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Abstract: Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resis-
tance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the
risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have
therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed
to experimentally investigate the efficacy of newly designed synthetic PPARα/Υ partial agonists on a
High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight)
were divided into four groups. The experimental groups were fed the HFD for three consecutive
weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARΥ agonist pi-
oglitazone and the partial synthetic PPARΥ (PIO; 20 mg/kg/BW, orally) were administered orally
for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR,
and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1
(ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive
intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR,
endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and
histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting
blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both
microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial
synthetic PPARΥ derivative evidenced a vascular alteration significantly more than reference PIO via
decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-
5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARΥ derivative
significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.

Keywords: type 2 diabetes mellitus (T2D); peroxisome proliferator-activated receptor (PPAR); in-
tracellular adhesion molecule 1 (ICAM-1); endothelial nitric oxide synthase (eNOS); endothelin-1
(ET-1)

1. Introduction

Type 2 diabetes (T2D) is a worldwide concern that establishes a significant influence
on patient mortality and morbidity [1], affecting about 463 million adult people aged
20–79 years [2], which is expected to increase by 51% to 700 million by 2045 [2,3]. T2D is
characterized by peripheral insulin resistance [4,5], which diminishes glucose reuptake in
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skeletal muscle and adipose tissue, leads to defective hepatic glucose output, and impairs
insulin production from pancreatic B-cells [6,7]. Prolonged insulin resistance develops
micro- and macrovascular problems predisposing to vascular risk factors, elevated blood
pressure, obesity, diminished glucose metabolism, and dyslipidemia [8–10], consequently
leading to microangiopathy in multiple organs, retina, kidney, and neurons, endothelial
dysfunction, and risk of cardiovascular disease [11,12]. This metabolic syndrome increases
free fatty acids; oxidative stress mediators induce the breakdown of mitochondrial func-
tions [13,14] and impair endothelial nitric oxide synthase (eNOS) activity [15]. Elevated
levels of endothelin-1 (ET-1) are produced as a result of decreased eNOS expression and
increased vascular oxidative stress [16,17], as well as adhesion molecules resembling P-
selectin and E-selectin [18,19].

Endothelial dysfunction is a hallmark of type 2 diabetes and a precursor to the de-
velopment and worsening of atherosclerotic plaques [20], characterized by inflammation
of the arterial wall controlled by vascular smooth muscle cells (VSMCs), macrophages,
and endothelial cells (ECs) [21]. The lipotoxicity of saturated long-chain fatty acids in
cardiomyocytes [22] is related to many factors such as reactive oxygen species (ROS) [23],
peroxisome proliferator-activated receptors (PPARs) [24,25], and phosphoglycerate cofactor
1 (PGC-1) [26]. Furthermore, endothelial short noncoding microRNAs (miRNAs) have es-
sential roles in vascular formation, hemodynamic stress, progression of atherosclerosis, and
inflammation [27,28]. The most abundant meta-regulators for endothelial gene expression
miRNAs are miR-126-3p and miR-126-5p [28]; the aberration for gene-encoding pre-miR-
126 impacts vascular integrity and angiogenesis [29]. On the other hand, the significant
presence of ischemic neovascularization in the Mir126−/− mice model and the transmis-
sion of miR-126-3p via microparticles released from apoptotic ECs inhibits atherosclero-
sis [30–32], demonstrating that miR-126 is essential for the endothelium stress response.
Furthermore, the endothelial cell death inhibitor miR-126-5p works by directly targeting
the transient receptor potential channel (TRPC6) [28,33]. Tang et al. [34] revealed that the
overexpression of miR-126-5p triggers the Phosphatidylinositol-3-Kinase/Serine-Threonine
Kinase/Mammalian/Mechanistic Target of Rapamycin (PI3K/Akt/mTOR) pathway by
restoring autophagy, reflecting the antiatherogenic effect of miR-126-5p [35]. Consequently,
cell proliferation, migration, and survival of endothelium and VSMCs are all improved
by activating PI3K/Akt/mTOR [36,37]. The upregulation of adenosine monophosphate-
activated protein kinase–mammalian/mechanistic target of rapamycin (AMPK/mTOR)
and hypoxia-inducible factor alpha (HIFα) is related to the induction of autophagy [38],
while PI3K/Akt/PDK1/mTOR, peroxisome proliferator-activated receptors gamma (PPAR
Υ), and nuclear factor kappa B (NF-κB) are significant to reserve autophagy [39]. Dong
et al. [40] recently revealed that miRNA-126-5P significantly interacted with peroxisome
proliferator-activated receptor alpha (PPARα), ATP-binding cassette transporter (ABCA1),
and cholesterol 7α-hydroxylase (CYP7A1) genes, ameliorating dyslipidemia and atheroscle-
rosis.

The nuclear receptor superfamily includes ligand-activated transcription factors called
peroxisome proliferator-activated receptors (PPARs) [28]; the PPAR family is subdivided
into three isotypes PPARα, PPAR β/δ, and PPARΥ [41]. Activation of the PPARs subtype is
essential for controlling cell proliferation, differentiation, apoptosis [42], enhancing cell de-
velopment [43], and wound healing [44], raising high-density lipoprotein (HDL) levels [45],
reducing triglyceride levels [46], and improving insulin sensitivity [47]. However, PPARα
is widely distributed throughout the body tissues such as cardiac [48], renal, liver [49],
muscles, and adipose tissue [50], which is essential for regulation of angiogenesis, inflam-
mation, and free fatty acid catabolism [51]. Recent studies indicate that the ECs, VSMCs,
and macrophages co-expressed both isotypes PPARα and PPARΥ [52], which function in
endothelial cell survival and proliferation [53]. It has been reported in individuals with T2D
exposed to high-fat meals that protein, lipid, and carbohydrate load was connected to in-
creased ROS generation and impaired endothelium-dependent vasodilation [54], lowering
the endothelial function [55,56]. The activation of vascular endothelial cells results in the
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release of pro-inflammatory adhesion molecules such as Intracellular Adhesion Molecule
1 (ICAM-1), Vascular Cell Adhesion Protein 1 (VCAM-1), and E-selectin expression [57],
as well as an increase in pro-inflammatory cytokines such as tumor necrosis factor-, inter-
leukins, and platelet-derived growth factor [58]. The simultaneous activation of dual alpha
and gamma PPARs agonists may provide superior glucose and lipid regulation compared
to single subtype-selective drugs [59,60]. In addition, growth factors and cytokines that
promote endothelial cell migration also regulate angiogenesis [61,62], proliferation [63],
and survival to promote revascularization and tissue ischemia affected by T2D [64,65].

Currently, thiazolidinedione (TZDs), such as pioglitazone, ciglitazone, troglitazone,
and rosiglitazone and their composites are essential drugs promoting favorable effects in
modulating endothelial dysfunction in T2D comorbidity due to their anti-inflammatory
and anticancer effects, as well as antihyperlipidemic activity [66,67]. They act on PPARα
and PPARΥ to ameliorate hyperlipidemia and hyperglycemia in T2D patients [68]. Con-
sequently, they may downregulate the activation of proinflammatory mediators via Pi3k,
AKT, and mTOR signaling pathways [69,70] by promoting favorable effects in modulat-
ing endothelial dysfunction in diabetes comorbidity due to their anti-inflammatory and
anticancer effects, as well as antihyperlipidemic activity [71,72]. Additionally, PPARs are
expressed in adipose tissue and endothelial cell lining [73], modulating chemokines and
adhesion molecules (ICAM, VCAM), as well as downregulating ROS [74]. Indeed, PPARΥ
enhances nitric oxide (NO) production in the endothelium and retracts ET-1 expression, pro-
moting endothelial relaxation [75,76]. Ahmet et al. [77] reported that pioglitazone analogue
significantly regulates Streptozotocin-Induced T2D through stimulating local angiotensin-
converting enzyme 2/angiotensin 1-7 axis with the aid of PI3K/AKT/mTOR Signaling
pathway in the hepatic tissues, thereby regulating glycogen deposition and enhancing
lipolysis. However, Molavi et al. [78] found that PPARΥ ligand rosiglitazone protects
against myocardial ischemia/reperfusion injury via an effect on AT2 receptor upregulation
and p42/44 MAPK inhibition. Thus, the greater abundance of PPARs in different body
organs may be promising to protect T2D patients from cardiovascular comorbidity.

Even though many previous studies demonstrated the beneficial effect of PPAR ligands
in the treatment of T2D patients with cardiovascular complications and endothelial damage,
to date, few studies have examined the beneficial effect of PPARΥ ligand agents on miR-126-
5p and Pi3k/AKT/PDK1/mTOR expression in T2D-induced vascular damage. Our study
designed a new partial synthetic PPARΥ ligand derivative to assess its protective effect on
tissue-induced vascular changes in the aorta of diabetic rats; the aorta vascular tissue levels
were estimated for ET-1, ICAM-1, E-selectin, and VIP, qRT-PCR microRNA126-5p gene
expression and Western blotting expression of p-AKT/p-Pi3k/p-PDK-1/p-mTOR, coupled
with immunohistochemical examination for endothelial nitric oxide synthase (eNOS) and
histopathological examination using hematoxylin and eosin. Our findings revealed that
synthetic derivatives upregulate miR-126-5p, enhancing p-Pi3k, p-AKT, p-PDK, and p-
mTOR signaling pathway activation coupled with suppressing proinflammatory molecules
ET-1, ICAM-1, E-selectin, and the anti-inflammatory vasoactive intestinal polypeptide (VIP)
in diabetic rats. Furthermore, immunohistochemical estimations of eNOS and histopatho-
logical examination using hematoxylin and eosin for aortic tissues enhanced the role of
partial synthetic PPARΥ derivatives in correcting diabetes-induced vascular complications.

2. Results
2.1. Effect of Streptozotocin on Serum Fasting Blood Glucose Adult Female Albino Rats with
Experimentally-Induced Diabetes Mellitus

The mean values of the normal control group regarding serum fasting blood glucose
(mg/dL) were 101.66 ± 4.73. Rats subjected to STZ showed significantly higher fasting
blood glucose serum levels, reaching 289.33 ± 12.90 (284.60% increase) compared to normal
control rats. However, rats subjected to STZ + PIO as a standard treatment and STZ + P-
PPARΥ synthetic derivative groups showed significantly decreased mean values of fasting
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blood glucose levels (129.66 ± 8.08 and 96.33 ± 0.8.14, respectively), respectively, when
compared to those in the STZ group (Table 1).

Table 1. Serum fasting blood glucose levels after 14 days of treatment with oral PIO standard and
P-PPARΥ synthetic derivative against STZ-induced diabetes mellitus. (Mean values, with standard
errors (SEM) at p < 0.05); a: significantly different from the control group; b: significantly different
from the STZ positive control group.

Groups Fasting Blood Glucose
mg/dL

Normal control 101.66 ± 4.73
Positive control 289.33 ± 12.90 a

PIO 129.66 ± 8.08 b

P-PPARΥ synthetic derivative 96.33 ± 8.14 b

2.2. Effect of 2 Weeks of Treatment with P-PPARΥ Synthetic Derivative on Tissue E-Selectin and
ICAM-1 Level in Adult Female Albino Rats with Experimentally Induced T2D Vascular Damage

The mean values of the normal control group regarding tissue protein intracellular
adhesion molecule 1 (ICAM-1) (ng/mL) and E-selectin (pg/mL) were 14.50 ± 0.53 and
1.55 ± 0.30, respectively. The T2D group significantly increased ICAM-1 and E-selectin
in tissue (688.69% and 718.71% increases, respectively), compared with normal rats. On
the other hand, the standard PIO group represented an improvement in ICAM-1 level by
21.23% and E-selectin by 27.83% regarding the STZ positive control group. While the rats
received P-PPAR γ synthetic derivative treatment significantly improved tissue ICAM-1
level to 28.70% and E-selectin to 26.30 compared with diabetic comorbidity rats. Treatment
with P-PPAR γ synthetic derivative improved ICAM-1 and E-selectin substantially better
than the reference standard PIO (Figure 1A,B).

2.3. Effect of 2 Weeks of Treatment with P-PPA Υ Synthetic Derivative on Tissue VIP and ET-1
Level in Adult Female Albino Rats with Experimentally Induced T2D Vascular Damage

The mean values of normal control group regarding tissue VIP (pg/mL) and ET-1
(pg/mL) were 2.63 ± 0.11 and 2.88 ± 0.26, respectively. Rats subjected to the STZ positive
control group exposed to a significant increase in the tissue levels of ET-1 and P-selectin,
increasing by 767.30% and 2310.42%, respectively. However, the PIO standard group
improved tissue levels of VIP by 16.60% and ET-1 by 12.73% compared to the STZ group,
while the P-PPARΥ synthetic derivative revealed a significant improvement in VIP by
20.71% and ET-1 by 14.74% compared to STZ group that showed a better improvement of
the derivative when compared to the reference standard PIO group (Figure 2A,B).
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Figure 2. Bar chart illustrating 14 days of oral standard PIO and P-PPARΥ synthetic derivative
treatment on aorta tissue levels of VIP (A) and ET-1 (B) against STZ-induced vascular damage. The
data are shown as mean values with standard errors (SEM) at p < 0.05; a significantly different from
the normal control group; b significantly differ from positive control group.
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2.4. Effect of 2 Weeks of Treatment with P-PPARΥ Synthetic Derivative on Regulating miR-126-5p
Gene Expression

To determine miR-126-5p contribution in vascular repair induced by P-PPARΥ deriva-
tives treatment against T2D in experimental rats, we used qRT-PCR to evaluate miR-126-5p
gene expression. Notably, unlike the normal control rats group, diabetic rats significantly
decreased miR-126-5p expression to 14.99%, compared to the normal control group. Oral
treatment with pioglitazone and P-PPARΥ synthetic derivative (20 mg/kg, p.o) significantly
upregulated miR-126-5p expression to 588.79% and 641.50%, respectively, compared to
the diabetic positive control group. However, P-PPARΥ synthetic derivative treatments
restored miR-126-5p gene expression back to normal. These results indicate that P-PPARΥ
synthetic derivatives counteracted STZ-induced apoptosis and endothelial damage sug-
gesting a functional involvement in regulating miR-126-5p expression-induced vascular
endothelial repair (Figure 3).
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2.5. Effect of 2 Weeks of Treatment with P-PPARΥ Synthetic Derivative on Activation of
p-AKT/p-Pi3k/p-PDK 1/p-mTOR Expression, Enhancing Vascular Endothelial Repair

Restoring the phosphorylation of the p-AKT/p-Pi3k/p-PDK/p-mTOR signaling path-
ways triggers the endothelium defense mechanism. Western blot analysis showed a sig-
nificantly diminished expression of p-AKT/p-Pi3k/p-PDK 1/p-mTOR to 56.41%, 51.39%,
61.54%, and 43.82%, respectively, in diabetic rats than in normal control animals Alterna-
tively, the treatment of rats with the standard PIO represented an improvement in p-AKT/p-
Pi3k/p-PDK 1/p-mTOR expression, increasing by 162.16%, 154.55%, 145.83%, and 176.92%;
additionally, rats receiving P-PPARΥ synthetic derivative significantly increased the ex-
pression of p-AKT/p-Pi3k/p-PDK 1/p-mTOR signaling pathways by 115.90%, 135.13%,
124.68%, and 138.56%, respectively, compared to the positive control group. Our results
indicate that, with P-PPARΥ synthetic derivative treatment, p-AKT/p-Pi3k/p-PDK 1/p-
mTOR signaling pathway expression was restored to normal levels (Figure 4A–D).
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Figure 4. The bar chart and bands reflect the protein expression of aorta tissue toward (A) p-AKT,
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P-PPARΥ synthetic derivative treatment against STZ-induced vascular damage. The data are shown
as mean values with standard errors (SEM) at p < 0.05; a significantly different from the normal
control group; b significantly differ from positive control group.

2.6. Effect of 2 Weeks of Treatment with P-PPARΥ Synthetic Derivative on Attenuating
Histopathological Aortic Strip Endothelial Abrasions

Histopathological examination was indicated to detect STZ-induced aortic endothelial
blood vessel abrasions and the ability of P-PPARΥ synthetic derivatives to modulate
endothelial texture against injury in comparison with standard group PIO. The aorta strip
section revealed a normal endothelium and smooth muscle, regarding the normal control
group. Additionally, it showed elongated nuclei with an eosinophilic cytoplasm-enhanced
marked elastic tissue (Figure 5A). By contrast, the STZ positive control group showed
average endothelial lining coupled with marked clefts in the media with cytoplasmic
vacuoles in smooth muscle cells and sub-medial separation (Figure 5B). PIO standard
treatment group showed minimal endothelial layer clefting (Figure 5C). In contrast, the
P-PPARΥ synthetic derivative group decreased vascular endothelial pathological changes
by returning endothelial blood vessels to their normal form with a slight smooth muscle
clefting and restoring elastic tissue activity (Figure 5D).

2.7. Effect of 2 Weeks of Treatment with P-PPARΥ Synthetic Derivative on Mitigating ROS and
Enhancing Tissue Antioxidant Defense Mechanism

An endothelial nitric oxide synthase (eNOS) expression assay investigated endothelial
oxidative stress following STZ-induced vascular endothelial injury. Our data revealed that
rats subjected to STZ showed a weak eNOS reaction in the endothelial lining and smooth
muscle cytoplasm (Figure 6(Ab)) compared to the normal control group (Figure 6(Aa)). PIO
standard treatment group endothelial cells showed a mild cytoplasmic reactivity to eNOS,
with no reactivity on smooth muscles (Figure 6(Ac)), while P-PPARΥ synthetic deriva-
tive re-established eNOS expression on the cytoplasm and endothelial smooth muscles
(Figure 6(Ad)) compared to the positive control group. The immunohistochemical findings
reveal that eNOS expression increased after treatment with P-PPAR Υ synthetic derivative
reaching normal control levels, demonstrating the role of tested drugs as antioxidants and
ROS scavengers in modifying blood vessel activity (Figure 6A,B).
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Figure 5. STZ-induced endothelial damage in rat aorta H&E staining sections. (A) The normal
control presents elastic tissues with normal endothelium and smooth muscle cells, all represented
by black arrows. (B) Positive control group showing intimal destruction (black arrow), with clefts
in sub-intima (red arrow), media (yellow arrow) with cytoplasmic clearing of smooth muscle cells
(violet arrow), and sub-medial separation (blue arrow), (C) Oral treated standard group PIO signifies
minimal endothelial layer clefting, in addition to restoring normal smooth muscles, all represented
by black arrows. (D) P-PPARΥ synthetic derivative compound showing integral intima (black arrow)
with slight medial clefting (star) and normal smooth muscle cells (middle black arrows).

Figure 6. (A) A representative immunohistochemical examination of endothelial aorta rat sections
with eNOS against STZ-induced damage followed by 2 weeks of treatment with oral standard PIO
group and P-PPARΥ synthetic derivative. (a) Normal control section showing blood artery wall
endothelium and smooth muscle cells exhibiting robust cytoplasmic responses to endothelial eNOS,
all represented by black arrows. (b) Positive control group STZ representing the vascular aortic walls
with weak eNOS reactivity in the cytoplasm of endothelial cells and smooth muscle cells, represented
by black arrows. (c) PIO group representing mild cytoplasmic reactivity to eNOS in endothelial
cells (black arrow) and in smooth muscle cells (red arrows); (d) P-PPARΥ synthetic derivative group
highly expressed in the cytoplasmic responsiveness to eNOS and in the blood vessel wall represented
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by black arrows; (B) Graphical presentation of the changes in eNOS immunostaining intensity in
different groups. Bars represent the mean ± SD (n = 4). Comparisons were made using one-way
ANOVA followed by Tukey’s post hoc test. a Significantly different from control group at p < 0.05;
b significantly different from positive control group; c significantly different from PIO group at
p < 0.05.

3. Discussion

Diabetes mellitus forms progressive diseases of the blood vessels and cardiomyopa-
thy [79], as well as increases the rate of cardiac hypertrophy [5]. DM is characterized by the
presence of elevated oxidative stress [80], elevated inflammatory and vascular biomark-
ers [81], disturbance in lipid metabolism [82], fibrosis, and elevated serum cardiac injury
muscle biomarkers [83,84]. In the current study, we investigated the role of pioglitazone and
a new naturally inspired P-PPARΥ synthetic derivative that improves endothelial enhance-
ment through alleviating the inflammatory cascade and vascular endothelial modulation
via upregulating endothelial miR-126-5p gene expression.

The STZ model is a well-established method for inducing type 1 or 2 diabetes in
rats and, subsequently, diabetic complications [85]. For this purpose, our results repre-
sent that STZ aortic tissue levels significantly elevated VIP, E-selectin, endothelin-1, and
ICAM-1 levels compared to the normal control group (Figure 1A). Moreover, severe en-
dothelium smooth muscle histological abnormalities were evidenced by endothelial lining
clefts with cytoplasmic vacuoles in smooth muscle proliferation, as well as eNOS in the
smooth muscle (Figure 5A,B and Figure 6A,B).In agreement with our data results, previous
studies revealed that STZ-induced DM endothelial complications in the experimental rats
significantly increased tissue levels of VIP, E-selectin, endothelin-1, and ICAM-1 [86,87].
Additionally, earlier data proved that vascular damage is induced as a secondary complica-
tion to metabolic syndrome-induced insulin resistance in diabetic patients [88], enhancing
immunological disorders [89,90]. Consequently, endothelial damage triggers systemic
inflammation by increasing the production of proinflammatory molecules and vasocon-
strictor agents such as VIP, E-selectin, endothelin-1, and ICAM-1 [91,92], together with an
imbalance between endothelial eNOS and iNOS [93,94]. These results agree with our data
that DM induction via different mechanisms mediates STZ action.

Moreover, numerous studies have shown that hyperglycemia causes severe inflam-
mation [86,87]. Researchers have outlined thiazolidinediones, especially pioglitazone and
rosiglitazone, to manage endothelial problems [95]. Treatment with a PPARΥ agonist in-
hibits LPS-induced endothelial inflammation by reducing IL-6, VCAM, TNF-α, and mRNA
expression [96]. In turn, this reduces the production of inflammatory mediators, adhesion
molecules, and atherosclerosis in endothelial cells [97,98]. Similarly, a model of diabetic
nephropathy suggested that treatment with pioglitazone reduces glomerular sclerosis, fibro-
sis, and hypertrophy by lowering ICAM-1, E-selectin, and albuminuria [98,99]. However, a
study on women with polycystic ovarian syndrome found that pioglitazone treatment for
insulin resistance dramatically improved endothelial-independent function, adipokines,
and ET-1 [100]. Furthermore, VIP modulation played a significant role in carbohydrate and
lipid metabolism [101], in addition to being a potent anti-inflammatory and neuroendocrine
vasodilator [102]. Consequently, in an Alzheimer’s disease animal model, a new action on
glial cell polypeptide was revealed, which shielded neurons against toxins and memory
loss coupled with inhibiting oxidative stress production in the vascular compartment [103].

Additionally, in an STZ-induced diabetes mellitus rat model, pioglitazone admin-
istration for four weeks in a row restored ET-1, superoxide dehydrogenase (SOD), and
NAD(P)H oxidase activity, thereby restoring aortic function [100,103]. Pitocco et al. [104]
reported pioglitazone’s effectiveness in treating pulmonary hypertension rats via inhibiting
cellular remodeling, proliferation, and inflammation of VSMCs. Correspondingly, the
efficacy of thiazolidinediones in treating human endothelium by decreased inflammatory,
pro-inflammatory, and vasoconstrictor agents has been reported [105]. Our findings are
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consistent with the findings of the prior study. These studies validated our results and
confirmed the anti-inflammatory and anti-oxidant properties of the investigated agents.

Atherosclerosis-induced hypercholesterolemia is a cardiovascular progression cou-
pled with type 2 diabetes mellitus [106], which increases reactive oxygen species (ROS),
and subsequent eNOS degradation, releasing endothelin 1-induced vasoconstriction [107].
Changes in cholesterol levels due to glucose intolerance induce dysregulation of ICAM-1
and VCAM-1 [108]. miR-126-5p downregulation has been reported in elevated serum levels
of ICAM-1, VCAM-1, and E-selectin-induced coronary syndrome [109]. Recent studies
have revealed the critical role PI3K/AKT/mTOR axis in governing cell survival [82]. Addi-
tionally, Jia et al. [21] reported the crosstalk of the circRNA/PI3K/AKT axis, particularly
regarding its protective effect against atherosclerosis, oxidative stress, and apoptosis via the
regulating impact of tumor cell biological activities. In particular, miR-126-5p maintains a
key function in the integrity of endothelial cells, inflammation, angiogenesis, and vascular
repair [110]. Otherwise, recent data represent that miR-126 overexpression significantly
increases the protein expression of the PI3K, Akt, GSK3β, and ERK1/2 signaling pathways
and attenuates ROS vascular content [111]. Another research project reported that miR-126
negatively regulates vascular endothelial growth factor expression in hypoxia-induced
monkey chorioretinal vessel endothelial cells [112].

Furthermore, it was discovered that pioglitazone plays a key role in reducing ven-
tricular hypertrophy via ERK activation and increased phosphorylation of the AMPK axis
in an experimentally induced hypertensive rat model [113]. It was recently reported that
the STZ/HFD-induced insulin resistance [114] significantly suppresses p-AMPK, p-Pi3k,
p-AKT, p-PDK, and p-mTOR axis levels in HepG2 cells [115], demonstrating that miRNAs
play a role in heart illness as fundamental regulators of gene expression [116]. Additionally,
pioglitazone targets miR-126-5p gene expression, which is involved in inflammatory pro-
cesses, adhesion molecules, cell-cycle events such as proliferation and migration, apoptosis,
and NO signaling in endothelial cell health, leading to the development of atherosclero-
sis [117–119]. Our study results revealed that treating diabetic rats with pioglitazone and
P-PPARΥ synthetic derivatives associated with the significant upregulation of miR-126-5p
expression (Figure 3) activated the expression and phosphorylation of the p-Pi3k, p-AKT,
p-PDK 1, and p-mTOR axis (Figure 4), coupled with histopathological endothelial lining
healing (Figure 5) and eNOS restoration in the endothelium (Figure 6).

4. Materials and Methods
4.1. Chemicals, Reagent Kits, Antibodies, and Tested Agents

Streptozotocin (Catalog number MFCD00006607) and pioglitazone hydrochloride
(Catalog number MFCD04975446) were purchased from Sigma–Aldrich Chemical Company
(St. Louis, MO, USA). Enzyme-linked immunosorbent assay (ELISA) kits for rat ET-1
(catalog number MBS5704215), E-selectin (Catalog number ERA14RB), ICAM-1 (Catalog
number RAB0221-1KT), and eNOS (Catalog number PA5-17917) vasoactive intestinal
peptide (VIP; catalog number MBS5031002) were obtained from ThermoFisher Scientific
(Rockford, IL, USA). The Western blotting assay had different primer antibodies against P-
pi3k (Catalog number sc-293115), P-AKT (Catalog number # 200-301-268), p-PDK-1 (Catalog
number sc-515944), and P-mTOR (Catalog number # PA1-518). The qRT-PCR monoclonal
antibody for miR-126-5p (Catalog number 217004) was obtained from Qiagen (Germantown,
MD, USA). All materials were obtained from authorized sources in analytical grade.

4.2. Animals

The Nahda University animal house in Beni-Suef, Egypt, provided adult female albino
rats weighing 200–220 g. Before starting the experiment, the animals were held in controlled
conditions for 12/12 h with food and water access at the optimal temperature and humidity
conditions. The treatment and care of the animals were conducted following the National
Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (Publication
No. 85-23, revised 1985).
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4.3. Animal Experimental Model

Adult female forty albino rats were divided into four groups:
Normal control group: receiving vehicle in Tween-80, 2%;
STZ (T2D) positive control group: receiving intraperitoneal STZ injection (45 mg/kg) [120]

after being subjected to three consecutive weeks of HFD feeding [77];
Pioglitazone-treated group: receiving STZ + HFD as with positive control group, as

well as pioglitazone (20 mg/kg/14 day, p.o) dissolved in Tween-80, 2% [76,121];
P-PPAR Υ synthetic derivative-treated group: receiving STZ + HFD as with positive

control group, as well as the same treatment dose as reference pioglitazone (20 mg/kg/14 days,
p.o) dissolved in Tween-80, 2%.

The two tested drugs were administrated for two consecutive weeks starting from the
24th day after the STZ injection. The doses depended on previous reference studies and a
determined effective pilot study.

Synthesis and elucidation of P-PPAR Υ synthetic derivative;
The procedure is fully described in Supplementary material (S1);
STZ-induced diabetes mellitus type 2 model;
The procedure and mode of induction for diabetes mellites are fully described in

Supplementary material (S2).

4.4. Isolation of Tissue and Preparation

After the rats received the last dose of treatment drugs, they were sacrificed by cervical
dislocation under anesthesia. The aorta was gently freed of any adjacent tissues and
lipids before undergoing midline thoracotomy. The exposed aorta tissue was divided into
two portions: one was preserved at −80 ◦C until the assay time for endothelial tissue
biomarker biochemical ELISA, qRt-PCR estimation for ET-1, E-selectin, VIP, and ICAM-1,
and Western blotting estimation for p-Pi3k, p-AKT, p-PDK-1, p-mTOR, and qRT-PCR miR-
126-5p; The second portion was preserved in formalin 10% isotonic solution for 48 h to
adequate fixation before the histopathological examination, and an immunohistochemical
assessment of eNOS expression was performed.

4.5. ELISA Determination for Specific Tissue Endothelial Biomarkers

Previous cardioprotective studies indicated that increased endothelial content and
leakage are valuable markers representing a pathological condition in the aortic strip tissues
ET-1, E-selectin, VIP, and ICAM-1. These biomarkers were evaluated using ELISA chemical
kits according to the instructions of the assay kit. According to the sandwich technique
described previously, the assay depends on the colorimetric measurement of a microplate
reader at 450 nm (Model Spectra Max Plus-384 Absorbance Microplate Reader, Molecular
devices LLC (San Jose, CA, USA) to test the parameter levels [122].

4.6. Western Blot Analysis for PI3k/AKT/mTOR Signaling Pathway

Aortic cell lysis was performed using RIPA buffer (Beyotime Institute of Biotechnol-
ogy) to evaluate p-AMPK, p-Pi3k, p-AKT, p-PDK, and p-mTOR expression; cell lysates
were centrifuged at 10,000× g at 4 ◦C for 15 min. Using a bicinchoninic acid protein kit
(Beyotime Institute of Biotechnology), protein quantification is as follows. Proteins were
loaded on PVDF membranes after 10% SDS-PAGE separation; each lane contained 40 µg of
protein. During this time, the membranes were soaked in a blocking solution of 5% nonfat
milk in PBST (0.1% Tween-20) for 1 h at room temperature. Then, the samples were left
overnight and incubated at 4 ◦C against the primary antibody. The membrane was then
incubated against the secondary antibody at room temperature for an hour after being
washed three times with PBST. Lastly, the protein bands were visualized using 5-bromo-4-
chloro-3-indolyphosphate (BCIP)/nitro-blue tetrazolium (NBT). The quantification analysis
of the detected bands was performed using Image-J/ NIH software and the BioRad mi-
croarray protein electrophoresis separation machine (Model 1658004, Sinorica International
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Patent and Trademark, Germantown, MD, USA). The assessment methodology is provided
according to a previously described method [123].

4.7. Histopathological Study

The aortic tissue strip slides were prepared for staining after being fixed for 24 h in a
10% formalin saline solution. Afterward, fixed tissues were transferred to hardening via
paraffin blocks. Then, the aorta sections were cut and stained with standard hematoxylin
and eosin (H&E) for histopathological investigations under a Nikon microscope at 400×
magnification using Bancroft and Steven’s previously published method [120]. The slides
were examined by a skilled pathologist.

4.8. Immunohistochemical Assay

The eNOS immunohistochemical investigation was performed using a previously
described method [124]. The deparaffinized and rehydrated aortic tissues were washed
with a buffer solution for 20 min. Then, the tissue was injected with an adequate digestive
enzyme. Afterward, sections were exposed to 0.3% H2O2 for 10 min to decrease tissue
endogenous peroxidase activity. At that point, the slides were incubated overnight at
4 ◦C with primary antibodies against eNOS. Following incubation, the slides were washed
with buffer, reincubated with secondary antibody HRP for 10 min, and then washed with
deionized water. Sections cleaned with deionized water were visualized by adding the DAB
Quanto chromogen drop to 1 mL of DAB Quanto substrate. The slides were restained with
hematoxylin. Finally, a professional observer used a light microscope (Leica microsystem,
Wetzlar, Germany) to monitor the dehydration of slides in xylene and positive dye to
identify the samples.

4.9. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) for Determination of
miR-126-5p Expression Levels

We used a Qiagen tissue extraction kit (Qiagen, Germantown, MD, USA) for aorta
RNA extraction. Each stage was performed according to the manufacturer’s instructions.
A NanoDrop® ND-8000 UV–Vis spectrophotometer was used to determine the total RNA
yield (NanoDrop Technologies, Wilmington, DE, USA). The full RNA isolation and identifi-
cation are described in the Supplementary data (S3), along with the primer sequences.

4.10. Statistical Analysis

The mean and standard error of the mean (SEM) were used to depict the data in
this study (eight participants). An ANOVA test followed by a Tukey–Kramer test on
biochemical data was conducted using SPSS (version 19.0) computer software (SPSS Inc.,
Chicago, IL, USA). A p-value of 0.05 was considered statistically significant. Image J was
used to measure the intensity of the bands on the Western blot (NIH, USA).

5. Conclusions

In conclusion, our results indicate that the newly designed partial PPAR Υ synthetic
derivative, in addition to its anti-hypoglycemic potential, reduces the severity of vascular
damage induced due to T2D through upregulating expression of microRNA126-5p, p-
AKT/p-Pi3k/p-PDK 1/p-mTOR, and eNOS. In addition, the P-PPAR Υ synthetic derivative
decreases endothelial inflammatory and vascular integrity parameters ET-1, ICAM-1, E-
selectin, and VIP. The PPAR Υ synthetic derivative might become an alternative approach to
improving diabetes vascular complications caused by metabolic syndrome insults mediated
by the antioxidant, anti-inflammatory, and antiapoptotic signaling pathways. Further
clinical trials are needed to confirm such findings clinically.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15101175/s1.
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