-month administration window and the following PKPD outcomes: a continuous out-

come (mean IIP) and a coverage outcome (% viruses IIP>2).

Compared to the combination therapy, the superior potency of the bi-specific antibody was

not always sufficient to counterbalance its short half-life. Across doses and interaction models,

we consistently found that the optimal combination therapy was more efficacious than the bi-

specific for both AUC and trough (Fig 4). At trough, where half-life is strongly influential, the

longer half-life parent with worse PD dosed by itself still outperformed the bi-specific.

Synergy has been observed for bi-specifics because binding of one antibody arm can facili-

tate the second to bind [24]. Given this finding, we tested how much additional synergy (as a

factor multiplying the bi-specific potency through reduced IC50, see Methods) could rescue

the bi-specific performance and make it comparable to the parental combination. The bi-spe-

cific outperformed the optimized combined administration when the synergy factor exceeded

10-fold under common interaction models (Fig 4).

Incorporating empirical protection correlates in clinical design

To perform a realistic optimization of a clinical trial, we consider deviations from in vitro
potency that may be relevant for in vivo protection. For example, non-human primate SHIV

challenge studies suggest that a bNAb titer of approximately 100 achieved 50% protection: i.e.,

serum antibody concentrations need to be 100-fold higher than in vitro IC50 to elicit 50% pro-

tection in vivo [14]. We define the fold-increase as a “potency reduction factor” [13], ρ, and

henceforth translate in vitro potency to in vivo protection by scaling the titer input. We have in
vivo neutralization and IIP then,

nin vivoðtÞ ¼ f1þ ½tin vitro
ij ðtÞ=r�� 1

g
� 1

; Eq 4

IIPin vivo
ij ðtÞ ¼ log

10
½1þ tin vitro

ij ðtÞ=r�: Eq 5

such that no change from in vitro measured titer occurs when ρ = 1 and a potency reduction of

100-fold means ρ = 100. Mechanistically, this formulation suggests that the overestimated pro-

tection in vivo is due to either (or both) underestimation of the potency due to some biological

factors (e.g., coagulation or anti-antibody elements) or overestimation of bNAb concentration

at the site of exposure.

The reduction factor can be derived from assessing actual protection at the given experi-

mental titers, either through NHP challenge data [14] or using protection efficacy (PE) esti-

mated from the antibody mediated prevention (AMP) studies testing the bNAb VRC01 for

prevention of HIV in humans [5]. The titer vs. protection dose-response relationship may also

be derived using alternative functional forms than those depicted Eqs 4 and 5. We derived

dose-response relationships from both a meta-analysis of NHP challenge studies and the AMP

studies (see Methods). Fitting both the potency reduction model and a 5-parameter logistic

(5PL) model, we find the more flexible 5PL model better captures the slope and asymmetry

exhibited in the empirical protection estimates (S3 Fig). Results from the AMP studies also

suggest a larger potency reduction (ρ = 370) than what was predicted by the NHP meta-analy-

sis (ρ = 91).

For combination bNAbs, the experimental titer will represent neutralization in sera with a

combined concentration of antibody. Whether a potency reduction factor is applied to the

combination titer or to the individual titers prior to the interaction is specifically consequential
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for the Bliss-Hill interaction model, but not the other interaction models. Briefly, applying the

factor to the Bliss-Hill combination titer model may be overly conservative, underestimating

the protection because experimental titer does not uniquely predict Bliss-Hill neutralization

(S4 Fig; see S1 Text for further discussion). We suggest applying the potency factor or

dose (mg) 300 1200

synergy (fold IC50 boost) 1 10 100

Bliss−Hill Additivity Min. Neut.

%
 v

iru
se

s 
IIP

 >
 2

M
ea

n 
IIP

Al l
bNAb2

1:1 Al l
bNAb1

Bi−
specific

Al l
bNAb2

1:1 Al l
bNAb1

Bi−
specific

Al l
bNAb2

1:1 Al l
bNAb1

Bi−
specific

0

25

50

75

100

0.0

2.5

5.0

7.5

au
c

Bliss−Hill Additivity Min. Neut.

%
 v

iru
se

s 
IIP

 >
 2

M
ea

n 
IIP

Al l
bNAb2

1:1 Al l
bNAb1

Bi−
specific

Al l
bNAb2

1:1 Al l
bNAb1

Bi−
specific

Al l
bNAb2

1:1 Al l
bNAb1

Bi−
specific

0

25

50

75

100

0

2

4

6tr
ou

gh

Fig 4. Optimizing 2 bNAb combination therapy in comparison to bi-specific therapy with the same bNAbs. Combination antibody results for AUC

(top) and trough (bottom) suggest that trough is slightly more sensitive to ratio (see curvature of outcome surface and change from optimal ratio denoted

by open dot). In general, a single bi-specific bNAb will perform worse than combination therapy if it has the best neutralization potential of both parental

lineages under a common interaction model but inherits the faster clearance kinetics. However, if synergetic binding occurs, enhancing the bi-specific

potency by 10-fold (see Methods), it is similar or outperforms the optimal combination for all outcomes and doses. “All bNAb1” and “All bNAb2” on the

x-axis correspond to 100% dosing of the second bNAb product.

https://doi.org/10.1371/journal.pcbi.1010003.g004
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protection model to each bNAb individually, calculating their individual protection estimate,

then applying the Bliss-Hill interaction model (i.e., at the event-level) as described in the fol-

lowing case study.

Using empirical protection correlates in a 3-bNAb optimization

We gathered several independent data sets to model a 12-week trial with a 600 mg subcutane-

ous dose of 3 state-of-the-art broadly neutralizing antibodies (3BNC117-T, 10-1074-T,

VRC07-523-LS; -T denotes theoretical variant with extended half-life). For this example, we

compared empirical protection estimates based on titer using a meta-analysis(14) and the

AMP studies(5) (S3 Fig). We optimized for PKPD target outcomes, using both AUC and

trough, of viral coverage at 50% and 95% protection thresholds. For more details on the input

PK and PD for these analytes, see Methods and S5 Fig. In this illustrative example, we do not

consider clade-specific profiles nor account for interference potentially due to 3BNC117 and

VRC07-523-LS targeting the same epitope (CD4-bs). We tested all double and triple combina-

tions varying the dosing ratios. In a practical clinical setting, complicated dosing ratios (e.g.,

98:13:3) might not be ideal. Thus, for the 3-bNAb combination, we considered simple ratio

designs: an even dose split (denoted 1:1:1) or any 50%:25%:25% combination (denoted 2:1:1 or

similar). We compared this to the theoretical optimum to ensure they were reasonably close to

the optimal design. The optimal ratio always contained <10% 3BNC117-T but varied other-

wise depending on the target PKPD outcomes and empirical protection correlate usually

favoring >50% VRC07-523-LS (S2 Table).

Overall, protection levels were uniformly lower when predicted using the AMP clinical

study results vs. the NHP meta-analysis. Using the NHP results, all triple drug combinations

predicted a protection level above 95% for roughly 25% of viruses at trough or on average

(AUC) (Fig 5). Likewise, protection levels were above 50% for roughly 75–80% of viruses over

the study. Using the AMP results, generally <50% of viruses were protected at levels above

50% in this design, and coverage generally tracked only slightly higher than the 95% threshold

level of the NHP results. It was clear that VRC07-523LS was the best single antibody, and the

optimal dosing ratio generally contained >60% of VRC07-523-LS (see S2 Table) with one

exception: to protect at 95% levels using the AMP protection estimate, the best design requires

a majority of 10-1074-T. Optimal ratios were generally consistent across target outcomes

whether using AMP or NHP empirical protection estimates, but there were exceptions, specifi-

cally when protection was worsening, highlighting the complex interplay between PK and PD

under the design constraints. Subsequently, the triple combination with 1:1:2 level of VRC07-

523LS was not much worse than optimal, even the outcome where 10–1074 is optimal. More-

over, the optimal 2-drug combination without 3BNC117-T was generally as effective as the

optimal 3 drug therapy (which dosed at<10% of 3BNC117-T) potentially due to general lower

potency of 3BNC117 or the overlap in epitope targeting with VRC07-523-LS resulting in

redundant viral coverage in the database. Still, given our necessarily incomplete data on circu-

lating strains, we would suggest using this 3-drug regimen at a 1:1:2 design to balance simplic-

ity and protection for this example.

Discussion

Combination administration of broadly neutralizing antibodies will likely be tested in coming

studies of HIV prevention and cure [1,4,21,25]. Therefore, we developed an approach to define

optimal combinations in terms of the ratio of bNAbs in a combination administration (e.g.,

1:1:1 would be an equal ratio in a triple bNAb combination).
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Optimal antibody ratios balance neutralization against bNAb longevity and also depend on

how combinations interact in vivo. Therefore, several types of data for each antibody in a com-

bination modality must all be considered to optimize dosing. These include 1) in vitro assay

data relating each bNAb’s potency (IC50) against many HIV variants; 2) in vivo bNAb phar-

macokinetics, 3) a correlate that can translate in vitro IC50 to in vivo protection; and 4) any rel-

evant data on bNAb interactions. Our present approach addresses how to optimize

combination bNAb dosing by integrating all 4 data types.

Available in vitro data includes pseudovirus panels (e.g., CATNAP database [17]) or break-

through viruses in human infections [26]. Alternative approaches may be desirable to augment

these data. For example, data on HIV-1 Env sequences are abundant, so modeling precision

could be improved using new techniques to predict IC50s from Env sequences [27–29].

Correlate data is particularly crucial because in vitro IC50 measurements typically overesti-

mate in vivo efficacy [13,30]. By comparing correlates derived from NHP and human studies,

we identified that optimal dosing was sensitive to the correlate value. A key feature of our
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Fig 5. Additional enhancement after optimization of 3-drug therapy. Using 3 well known anti-HIV broadly neutralizing antibodies, we performed an

analysis predicting the percent of viruses covered at more than 50% and 95% protection levels using protection correlates from an NHP meta-analysis(14) and

the AMP clinical trials(5). The percent viruses covered were computed over the total time course using area under the curve (auc) and at the final time point

(trough). We compared coverage for the bNAbs individually, in dual combination, and in triplicate as 1:1:1, 1:1:2, 1:2:1, 2:1:1, and the optimal combination (see

S2 Table). Enhancement over the best single bNAb (VRC07-523-LS) is generated through combinations when evaluating the percent of the viruses neutralized

at a 95% level. However, triple drug therapy does not meaningfully enhance over optimized 2-drug therapy levels, even when completely optimized. Protection

levels are more optimistically predicted using the NHP meta-analysis vs. the AMP trials (see also S3 Fig), and optimal designs can depend on the underlying

protection correlate (e.g., 10-1074-T:VRC07-523LS auc). Indeed, a 1:1:1 3 drug therapy is outperformed by the optimized 2-drug therapy, highlighting the need

to carefully perform case-studies for any optimization scenario.

https://doi.org/10.1371/journal.pcbi.1010003.g005
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approach was the derivation (S3 Fig) and implementation of such a correlate. As in our prior

work [13], we used a “potency reduction factor” to mathematically model the discrepancy

between in vitro and in vivo IC50s.

Our work emphasizes that protection estimates derived from single bNAb studies need to

be carefully translated into combination optimization. We showed that for the favored Bliss-

Hill (BH) interaction, combination titer does not uniquely specify protection: it is possible to

arrive at the same combination titer with different underlying bNAb concentrations. We

instead propose defining antibody-level potency, applying the interaction, and then mapping

to clinical protection. This procedure would also be amenable to additional complexities that

we did not address here including potency reduction factors and/or correlates that differ by

bNAbs in a combination.

We analyzed a theoretical bi-specific motivated by the clinical candidate 10e8/iMab

[NCT03875209], which has excellent neutralization [21,23], but includes ibalizumab (iMab)

that has complex PK with fast clearance (effective half-life < 1 week) [FDA Biologic License

Application 761065]. This example (Fig 4) illustrated how clearance kinetics (PK) could offset

strong neutralization (PD). However, adding beneficial synergy (plausible based on co-bind-

ing) made the bi-specific outperform the combination therapy. In general, bi-specifics are

encouraging—without synergy or a difference in PK, bi-specifics provide roughly a 2-fold con-

centration bonus compared to a 1:1 administration of the parentals at an equivalent dose.

They may be clinically preferable as they are a single product. Yet, co-formulation of multiple

products carries manufacturing considerations (e.g., changes in viscosity, introductions of

interference) that are hard to predict with respect to PK and neutralization. A final practical

issue that emerged was that enough synergy in the model made the bi-specific potent even at

concentrations below current limits of detection. Though we modeled bi-specifics, recent

work with tri-specific antibodies shows they can prevent SHIV infection [31], but may depend

on their strongest component [32].

One potent antibody can also determine the ability of combinations. Indeed, in the triple

combination example in Fig 5, a two-drug regimen would have been nearly as good. Albeit

minorly, adding the third antibody and optimizing the triple-drug ratio was always better than

the best two-drug combination. Thus, in considering that viral panels are necessarily incom-

plete, we would err on the side of inclusivity to both widen breadth and as a hedge for

unknown escape processes.

The precise endpoint to optimize for HIV prevention or therapy remains a question of

opinion. Therefore, we showed there are categories that are co-optimized by the same dose

ratios (Fig 3). Whereas additive and maximum interactions are highly similar, the correct defi-

nition of additive or BH interaction may still improve optimization. On the other hand, the

minimum interaction formed a unique cluster of simulated endpoints and admits different

optimal ratios. While the minimum interaction is not biologically favored, in practice it might

still be considered to cover a worst-case scenario where there is no protection against viruses

without sensitivity to at least two bNAbs. Additionally, certain endpoints were more sensitive

to optimal dosing than others, a finding that could be considered in endpoint selection. Or

alternatively, if an endpoint is preferred which is not particularly sensitive to ratio, practical

considerations about dosing could be prioritized over precise dose optimization.

Although most of our analysis concerns prevention studies, this framework is applicable to

curative interventions attempting to use bNAbs to prevent viral rebound after stopping ART

[33,34]. However, blocking a single founder during a transmission event appears easier than

blocking repeated reactivations of diverse viral populations from latent reservoirs. Although,

levels required to prevent rebound remain hard to predict, several studies have demonstrated

bNAbs can delay viral rebound [33–35]. The in vivo potency reduction factor appears large in
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this context, in a cohort of 18 individuals receiving VRC01 infusion and ART cessation,

rebound occurred while plasma VRC01 levels were still well above in vitro IC50s [34].

Going forward, our recommendation for designing therapeutic combinations for preven-

tion or treatment of diverse pathogens is several fold: 1) choose outcomes based on expert

opinions and given disagreements, assess whether these qualitative decisions are actually quan-

titatively in agreement; 2) consider multiple, distinct outcomes to evaluate a range of potential

results; 3) optimize drug ratios for the specifics of component features; and 4) include subdom-

inant levels of weaker antibodies to potentially cover holes in coverage not observable from

incomplete preliminary data.

Methods

Code and data

All analysis were performed in R and Python. Simulations, data processing, and visualizations

performed using R used the tidyverse package suite [36]. Sensitivity and cluster analysis of sim-

ulation results with subsequent visualizations were performed using the seaborn library in

Python. All code will be available on GitHub.

Estimation of Hill slope using CATNAP data

The Hill slope in the 2-parameter logistic Hill function (Eq 2) can be estimated from the IC50

and IC80 measurements (formula derived the S1 Text). We estimated the distribution of the

neutralization Hill slope by performing this calculation across virus/antibody combinations

available in the LANL CATNAP database(17). To accommodate assay quantification limits

that potentially vary across experimental study, we limited the analysis datasets to IC50 and

IC80 values between 0.01 and 20 ug/mL, comprising 20,236 total combinations. Additionally,

we grouped calculations within quartiles of input IC50 to assess whether Hill slopes vary by

underlying viral sensitivity or measurement error that varies with the scale of IC50.

Global sensitivity analysis

We performed ~10,000 simulations over all combinations of parameters in Table 2 and calcu-

lated all PKPD outcomes. We chose a one-compartment exponential PK model with trough

time 84 days for each bNAb: Ci(t) = Ci(0) exp(−kit), and summarized the PK model with its

half-life hli = ln 2/ki. The PK model used a one compartment model with initial condition

defined as the dose scaled by a volume of distribution (Ci(0) = D/V) fixed to 3 L based on pre-

vious studies of human IgGs [37,38]. One bNAb was simulated to always have equivalent or

better half-life than the other to avoid redundancy. We chose a log-normal distribution for

IC50s for each bNAb parameterized by its mean μi and standard deviation σi on the log10 scale,

also allowing for a fraction ωi that are completely resistant (infinite IC50). We sampled 500

viruses per simulation. We then varied these parameters, along with the ratio of doses r and

the total dose D. Then, we determined the optimal ratio as the ratio that maximized each

PKPD outcome for all other parameter values across interaction models. To calculate IIP

under Bliss-Hill, we used neutralization for each bNAb as the basis input as described in

Table 1 (see S1 Text for explanation on why IIP is not calculated using combined BH titer).

Using the seaborn package in Python, we performed hierarchical clustering of Spearman cor-

relations among outcomes and between parameters and outcomes.
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Comparison of bi-specific to parental antibodies

For the first parental bNAb, we chose a potent neutralizer (mean IC50 of 10−3 with 0% viral

resistance) but with poor PK: elimination half-life equivalent to 1/12 of the administration

period (i.e., 7-day half-life for an 84-day trough). For the second bNAb, we chose a more mod-

est neutralizing profile (mean IC50 of 10−2 with higher variance and 33% viral resistance) but

with excellent PK: elimination half-life equivalent to one administration period.

To model the bi-specific, we assumed the single molecule formulation means two parental

products are given at the identical dose. We also assumed the clearance PK was determined by

the faster of the two parental products. We additionally allowed for synergy, such that each

antibody’s potency is improved by a factor α. This factor was assumed to be the same for all

viral strains. Thus, following Eq 3 and Table 2, the bi-specific IIP against a single virus Vj can

be calculated for max, min, and additivity models, respectively

IIPj ¼ log
10
½1þ a min

i
tij�; Eq 6

IIPj ¼ log
10
½1þ a max

i
tij�; Eq 7

IIPj ¼ log
10
½1þ a

P
itij�: Eq 8

For Bliss-Hill interaction, the derivation from individual titers to a combination IIP is

shown in the S1 Text and then the bi-specific synergy was implemented as follows:

IIPj ¼
P

ilog10
½1þ atij�: Eq 9

For comparing the combination and bi-specific therapies, we examined IIP and % viruses

having IIP>2 (a surrogate of protection in nonhuman primate studies [14]) for AUC and

trough. Calculations were based on 500 simulations as implemented for the global sensitivity

analysis.

Deriving titer vs. protection dose-response relationships

We tested several models to map in vivo protection from in vitro neuralization using both

NHP meta-analysis data and the AMP clinical trial results[5,14]. In the NHP single high dose

challenge study, the authors developed a logistic regression model to predict protection proba-

bility from in vitro neutralization titer [14]. We use the titer of their model at 50%, 75%, and

95% protection as input for our model. A dose-response relationship was established between

the IC80 against VRC01 and the prevention efficacy (PE, using data depicted in Fig 3 of

Ref. [5]). To derive a titer relationship, we assumed the IC80 dose-response relationship

depicts the per-exposure infection probability for the average treated AMP participant when

exposed to a given virus (i.e., IC80). Under the simplifying assumption that infection time is

random, we estimated the average concentration of a treated participant by taking the

weighted mean of the midpoint concentrations across the VRC01 study groups (36.2 mcg/mL,

Table 1 Ref. [5]). The weights were the group sample size over the overall sample sizes. We

then translated the IC80 to ID80 titer simply by dividing IC80 by the average concentration,

and then translated ID80 to the ID50 assuming a Hill slope of 1 (see S1 Text).

To derive the dose-response relationship, we employed the following approach: for a given

bNAb (i) at a given concentration, we estimated in vivo protection (p) using neutralization

titer (τij) against a virus (j). Using Eq 3 and estimating a single parameter, the potency reduc-

tion, was ρ = 1/91 for the NHP data and 1/370 for the AMP data. For each, a better fit was
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achieved using a 5-parameter logistic (5PL) model, a generalized dose-response type function

with 5 parameters {A,B,C,D,E} and the form

yðxÞ ¼ Dþ ðA � DÞf1þ exp½BðlogðxÞ � logðCÞÞ�g� E; Eq 10

here mapping in vitro titer x = τij to in vivo protection y = pij. We fixed D = 0% and A = 100%

so that protection ranges from 0–100%. For the NHP data, the remaining 3 parameters were

estimated as B = −1.84, C = 257, and E = 0.338; and for the AMP data, the remaining 3 parame-

ters were estimated as B = −1.86, C = 404, and E = 0.892. The best fit of the potency reduction

model and the 5PL model are compared in S3 Fig.

Realistic clinical trial simulation

The full trial design contained a 12-week observation window and 600 mg total subcutaneous

(SC) dosing with PK parameters established from clinical study (S1 Table and S5A Fig). To

boost performance of 3BNC117 and 10–1074, we artificially enhanced their half-lives by 3-fold

to mimic an -LS variant (3BNC117-T and 10-1074-T). The distribution of in vitro neutraliza-

tion against circulating strains was modeled using in vitro derived IC50s from 507 available

common strains in the LANL CATNAP database(17) (S5B Fig).

We then illustrate predictions of the 5PL models using the NHP and AMP protection esti-

mates (S3 Fig) for each bNAb comparing in vitro neutralization to in vivo protection via %

viral coverage >50 and>95% in S5C Fig. Using this model of protection, we then calculated

combined protection across the administered bNAbs (b is the number of antibodies consid-

ered) assuming independence similar to Bliss-Hill:

pj ¼ 1 �
Qb

i ð1 � pijÞ Eq 11

We then defined our protection PKPD outcome as viral coverage fraction such that we can

determine what % of all viruses have protection above a certain threshold value X:

f t;Xð Þ ¼
1

n
Pn

j¼1
Iðpj tð Þ > XÞ Eq 12

where I is the indicator function equal to 1 if the inequality holds and 0 otherwise.

We assessed PKPD at the trough time (12-weeks, T) and as an average over the administra-

tion period (AUC/T over time through T).

Supporting information

S1 Text. Additional methodological text and derivations.

(PDF)

S1 Fig. Estimated neutralization Hill slope using CATNAP data. Estimated Hill slopes for

different ranges of IC50 measurements (split into quartiles). Each point represents a calcula-

tion for an antibody/virus combination in the database where IC50 and IC80 measurements

were both within 0.01–20 ug/mL range. Median Hill slope estimates (IQR) displayed above

each box plot. There were approximately 5000 measurements per quartile.

(EPS)

S2 Fig. Additional clustering results for AUC. As for trough in Fig 2A, endpoints cluster by

Spearman correlation into similar 5 main categories, from top to bottom: titer, minimum,

additive titer, neutralization/coverage, and IIP.

(TIF)
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S3 Fig. Empirically estimated dose-response between titer and protection. Relationship

between neutralization titer (concentration divided by IC50) and in vivo protection using two

different data sets: 1) NHP challenge meta-analysis titers (blue) that predict 50%, 75%, and

90% protection, and 2) AMP clinical trials data (red) extracted from the AMP IC80 vs. protec-

tion efficacy curves and converted into titer (see Methods in main text). Expected in vitro neu-

tralization at given titer shown as a dashed black line, potency reduction depicted via curve

shift achieving 50% protection shown as dotted line (multiplicative shift factor, p, listed in leg-

end), and 5PL model curve fitted over empirical protection estimates (points on curves)

depicted via solid lines.

(EPS)

S4 Fig. IIP and ID50 relationship by interaction model against a single virus at varying

concentration and bNAb ratios. For the virus, bNAb1 had an IC50 of 1 and bNAb2 had an

IC50 of 0.1. Predicted experimental titer is a combination titer (i.e., dilution factor applied to

sera containing both antibodies). A) The predicted experimental ID50 titer by interaction

model (see Table 1 for ID50 titer formulas) across total bNAb concentrations at two ratios of

the individual bNAb (1:1 and 1:10 denoted by colors). B) The predicted neutralization IIP by

interaction model (see Table 1 and for neutralization formulas) across total bNAb concentra-

tions and ratios. IIP was calculated as the log10-transformation of one minus the combined neu-

tralization. For Bliss-Hill, the lines cross at increasing concentration indicating the 1:1 ratio

performs better, a qualitatively different conclusion than A. C) Relationship between predicted

experimental ID50 titer and neutralization across total bNAb concentrations and ratios. The

black line indicates the predicted relationship between IIP and ID50 for single antibody/virus

combinations. For additivity, all lines overlap indicating the relationship holds. For Bliss-Hill,

separate lines indicate that the experimental ID50 does not correspond to a unique neutraliza-

tion. For example, at a predicted BH experimental ID50 of 100, the 1:1 ratio elicits the highest

neutralization, and both ratios elicit higher neutralization than predicted by using titer.

(EPS)

S5 Fig. Input data for 3-bNAb combination optimization. A) PK over 12 weeks for each of

the three antibodies given at a 600mg dose using subcutaneous route. B) Neutralization data

for each of the products from 507 viruses in CATNAP database. Distribution of IC50s among

sensitive viruses (IC50< 10) are shown as box plots in the bottom plot and bar plots depict the

total resistant viruses (IC50 > 10) in the top plot. C) For increasing concentrations for the

individual antibodies, the percent of viruses sensitive at given thresholds (50% and 95%) and

concentrations (x-axis). The first column depicts neutralization coverage when concentration

exceeds the IC50 values depicted in B. For increasing concentrations, the second two columns

depict protection coverage based on estimates from an NHP meta-analysis and the AMP clini-

cal trials as calculated in S3 Fig.

(EPS)

S1 Table. Population PK input parameters for the empirical case study optimization.

(DOCX)

S2 Table. Ratio optimization results from 3-bNAb optimization for 3BNC117-T, 10-

1074-T, and VRC07 523-LS.

(DOCX)
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