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Abstract: Inorganic hole-transporting materials (HTMs) for stable and cheap inverted
perovskite-based solar cells are highly desired. In this context, NiOx, with low synthesis temperature,
has been employed. However, the low conductivity and the large number of defects limit the boost
of the efficiency. An approach to improve the conductivity is metal doping. In this work, we have
synthesized cobalt-doped NiOx nanoparticles containing 0.75, 1, 1.25, 2.5, and 5 mol% cobalt (Co) ions
to be used for the inverted planar perovskite solar cells. The best efficiency of the devices utilizing the
low temperature-deposited Co-doped NiOx HTM obtained a champion photoconversion efficiency
of 16.42%, with 0.75 mol% of doping. Interestingly, we demonstrated that the improvement is not
from an increase of the conductivity of the NiOx film, but due to the improvement of the perovskite
layer morphology. We observe that the Co-doping raises the interfacial recombination of the device
but more importantly improves the perovskite morphology, enlarging grain size and reducing the
density of bulk defects and the bulk recombination. In the case of 0.75 mol% of doping, the beneficial
effects do not just compensate for the deleterious one but increase performance further. Therefore,
0.75 mol% Co doping results in a significant improvement in the performance of NiOx-based inverted
planar perovskite solar cells, and represents a good compromise to synthesize, and deposit, the
inorganic material at low temperature, without losing the performance, due to the strong impact
on the structural properties of the perovskite. This work highlights the importance of the interface
from two different points of view, electrical and structural, recognizing the role of a low doping Co
concentration, as a key to improve the inverted perovskite-based solar cells’ performance.

Keywords: inverted planar perovskite solar cell; hole transport material; Co-doped NiOx; perovskite
morphology; electrical conductivity

1. Introduction

Organic-inorganic halide perovskite solar cells (PSCs) have gained increasing attention owing to
their high power conversion efficiencies and fabrication in solution at low temperatures. Within just a
few years, PSCs have boosted efficiency to 25.2% [1]. Moreover, low-temperature processing makes
them promising for future industrialization [2]. Along with the improvement in the perovskite material
and deposition techniques, the advances in perovskite solar cells are also due to the study of the different
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hole-transporting and electron-transporting materials (HTMs and ETMs, respectively) employed in the
devices [3]. The two most common architecture used in the fabrication of PSCs are the n-i-p and p-i-n
configurations and the current highest efficiencies are achieved with the n-i-p one, using TiO2 as ETM
and doped Spiro-OMeTAD as HTM [4]. This configuration is characterized by the high cost of the HTM
and by a slight hysteresis, which has to be avoided with the use of special treatment or interlayers [5].
This hysteretic behavior can also be suppressed by using inverted p-i-n architectures [6–8]. Moreover,
the planar p-i-n configuration is more favorable due to its relatively low-temperature processing,
primarily when organic HTM is used [9,10]. However, one of the challenges in the fabrication
of inverted perovskite solar cells is the lack of stable and low-cost HTM: i.e., poly (3, 4-ethylen
edioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) has high acidity, which decreases the long-term
stability of the devices [11], and the poly[N,N’-bis(4-butylphenyl)-N,N’-bisphenylbenzidine] (p-TPD)
and the poly(triaryl amine) (PTAA) are expensive and very hydrophobic, hindering the easy perovskite
deposition, due to the poor wettability [12]. Conversely, inorganic materials like, MoOx, CuCrO2,
CuOx, CuSbS2, CuSCN and NiOx, have low-cost and superior stability as well as higher mobility, basic
prerequisites for obtaining stable and high-efficiency perovskite solar cells.

Among the inorganic HTMs, the low-temperature NiOx is the most common in PSCs [13–16].
The remarkable properties of NiOx, such as intrinsic p-type doping nature, high optical transmittance,
deep-lying valence band (VB) (5.4 eV) and low cost, make NiOx a preferential candidate for HTM
in PSCs. NiOx has been prepared by several methods such as spray pyrolysis and a solution process
or pulsed laser deposition [14,17–19]. Despite the merits of NiOx as HTM, its low intrinsic electrical
conductivity and the high amount of defects when it is synthetized at low temperature, resulting in an
increased charge recombination and reduced hole extraction [20], have blocked further improvement to
NiOx-based PSCs. To overcome this drawback, keeping the temperature low, two main methods have
been investigated, one is the addition of interlayers to control the interface [21] and a more effective
one is metal ion doping. Different metals are used to dope the NiOx, like Au+ [13], Cu2+ [22], Co3+ [23]
and Li+ [24]. Among different metals, Co is a promising dopant, yet used for other materials in direct
solar cells configuration [25–27]. With regard to the NiOx, due to the low lattice parameter mismatch
of 1.6% [28], a power conversion efficiency (PCE) of 18% has been obtained [29], but with an annealing
around 300–400 ◦C [30]. Low-temperature synthesis of Co-doped NiOx has been further optimized,
and an improvement of the conductivity when the level of doping increases has been demonstrated [17].
However, the maximum efficiency is obtained at a doping level (1%) lower than that needed to obtain
the maximum conductivity (5%), because a decrease of the hole extraction ability [17]. Here we have
developed the low temperature synthesis of Co-doped NiOx nanoparticles with Co ion from 0.75 to 5
mol% to stay in the range of higher conductivity and good hole extraction properties [23]. A comparative
analysis of the structural and optical properties of the perovskite material, when deposited on the
inorganic HTM, is also carried out. Although the conductivity is almost the same in the case of
the NiOx doped and not doped by Co, we demonstrated that the Co doping leads to an increase of
perovskite layer morphology and a change in the recombination mechanism. This is correlated with the
increased fill factor (FF) in the solar cells—usually low due to the high temperature deposition (Table 1)
employed and for the generation of defects in the bare NiOx devices—in turn due to the increased
perovskite crystallinity and to the morphological improvement when the Co doping is employed as
high as 0.75 mol%, assisting in the reduction of the more hostile bulk recombination [31–33].
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Table 1. NiOx processing temperature and the corresponding best efficiency obtained for inverted
perovskite solar cells; ITO: Indium tin oxide; PCBM: Phenyl-C61-butyric acid methyl ester;
BCP: bathocuproine.

Device Configuration NiOx Processing
Temperature

Increasing FF (%) by
Adding Dopant PCE (%) Refs.

Glass/ITO/Co-NiOx/CH3NH3PbI3/PCBM/BCP/Ag 130 ◦C 6 16.42 This
work

Glass/ITO/Co-NiOx/CH3NH3PbI3/PCBM/BCP/Ag 130 ◦C 6 14.5 [23]
Glass/ITO/Co-NiOx/CH3NH3PbI3/PCBM/PEI/Ag 400 ◦C 2 18.5 [29]
Glass/FTO/NIR-Co-NiOx/CH3NH3PbI3/PCBM/PEI/Ag 300 ◦C 0 17.77 [30]

Glass/ITO/Co-NiOx
(solution-processed)/CH3NH3PbI3/PCBM/C60/Ag 340 ◦C 10 17.52 [34]

2. Experimental Section

2.1. Materials

Ni(NO3)2·6H2O (99.9%) and CoCl2·6H2O (99.0%), were purchased from Sigma Aldrich (Madrid,
Spain). Lead iodide (PbI2, >98%, from TCI, Tokyo, Japan), methylammonium iodide (MAI, 98%, from
Greatcellsolar, Queanbeyan, Australia), 2-propanol (99.7% from Carlo Erba, Val de Reuil, France), ethanol
(96%) and acetone (99.25%) from PanReac (Castellar del Valles, Spain), hydrochloric acid (HCl 37%), dimethyl
sulfoxide (DMSO anhydrous 99.9%), chlorobenzene (CB anhydrous 99.8%), ethylacetate (EA anhydrous
99.8%), zinc powder (99.995%) from Sigma aldrich. [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM,
99%) was purchased from nano-C (Westwood, NJ, USA). 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline
(BCP, 99%) was purchased from Sigma Aldrich.

2.2. Synthesis of NiOx and Co-Doped NiOx Nanoparticles

The NiOx was synthetized following previous reports [23]. The different steps of the synthesis are
summarized in Figure 1. NiOx nanoparticles doped with different amounts of Co with different molar
ratios (x = 0, 0.75, 1, 1.25, 2.5 and 5 mol%) were synthesized using the chemical co-precipitation method,
according to the method reported in literature [35]. The typical procedure is as follows: Ni(NO3)2·6H2O
(0.25 mol) was dissolved in 50 mL of deionized deoxygenated H2O to obtain a dark green solution.
After being vigorously magnetically stirred for 1 h, NaOH solution (10 M, alkali source) in drops
was added to the initial solution by slower stirring for crystallizing structures. During this operation,
the initial dark green color of the solution turned to opaque pale green as a result of nanoparticles
formation. Then keeping it stirred for another 1 h, the pale green colloidal precipitate was collected by
an ultrasonic centrifugation at 6500 rpm for 15 min, and washed twice with deionized water. Finally,
the product was dried at 80 ◦C overnight. The green solid obtained was grinded in mortar then
calcined at 270 ◦C for 2 h to obtain a black powder. It is worth mentioning that all main synthesis steps
were performed under N2 gas protection to create an oxygen-free atmosphere and prevent oxidation
of divalent nickel salts. For doping, divalent Co (Co2+), CoCl2·6H2O was added to the Ni(NO3)2·6H2O
solution at various molar ratios which were mentioned above. Before use, nanoparticles were dispersed
in deionized water by ultrasonics probe for 2 min with amplitudes of 52% and cycle 1 (20 mg mL−1).
Finally, the nanoparticle solution was filtered through a PVDF filter (0.40 µm).
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2.3. Fabrication of Solar Cells

Substrates (tin-doped indium oxide-ITO) were etched with zinc powder and HCl 6 M. After
cleaning with soap and water and then placing in an ultrasonic bath with 2% Extran solution in water
for 15 min with ethanol, isopropanol, and acetone for 15 min for each solvent, the substrate were
dried by airflow and were put in an ultraviolet–ozone (UV-O3) environment for 10 min to remove
organic residues. The HTMs were obtained by spin-coating the corresponding NiOx or Co-NiOx

aqueous solution (20 mg mL−1) with a speed of 3000 rpm for 40 s and heated at 130 ◦C for 10 min, in
ambient conditions. The perovskite film (MAPbI3) was deposited over the HTM layer by one-step
spin coating at 2000 rpm for 10 s, followed by 6000 rpm for 28 s with an acceleration of 3000, with the
precursor composed of PbI2 and MAI (1.3 M for each) in 1 mL DMSO. Ethyl acetate was dropped onto
the perovskite film at the last 15th second during the spin coating. As soon as the spin coating was
finished, the sample was moved to a hotplate and annealed for 10 min at a temperature 130 ◦C [36].
Afterward, PCBM (20 mg mL−1 in CB) was spin-coated at 1000 rpm for 30 s and dried at 60 ◦C for
10 min. BCP (0.5 mg mL−1 in 2-propanol) was deposited by spin-coating at 6000 rpm for 30 s and dried
at 60 ◦C for 5 min. Finally, Ag electrodes with a thickness of 100 nm were thermally evaporated at a
deposition rate of about 0.5 nm s−1 in a vacuum chamber through a shadow mask [37].

2.4. Structural Characterization

The morphologies of the samples (ITO/Co-NiOx/MAPbI3) were characterized with a field-emission
scanning electron microscope (FEG-SEM JEOL 3100F) operated at 5 kV, equipped with energy-dispersive
X-ray spectroscopy. The X-ray diffraction (XRD) patterns of the NiOx and Co-NiOx powders were
recorded using an X-ray diffractometer (D8 Advance, Bruker AXS, Karlsruhe, Germany) (Cu Kα, the
wavelength of λ = 1.5406 Å) within the range of 30–70◦. Transmission electron microscopy (TEM)
images were recorded using (JEOL 2100 microscope, Akishima, Japan). Surface morphologies of thin
films were observed using an atomic force microscope (AFM) (CSI-Nano Observer, Les Ulis, France).

2.5. Optoelectronic Characterization

The current−voltage (J/V) curves were measured using a Keithley 2612 source meter under AM
1.5 G (100 mWcm−2) provided by a solar simulator model 69,920 Newport. Each curve was generated
using 123 data points. The active area of the cell is 0.121 cm2, and the scan rate was 10 mVs−1.
The incident photons to current efficiency (IPCE) measurements were performed with a QEPVSI-b
Oriel measurement system. The steady-state absorption spectra of the perovskite films were achieved
by using an ultraviolet–visible (UV/Vis) absorption spectrophotometer (Varian, Cary 300, Palo Alto,
CA, USA), and the steady state and the time-resolved photoluminescence (PL) decay were collected by
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a Horiba Fluorolog. The steady state PL was collected at a wavelength of 780 nm after excitation at
532 nm.

3. Results and Discussion

To investigate in detail how the presence of very low content of Co dopant (0.75–5 mol%) in
the nickel oxide structure influencing the properties of the PSCs, a first characterization of NiOx

nanoparticles was made. TEM images of NiOx nanoparticles and NiOx with different Co percentage
as dopant are shown in Figure 2. Pure NiOx nanoparticles have a broad size distribution (10–33 nm)
centered at 17 nm. However, the Co-doped particles present a smaller average size around 12 nm, and
a narrower size distribution than the undoped nanoparticles. These results are in good agreement with
the crystal size calculated from the XRD measurements (Figure 3a) using the Debye–Scherrer formula,
see Table S1 [38,39].
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XRD peaks of all samples correspond to the standard pattern characteristic of the cubic crystal
structure of NiOx, with three characteristic diffraction peaks at 37.1◦, 43.0◦ and 62.7◦ related to (111),
(200) and (220) planes of NiOx, respectively (Figure 3a). No secondary phase is detected, ruling out
the formation of other Co-based structures such as CoO. Therefore, the NiOx has been formed with
relatively high phase purity and, according to the difference in the peaks intensities between the
samples of undoped NiOx and Co-doped NiOx, it is clear that Ni ions have been successfully replaced
with Co ions, as demonstrated also by energy-dispersive X-ray spectroscopy (EDS) measurements
(Figure S1) [40]. We investigated the optical characteristics of the pristine NiOx and Co-NiOx films.
The Co-NiOx films deposited on the ITO substrates revealed a high transmission (>87%) in the
visible region (400–800 nm) (Figure 3b). [23] Concerning the optical properties of the Co-NiOx films,
they showed a slightly lower transmission than undoped films, see Figure 3b.

NiOx and Co-doped NiOx nanoparticles were deposited in thin film in order to work as HTM.
The surface morphologies of pure NiOx and Co-NiOx films are shown in Figure 4. The Co-NiOx films
consisted of smaller-sized grains than the pure NiOx film and the 0.75 mol% show the most uniform
morphology over a large area [23].

MAPbI3 films were deposited on top of the NiOx or Co-NiOx HTM. The SEM images (Figure 5a–f)
indicated similar polycrystalline morphologies, uniform and pinhole-free perovskite with smaller grain
sizes (∼150–200 nm) on the top of NiOx film and the biggest size is for the Co doping percentage 2.5 and
5 mol%). The bigger grain size could be due to better morphology of the Co-doped substrate. Between
the different doping percentages, the 0.75 mol% Co-NiOx film, that present the best morphology,
produce also the second for dimension perovskite grains, of ∼250–300 nm (Figure 5b), together with a
more uniform distribution (Figure S2). The uniformity of the inorganic HTM and the big grains of
the perovskite, demonstrate the potential of the 0.75 mol% doping for the fabrication of high-quality
optoelectronic devices. The XRD spectra of perovskite layers (Figure 5g) show the presence of six main
peaks at 14.20◦, 19.94◦, 23.56◦, 28.50◦, 31.75◦, and 40.67◦, which correspond to the (110) (112) (202) (220)
(310) and (224) planes for the perovskite MAPI3 [36]. Moreover, the perovskite growth on the NiOx

substrate doped with 0.75 mol% of Co is the more crystalline and oriented one, as the intensity of the
peak at 14.20◦ and the ratio between the (110) and (220) faces are the highest (Table S2). The benefits of
growing crystal with large grain size and good orientation are, firstly, the reduced grain boundary
area associated with large grains. The reduced grain boundary area suppresses bulk defects, charge
trapping and decreases recombination, with the consequence of a relative higher carrier mobility. This
is also translated in the device, in which the photo-generated carriers can easily propagate without
frequent encounters with defects and impurities [41], see below.
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Figure 5. Top view SEM images for perovskite layers fabricated on the top of NiOx or Co-NiOx layer;
(a) NiOx. (b) 0.75 mol% Co-NiOx; (c) 1 mol% Co-NiOx; (d) 1.25 mol% Co-NiOx; (e) 2.5 mol% Co-NiOx;
(f) 5 mol% Co-NiOx; (g) corresponding perovskite X-ray diffraction patterns.

To quantify the effect of Co-NiOx as HTMs, PSCs have been fabricated and characterized with
an inverted structure as shown in Figure 6a (glass/ITO/NiOx or Co-NiOx/MAPbI3/PCBM/BCP/Ag).
The cross section (Figure 6b,c) demonstrates that the thickness of the perovskite is the same (300 nm)
on the top of bare NiOx and Co-NiOx. It is noted here that better charge transport and low energy
loss could be expected for the devices with Co-NiOx because of the well-matched energy levels to
perovskite than the pristine NiOx [34]. The pristine champion NiOx-based inverted PSC showed
a fill factor (FF) of 70%, a short-circuit current density (Jsc) of 19.5 mA cm−2, a Voc of 0.96 V and a
final PCE of 13.2%. By the insertion of the Co ions, Jsc, FF and Voc increase, compared with that of
pristine NiOx (Figure 6d) [42,43]. The corresponding device parameters are summarized in Table 2
and the statistics on 40 devices for each type are reported in Figure S3. We achieved a champion PCE
of 16.42%, for the 0.75 mol% Co-NiOx, close to the PCE reported with NiOx as HTM synthetized at
high temperature [29] and the highest reported for low temperature Co-doped NiOx based inverted
perovskite solar cells [23]. The highest FF value was found again for the 0.75 mol% Co-NiOx device
with a value of 76%, compared to 70% for the pristine NiOx device. Thus, it is clear that a proper Co
doping effectively improves the quality of the perovskite materials and enhances the Jsc and the general
device performance. The stabilized current at maximum power point is also reported in Figure S4.
Note that despite 5 mol% Co-NiOx samples present big grain sizes, see Figure 5f, they also present a
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low shut resistance, see Figure 6d, that decreases significantly the FF, see Table 2. This results points to
the presence of pinholes probably induced by the fast growth of some grains.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 13 
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Figure 6. (a) Sketch of the device architecture; Cross-sectional SEM images for perovskite layers
fabricated on the top of NiOx or Co-NiOx layer: (b) NiOx and (c) 0.75 mol% Co-NiOx; (d) J/V curves of
PSCs using 0.75–5 mol% Co-NiOx and bare NiOx as hole-transporter materials (HTMs). (e) incident
photons to current efficiency (IPCE) of 0.75 mol% Co-NiOx and NiOx based champion base devices.

Table 2. Photovoltaic performance by J/V measurements with reverse scan under standard illumination
(100 mW cm−2) for champion devices and averaged.

Co-Doping (mol%) FF (%) Jsc (mA cm−2) Voc (mV) Best PCE (%) Average PCE ± s.d. (%)

0 70 19.5 968 13.2 11.47 ± 1.08
0.75 76 21.5 1005 16.42 14.02 ± 1.3

1 75 19.5 920 13.45 11.66 ± 1.1
1.25 76 19.75 938 14 11.75 ± 1.3
2.5 75 18.7 924 12.9 11.13 ± 0.8
5 56 18.7 910 9.5 8.7 ± 0.6

The IPCE spectra of the champion device shows higher external quantum efficiency for 0.75 mol%
Co-NiOx than the prinstine NiOx device (Figure 6e). The integrated current densities derived from
the IPCE spectrum are 21.5 mAcm−2 for 0.75 mol% Co-NiOx and 19.5 mAcm−2 for prinstine NiOx, in
good agreement with the J/V measurements. Moreover, the Jsc obtained is the highest reported for
low-temperature Co-doped NiOx [23] not caused to the different active layer thickness (Figure 6b,c).

In order to unveil the origin of the better performance of Co-NiOx samples a systematic optical
and electrical characterization was performed. The behavior of the photoluminescence (PL) with NiOx

and Co-NiOx HTM has been analyzed. Comparing the PL of MAPbI3 films deposited on glass with the
PL of MAPbI3 deposited on NiOx and Co-NiOx films, a significant PL quenching is observed, especially
for samples deposited on Co-NiOx films, see Figure 7a and Figure S5. This fact indicates an increase of
the non-radiative recombination at the interface [44]. This point is partially confirmed by the decrease
of the PL lifetime measured by time-resolved PL (TRPL), see Figure 7b and Table S3. The perovskite
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layer without any HTM showed the average lifetime (τave) of photo-generated excitons of 32 ns, while
the perovskite layer on pristine NiOx and Co-NiOx exhibited τave of 20 ns and 9.8 ns (Figure 7b).
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corresponding samples; (c) Voc vs. different light intensity for 0.75 mol% Co-NiOx and NiOx.

On the other hand, surface roughness and electrical properties of the HTM were analyzed by
atomic force microscopy (AFM) and conductive AFM (c-AFM). At this doping level, the improvement
of the conductivity is not significant, as we measure by conductive-AFM (Figure S6). The surface
roughness of NiOx and Co-NiOx films is also the same at about 50 nm, see Figure S6. Since the
films roughness was still comparable to the pristine NiOx film, it confirms again that the Co was
effectively embedded in the NiOx without notable deformation of the rock salt crystal structure [34].
Meanwhile c-AFM measurement shows similar electrical behavior (Figure S6), thus the improvement of
performances of PSCs based on Co-NiOx cannot be attributed to an increase of the electrical conductivity.
Therefore, an analysis of the ideality factor, m, of both devices was performed to characterize whether
the effect of Co in the structure, in addition to improving the crystallinity and grain size, is to modify
the electrical behavior of the device, specifically the electronic recombination.

In order to analyze the recombination, the mechanism m of both samples was obtained from the
slope of the Voc dependence with light illumination, see Figure 7c, using the relation: [45,46].

e·VOC = Eg + m·kB·T·ln
φ

φ0
(1)

where e is the electron charge, Eg is the light absorber bandgap, kB is the Boltzmann constant, T the
temperature, Φ is the light intensity and Φ0 is a constant with the same units than Φ.

For the Co-NiOx device, two different behaviors are observed, corresponding to high and low
light intensity. We determined m = 4.2 at low light intensities corresponding to a bulk multiple trapping
in trap distribution. However, at high light irradiation m decreases to 1.5, indicating that most of traps
are filled at higher light intensity and that the recombination mechanism is now mainly influenced by
surface recombination, in good agreement with the PL results. For the NiOx device (Figure 7c) the
recombination mechanism is totally independent from the light intensity, as the device presents the
same ideal factor of 4.8, pointing to a higher density of bulk traps, which cannot be filled even at high
light intensity.

Taking into account the different characterizations performed on the various devices using NiOx

and Co-NiOx, focusing concretely on 0.75 mol% that presents the highest performance, we observed
two different main trends. On the one hand, an increase of the grain size and improvement of
the morphology, which decrease the bulk defects, and on the other hand an increase of the surface
recombination. In the case of Co-NiOx 0.75 mol%, it presents higher and more uniform grain size and
we hypothesize that the positive effect of the improvement of the bulk properties compensate for the
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deleterious effect of a not-suppressed interfacial recombination, causing a final enhancement of the
device performance.

4. Conclusions

In summary, we have investigated the suitability of Co-doped NiOx nanoparticles as HTMs.
Co-NiOx nanoparticles with a diameter of ∼10–20 nm, containing different concentrations (0–5 mol%)
of Co ions were synthesized. A comprehensive analysis of optical, morphological and crystallographic
investigations demonstrated a double effect of the Co doping. On the one hand, Co doping arises from
a surface recombination, on the other hand, Co doping influences the properties of the perovskite
grown on top of the Co-NiOx substrates, improving the morphology as a consequence of a grain size
enlargement, and reducing the bulk-recombination. The final performance of the devices prepared with
Co-NiOx as HTM depends on the balance between these two opposite trends. The case of 0.75 mol%
Co-NiOx-based device, that presents a perovskite active layer with big grain size and the highest
crystallinity, produces a positive balance and the devices with the highest performance are obtained
with champion PCE of 16.42%, higher than previous results with the Co-NiOx HTM synthetized at
low temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/872/s1,
Figure S1: EDS spectra for NiOx and Co-NiOx nanoparticles and quantitative analysis for each element (Ni,
Co, O). Figure S2: Perovskite grain size statistical distributions of the film deposited on the NiOx with and
without Co doping at different percentage (from 0.75 to 5 mol%). Figure S3: Statistical analysis; Figure S4:
Recorded photocurrent at maximum power point JMPP of the champion devices; Figure S5 PL measurement;
Figure S6: Conductive-AFM topographies on ITO substrates; Table S1: Grain sizes (nm) of the pure NiOx and
different percentage Co doped nanoparticles, obtained from XRD measurement using the Debye-Scherrer; Table S2:
Intensity of the XRD perovskite peaks (counts) and ratio between the intensitity of the peaks 110 (14.2◦) and 220
(28.5◦). Table S3: photoluminescence time decay parameters τ1 and τ2 and their average.
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