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Abstract: The study of the dynamic responses of plants to short-term environmental changes is
becoming increasingly important in basic plant science, phenotyping, breeding, crop management,
and modelling. These short-term variations are crucial in plant adaptation to new environments and,
consequently, in plant fitness and productivity. Scalable, versatile, accurate, and low-cost data-logging
solutions are necessary to advance these fields and complement existing sensing platforms such as
high-throughput phenotyping. However, current data logging and sensing platforms do not meet
the requirements to monitor these responses. Therefore, a new modular data logging platform was
designed, named Gloxinia. Different sensor boards are interconnected depending upon the needs,
with the potential to scale to hundreds of sensors in a distributed sensor system. To demonstrate
the architecture, two sensor boards were designed—one for single-ended measurements and one for
lock-in amplifier based measurements, named Sylvatica and Planalta, respectively. To evaluate the
performance of the system in small setups, a small-scale trial was conducted in a growth chamber.
Expected plant dynamics were successfully captured, indicating proper operation of the system.
Though a large scale trial was not performed, we expect the system to scale very well to larger setups.
Additionally, the platform is open-source, enabling other users to easily build upon our work and
perform application-specific optimisations.

Keywords: plant monitoring; real-time; data acquisition; sensor platform; phenotyping

1. Introduction

Plants that grow in natural or agricultural environments are exposed to substantial short-term
variations in environmental conditions. For instance, the occurrence of clouds or waving leaves
can modify the light environment within seconds; relative humidity and temperature can change
within minutes due to precipitation. Because fitness productivity of plants often lies in their ability
to swiftly respond to these highly variable conditions, studying these dynamic responses is crucial.
However, research on stomatal responses and photosynthetic output often focuses on steady-state
behaviour, while these conditions rarely occur in nature [1]. As a result, measurement devices are
not optimised to measure this transient behaviour, while the need for monitoring the response time
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of plant behaviour increases in different research fields of plant science. First of all, in basic plant
science where the understanding of the short-term responses to environmental variation is central [2–5].
Additionally, they are relevant in more applied phenotyping or breeding research, where the more
dynamic behaviour of certain genotypes might be key to their success [1,6,7]. Furthermore, in crop
management where for instance irrigation scheduling can be done using continuous measurements
of stem diameter [8–10]. Finally, as crop and plant models become more dynamic and mechanistic,
the number of parameters such as coefficients for photosynthesis and hydraulic conductance increases.
In turn, this amplifies the need for dynamic data to calibrate and validate these parameter-rich
models [11].

In high-throughput phenotyping, plant traits are extracted through image analysis and sometimes
complemented with scoring from breeders. These techniques allow monitoring of a large number of
plants both in controlled settings such as growth chambers and greenhouses, and in the field [12,13].
Depending on the set-up, the camera system can be mounted on drones [14], tractors [15], ground-based
robotic systems [16,17] or conveyor belt-based systems [18,19]. These allow to extract very detailed
data and specific plant traits, but their temporal resolution is generally low, ranging between once
per day (e.g., a conveyor belt system) and once per week (e.g., drone flights). Consequently, they
are not well suited for studying plant responses at a time scale of seconds or minutes. Other sensor
types, such as porometers, cannot be permanently mounted on the plant and thus need manual
intervention. Measurement devices for gas exchange (e.g., Li6800, LI-COR Biosciences, Lincoln, NE,
USA) can be attached to individual plants to record short-term changes of important features like
stomatal conductance, photosynthesis, and transpiration automatically, but cannot be deployed on
a larger number of plants due to the cost of these devices. Other contact sensors, such as sap flow
sensors or Linear Variable Displacement Transducers (LVDT), are interesting solutions for short-term
continuous monitoring [8,20,21], although they require considerable time to install and might need
some maintenance once installed.

Concurrent with the requirement for dynamic plant data, monitoring of a plant’s
micro-environment is crucial for interpretation, considering that this is the driver for the plant’s
response. Environmental data of a field trial is typically captured at a single measurement location.
However, assuming the same environmental conditions for the whole field or greenhouse is not
necessarily an accurate representation of reality [22,23]. Some extreme examples are the differences in
microclimate between the top and bottom of a sloped field [24], shading caused by trees next to the
field [25], but also differences in temperature within greenhouses, or even growth chambers [18,26].

Monitoring on the timescale of seconds or minutes, necessary to capture the dynamics of plant
traits such as leaf temperature, stomatal conductance, photosynthesis, and transpiration, along with
their environmental drivers, is not a trivial task [27–32]. First, interfacing and synchronising sensory
readout is difficult when different sensors are combined [33]. As a result, it is necessary to rely on
autonomous data acquisition systems to read out the sensors and store the data, and investigate
alternative sensors that do not require manual intervention. Second, commercial data loggers such
as CR1000 (Campbell Scientific, Logan, UT, USA), DL2e (Delta T Devices, Burwell, Cambridge, UK),
ZL6 (METER Group, Pullman, WA, USA) or EM50 (ICT International, Armidale, NSW, Australia) are
expensive, making it difficult to employ them for hundreds of sensors in large trials. Third, alternative
data loggers such as single-board computers or microcontroller boards are cheap, but have limited
analogue readout capabilities due to low accuracy analogue-to-digital converters (ADC) (typically in
the 10 bit to 12 bit range) and do not always feature all the necessary hardware to directly interface
with various analogue sensors. BeagleBone Black (BeagleBoard.org Foundation, Oakland Twp, MI,
USA) is a single-board computer with analogue capabilities, and Arduino UNO (Arduino, Ivrea, Italy)
is a very popular microcontroller board.

From the foregoing, we summarise that there is a need to monitor the dynamic behaviour of
plant traits. To this end, a larger amount of sensors needs to be employed that is read out at a higher
frequency. This has to occur cost-effectively for various purposes, including basic plant science,



Sensors 2020, 20, 3055 3 of 20

breeding, agronomy, and environmental monitoring. Moreover, autonomous data logging systems
that do not sacrifice accuracy for cost or ease of use are key to tackle this need. We present an
implementation of a data logging system that is designed to address four key needs: sensor scalability,
accuracy, cost, and versatility with regards to experimental size and sensor interfaces. First, the system
should easily scale to hundreds of sensors without needing a large number of hardware boards. Second,
the system should provide accurate sensor readings, with limited influence of noise sources. Third,
the system should be low-cost. Fourth, the system should be sufficiently versatile; it should work well
in trials that monitor a handful of plants to hundreds of plants. Additionally, most common sensor
interfaces should be available to connect various sensors such as light, relative humidity, temperature,
and soil moisture sensors. Finally, the system should also have open-source hard- and software,
enabling others to build upon this work and tailor it to a specific application.

2. System Architecture

To meet the key requirements introduced earlier, we selected a distributed sensing architecture.
In this type of architecture, sensing is scattered across different devices, removing the need for a single
measurement device that reads all deployed sensors. Nearby analogue or digital sensors are connected
to the same measurement device, called node, while others are connected to other nodes. As a result,
nodes only have to read out sensors in close proximity, alleviating the need for expensive low-noise
cables. To facilitate the readout of data, nodes are interconnected on a linear bus. This bus is used to
send measurement and configuration data. Consequently, only a single node on the bus needs to be
connected to a storage device such as a computer or Raspberry Pi. The overall architecture is depicted
in Figure 1.

In challenging conditions such as those present in the field, a robust and high-speed bus has to be
selected for the communication between nodes. The Controller Area Network bus (CAN bus) meets
these requirements. It operates at a maximum rate of 1 Mbps, while being very robust. It is commonly
used in vehicles for communication between microcontrollers without the need for a master controller,
thanks to a fixed arbitration scheme [34]. Nodes can easily be added; the only requirement is that the
first and last nodes use a 120 Ω resistor to terminate the bus. The bus speed can also be lowered to
accommodate longer bus lengths up to 5000 m at 10 kbps [35].

A Universal Synchronous Receiver-Transmitter connection (UART-connection) is used to interface
between the data storage device and the node connected hereto. This computer also provides an
interface to configure the nodes.

Each sensor node is comprised of a control board (named Dicio), and one or more sensor boards.
These sensor boards vary depending upon the application. Communication between the control and
sensor boards is done using the Inter-Integrated Circuit (I2C) protocol. The control node controls this
bus and reads each of the sensor boards at predefined time steps [36]. Optionally, a phase-locked
signal can be used to achieve cycle synchronisation between sensor boards on a single control node.
By default, the I2C protocol operates at 400 kHz, but can also be lowered to 100 kHz for sensors that
do not support fast I2C operation.

Two I2C buses are available, one for the readout of the custom sensor boards through a
dedicated interface connector, and one for other sensors. Sensors such as digital relative humidity and
temperature sensors are connected using screw terminals.

The dual bus system accommodates varying needs. First, the CAN bus interconnects different
sensor nodes, thus simplifying the readout system and data storage interconnect. Only a single node
needs to be connected to the computer. Furthermore, the CAN bus is robust in noisy environments
and well-suited for communication over longer distances (modifiable in the software). The maximum
distance is linked to the signalling rate and can be increased at the expense of lower throughput.
The system uses a single cable to deliver both signal, power, and synchronisation signals. A
synchronisation signal can be used to synchronise sampling between different nodes. Second, the
I2C protocol was selected since it is widely used for digital sensors and allows the sensors to be read
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directly from an Arduino or Raspberry Pi, thus facilitating faster prototyping and stand-alone usage
of the sensor boards. Furthermore, most microcontrollers provide a hardware I2C-interface, which
reduces cost and complexity. Since the interconnect distance between the sensor boards and the control
board is small, there will be less noise and interference. Consequently, the requirements of this bus are
a lot more tolerant.
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Figure 1. System architecture of a typical experiment where multiple plants are monitored using
the same set of sensors. Analogue sensors are connected to Planalta and Sylvatica, depending on
the type of sensor. For instance, a Linear Variable Displacement Transducer needs a variable input
signal, so this type of sensor has to be connected to Planalta because this board can generate analogue
signals. Sensors that only require an analogue readout are connected to Sylvatica. Environmental
conditions are also measured with digital sensors at node 1 and node N. The data is transmitted and
stored on a single board computer (Raspberry Pi) for further analysis. This figure is best viewed in
colour. Raspberry Pi illustration by, Lucas Bosch, based on work by Jonathan Rutheiser [CC BY-SA]
(https://creativecommons.org/licenses/by-sa/3.0).
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Two boards that cover a wide range of analogue sensors have been designed: Planalta and
Sylvatica; Section 3 provides more details on the available functionality. These sensor boards cover the
most common analogue interfaces found in plant monitoring. Digital sensors should interface directly
with the Dicio board. Dicio supports common digital interfaces, including I2C, Serial Peripheral
Interface (SPI) and RS-232.

Several Planalta or Sylvatica boards can be connected to the same Dicio control node to increase
the number of sensors that can be read while keeping the amount of redundant hardware to a minimum.
The two sensor boards, Planalta and Sylvatica, each serve a different purpose. The board named
Planalta is designed for sensors that require a variable input voltage such as soil capacitance, LVDT,
and impedance sensors. The measurement principle of this board relies on a digital lock-in amplifier
(LIA) (see also Section 3.2). The other sensor, named Sylvatica, is designed for sensors that do not
require an input signal, like most analogue temperature and relative humidity sensors, for example.

Both sensor boards have generic analogue interfaces and can easily be used with a wide range
of sensors that require low input voltages and currents. Sensors should have an operating voltage
between 0 V to 12 V in the case of Sylvatica and 0 V to 3.3 V for Planalta. High-power sensors such as
some types of sap-flow sensors require an external power supply. An attenuator is required for both
boards if the readout value can be higher than 3.3 V. To keep the hardware low-cost, only single-ended
signals are supported. The Planalta board features an option to use a mid-rail referenced signal.

3. Measurement System Design

Some of the identified design criteria are conflicting, such as low unit cost, and accuracy and
versatility. Consequently, a trade-off was made. The main cost in this system is comprised of the
necessary components. As a result, the measurement system has been designed to minimise the number
of analogue components, thus lowering the overall cost at the expense of more digital processing. Since
the software development cost is a one-time investment, most of the signal processing and filtering are
done digitally to reduces the hardware cost per unit. Furthermore, the software is easily modifiable
due to a simple and generic design. This is ideal for application-specific optimisations. We selected
the dsPIC33EP512MC806 (Microchip Technology Inc., Chandler, AZ, USA) as microcontroller. This is
a high-performant 16-bit devices that features special signal processing instructions, direct memory
access, and a CAN-interface.

The component cost is lowest if the internal ADC of the microcontroller is used. However, this is
undesirable since the effective number of bits is only 11.3-bit. The objective is to design a high-accuracy
system. Consequently, an external ADC is required with a generic filtering stage in front for maximum
flexibility. The ADC-choice determines the analogue front-end since certain specifications have to be
met to achieve maximum performance. Moreover, integrating all sensing functionality on a single
board was deemed too complex and would increase the cost per board, while some of the hardware
would remain unused. Therefore, two sensor boards are designed; Planalta and Sylvatica.

The Planalta board is optimised for sensors that measure modulated signals. A lock-in amplifier
is well-suited for this purpose. A digital lock-in amplifier modulates a voltage (or current) based on a
reference clock at a specific frequency. This signal is then deformed by the sensor-response, resulting in
a new signal that has a different phase and amplitude than the original signal. An ADC whose sample
points are synchronised to the same reference clock then digitises the analogue signal. The amplitude
and phase can then be determined with high precision, based on the reference signal. Digital LIAs
have significant advantages over their analogue counterparts, including better noise performance,
phase stability and orthogonality due to the lack of temperature and frequency-dependent drift [37].
Sensors that can take advantage of this measurement principle include LVDT, impedance, and
laser-based sensors.

Sylvatica is a board designed for single end-measurements. Sylvatica does not feature an analogue
sine wave generator, nor a connection from the input voltage of the sensor to the ADC. Instead,
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it supports double the number of sensors compared to Planalta (eight sensors vs. four sensors) because
more ADC channels are available for sensor outputs.

In what follows, the analogue front-end is discussed first, followed by the digital signal processing
of the sampled signals.

3.1. Analogue Front-End Design

The front-end design focuses on simplicity and flexibility by using a generic design that is
optimised digitally for the application’s needs. The driver uses well-chosen components to limit both
non-linearity and noise of the circuit before digitisation.

A general overview of the analogue front-end is depicted in Figure 2. Dashed components are
specific to the Planalta board. The left part of the Planalta-only circuit generates a sine wave from a
pulse-width modulation (PWM) signal. By varying the duty cycle at a high frequency, a sine wave
is formed after low-pass filtering. This signal is then buffered before it passes through the sensor.
Buffering ensures that there is no voltage drop due to variations of the load impedance. The buffer can
provide up to ±5 mA of current to the sensor. For high-power sensors, an external amplifier has to be
used. On the Planalta board, the output voltage signal is also provided as an input to an ADC channel
after low-pass filtering.

The circuit that connects the sensor output to the ADC has the same topology on both Planalta
and Sylvatica. The output of the sensor is amplified using the PGA113 (Texas Instruments, Dallas, TX,
USA) programmable gain amplifier (PGA), providing a gain between 1 to 200. This PGA can amplify
with respect to an offset, on Sylvatica this offset is connected to ground potential, while on Planalta this
offset can be soldered to either ground potential or 1.65 V. The signal is then low-pass filtered using a
resistor-capacitor filter before digitisation. Digitising the signal as early as possible limits the amount
of noise that can enter the system and increases flexibility, since the digital filtering is easy to modify.

The ADC used in this design is ADS8332 (Texas Instruments, Dallas, TX, USA), and provides a
good trade-off between speed, accuracy, and cost. This ADC has a successive approximation register
(SAR) architecture, produces 16-bit output data, and has an integrated multiplexer that can rapidly
switch between channels, enabling up to 8 analogue signals to be sampled between 0 V to 3.3 V.
The 16-bit words are well-suited for further processing by the 16-bit microcontroller. The effective
ADC resolution at frequencies below 1kHz is 14.9-bit. Additional details on the analogue front-end are
provided in Appendix A.

PWM sensor A
D

A
D

signal generation signal acquisition

hardware only on Planalta board

hardware on Planalta and Sylvatica boards

Figure 2. Block diagram of the analogue front-end for Sylvatica and Planalta boards. The Planalta-only
driver generates a voltage wave that is generated through a pulse-width modulation (PWM) signal,
which is low-pass filtered and then buffered before being fed into the sensor. The sensor output on
both the Planalta and Sylvatica boards is (optionally) amplified using a Programmable Gain Amplifier
(PGA) and low-pass filtered before being sampled.
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3.2. Digital Signal Processing

After digitisation, the microcontroller further processes the samples to remove unwanted noise
and interfering signals such as those originating from the 50 or 60 kHz power grid. The data rate
coming from the ADC depends on the board and software configuration. The data rates that are
possible in the current design are listed in Table 1.

The maximum sampling frequency of the ADC is 500 ksps. Though, in practice, the upper
sampling speed cannot exceed 250 ksps due to limitations of the SPI module of the microcontroller.
On the Planalta board, the number of active channels determines the maximum signal frequency for
the LIA. The total sample rate (sum of sample rates of every channel) should never exceed 250 ksps.

The sampling frequency is always four times the signal frequency. This simplifies the mixing
operation significantly, since the in-phase (I) and quadrature (Q) components of the sine and cosine
are simply 0, 1, 0 and −1, 1, 0, −1 and 0 respectively for 0 rad, π/2 rad, π rad and 3π/2 rad.
These operations involve single-cycle copy and invert instructions. An overview of the whole digital
processing cascade is depicted in Figure 3. The whole filter structure is replicated eight times for the
four sensors and four reference signals. The decimation factor and filter coefficients of the last stage
depends upon the configuration. To obtain an output frequency of 1 Hz, the decimation factor of the
last stage has to vary between 2 and 20.

For the Sylvatica board, the signal frequencies of interest are typically much smaller. Biological and
environmental sensor responses vary in the range of a few Hertz and below [22,27–32]. Consequently,
there is no need to maximise the sampling frequency other than to limit the amount of noise. Some plant
processes such as the absorption of photons by chlorophyll molecules and chlorophyll fluorescence
after photon incidence occur much faster, within 1× 10−15 s and 1× 10−9 s respectively [38]. However,
these events cannot be observed by simple sensors in a greenhouse or on the field, so they are not
considered here.

To avoid active filters, the sampling frequency is increased to 10 kHz per channel. However, this
shifts complexity from the analogue to the digital domain. This is desirable since it is easier to modify
and optimise the software for a particular application. An overview of the digital processing is shown
in Figure 4.

Table 1. Overview of the different sampling and signal frequencies employed in the sensor boards
Planalta and Sylvatica. Nc is the maximum number of active channels, where “R” denotes that the
output of the signal driver is also sampled (top analogue-to-digital converters (ADC) block in Figure 2).
fc is the analogue cut-off frequency of the anti-aliasing low-pass filter in front of the ADC. fs is the
sampling frequency of a specific ADC channel. The frequency depends upon the number of active
channels. fsignal is the (modulated) signal frequency. The filter cascade reduces the input signal to a
1 kHz signal, as indicated by fout.

Board Nc [-] fc [kHz] fs [kHz] fsignal [Hz] fout [Hz]

Dicio - - - - -

Planalta

1 97.0 200 50 × 103 1
1 + R 39.3 80 20 × 103 1
2 + 2R 19.5 40 10 × 103 1
4 + 4R 10.3 20 5 1

Sylvatica 8 4.8 10 ≤0.2 1
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Figure 3. Schematic representation of the data processing and flow on the microcontroller of the
Planalta board. The data coming from the analogue-to-digital converter ADC contains data from all
channels. These samples are copied to new vectors by a “demultiplexer” (demux) to make the filtering
faster. The incoming data is then band-pass filtered before being mixed to remove unwanted signals
that the mixer can map to the same frequencies. Afterwards, the data passes through four filter and
decimation stages before its final filtering and decimation step. The decimation factor N depends upon
the incoming data rate to achieve an output frequency of 1 kHz.
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Figure 4. Schematic representation of the data processing and flow on the microcontroller of the
Sylvatica board. The data coming from the analogue-to-digital converter ADC contains data from all
channels. These samples are copied to new vectors by a “demultiplexer” (demux) to make the filtering
faster. The filtering consists of a cascade of low-pass filters, followed by a decimation step of factor 10
to reduce the sample rate.

3.3. Digital Interfacing with Sensor Boards

As mentioned, I2C is used to read the sensor data. On this bus, one device has control and can
read and write to other devices. In this setup, Dicio is the control device that reads the sensor data from
the sensor boards Planalta and Sylvatica. Each device, except for the controller, has a 7-bit address that
must be unique on the bus.

To ensure that only valid data are read, a ping-pong buffer system is used at the output. One buffer,
buffer A, is written by the software with new data, while the other, buffer B, can be read by the user.
When buffer A is full, the roles are revised. Buffer B is written, and buffer A is read. Each buffer stores
one sample (this can be increased in the software) and thus has to be read every second. Note that for
Sylvatica a sample consists of a single 16-bit value, but for Planalta a single sample consists of up to
two or four 16-bit values: two values representing the I- and Q-components of the sensor signal and
optionally the driver I- and Q-components.

4. Results

To validate the system, a small prototype was constructed consisting of one Dicio board,
two Sylvatica boards, and one Planalta board. An experiment was conducted during ten days in a
growth chamber of 1.45 × 0.77 × 1.45 m (height × depth × width) at Flanders Research Institute for
Agriculture, Fisheries and Food (ILVO), Melle, Belgium with a custom-built frame of 1.00 × 0.70 ×
1.10 m (height × depth × width). All lighting was mounted on this frame, including 32 LED lamps
(MAS LED spot VLE D 4.9-50W GU10 927 60D, Koninklijke Philips N.V., The Netherlands) and eleven
halogen lights (DECOSTAR 51 PRO 50 W 12 V 36° GU5.3, OSRAM GmbH, Germany). The experiment
applied a simulated day-night cycle on two strawberry plants (Fragaria × ananassa, labelled S1 and S2)
and one plum tomato plant (Solanum lycopersicum L., labelled T). The strawberry plants were mature
plants, grown in a greenhouse at ILVO during the previous year. The main difference between them
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was their size, S1 had significantly more leaves and S2. The leaves of S2 were also less green than those
of S1. Their pot sizes were the same. The tomato plant was a five-week-old seedling.

The two sensor boards, Sylvatica and Planalta were used to perform the readout of several contact
sensors that were connected to the plants at a rate of 1 Hz. We employed four leaf thickness sensors,
two leaf length sensors, one soil moisture sensor, one relative humidity and temperature sensor,
and one light intensity sensor. The environmental sensors were mounted on a separate board, which
was glued to a 3D-printed radiation shield. An overview of the different connections to the sensor
boards and the monitored plants is depicted in Table 2. More detailed information about the different
sensors is provided in Table 3.

Table 2. Overview of the sensors connected to each plant. A leaf thickness sensor was connected at the
start of the experiment to the tomato plant, but there was an issue with the connection. As a result,
this data was not valid and not included in the analysis.

Plant Sensor Type

Leaf Thickness Leaf Length Soil Moisture

strawberry 1 (S1) 2 1 1
strawberry 2 (S2) 2 0 0

tomato 1 (T) 0 1 0

Table 3. Overview of the different sensors used in the experimental validation of the system.

Sensor Description Part Number and Manufacturer Interface

leaf thickness AH-303 (AgriHouse, USA) analogue readout
leaf length (LVDT) E100 (Chauvin Arnoux, France) LIA readout
relative humidity and temperature SHT35 (Sensirion AG, Switzerland) digital I2C sensor
light intensity APDS-9301-020 (Broadcom, USA) digital I2C sensor

At the start of the experiment, the plants were watered and left to stabilise for one day in
the growth chamber before monitoring started. During the monitoring experiment, the plants
were watered twice after visual observation of wilting of S1 just before noon on 24 December and
30 December. These time points are indicated by a dashed green line on Figure 5. A picture of the
experimental setting just after the second watering time point (30 December 2019 at 10:45) is depicted
in Figure 6. S1 wilted, while the other plants did not show any visual sign of wilting.

Both the leaf thickness and leaf length sensors have a strong temperature dependence, which
is eliminated using a simple calibration procedure. During this calibration, the temperature was
gradually increased from 10 ◦C to 32 ◦C. For the leaf length sensors, the AgriHouse Calibration Card
(AH-300C) was used to calibrate. The leaf length sensors were calibrated using four reference distances.

To calculate the soil water content from the capacitance reading, the following calibration
procedure was followed: first, the soil was saturated with water for five days; second, it was left to
drip to remove excess moisture for 1 h; third, the soil was left to dry at ambient temperature conditions
for 14 days during which the weight of the pot and sensor readouts were recorded; finally, these were
combined with the dry weight and volume of the port to calculate the amount of water in the soil per
volumetric unit.

The LVDT sensors, used for leaf elongation measurement, do not provide absolute values of leaf
length. Therefore, the first measurement was taken to be the reference distance and was set to zero for
both sensors.
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Figure 5. Visualisation of the captured data in a growth chamber experiment with a strawberry plant.
The dashed green line indicates the watering time point. A detailed figure of the grey shaded line
(16:30 on 26 December to 3:30 on 27 December) is depicted in Figure 7.



Sensors 2020, 20, 3055 11 of 20

environmental
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leaf thickness
sensor

Gloxinia
measurement

system

Raspberry Pi

leaf length sensor

S1

S2
T

(a)(b)

Figure 6. (a) Experimental set-up. The environmental sensors are not depicted in this figure, but their
cable is. (b) Close-up of the radiation shield that houses the environmental sensors.

A more detailed zoom of a 12 h period is of the grey area is depicted in Figure 7. The captured
data contains less noise than expected from Figure 5. Moreover, the oscillatory behaviour of the sensors
appeared due to the functioning of the growth chamber. It causes the environmental conditions to
oscillate around a predefined setpoint, which in turn are main drivers for the plant response.
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Figure 7. This figure is a detailed zoom of the grey shaded in Figure 5 to visualise the accuracy of
the system. A further zoom of the grey shaded area in this figure (18:30 to 19:00 on 26 December) is
depicted in Figure 8.
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Figure 8. Detail figure of the grey shaded in Figure 7 to visualise of the accuracy of the system. Only
the leaf thickness and leaf length of S1 are plotted since there is a significant offset between the leaf
thickness of S1 and S2 and leaf length of S1 and T in Figure 7.

5. Discussion

5.1. Evaluation of the Experiment and Future Improvements

Figure 5 depicts the most interesting sensor data throughout the entire experiment. The visual
observations of wilting are supported by the readings from the leaf thickness sensors. S1 was wilting
(see Figure 6). The leaf thickness, presented in Figure 5c (blue), gradually decreased from the previous
watering event on 24 December towards this time point of visual observation on 30 December at 10:45.
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Leaf thickness decreased from around 115 µm to 75 µm in the first drying period with decreasing
soil water content down to 200 g/L. In the second drying period, soil water content decreased down
to 125 g/L, resulting in a minimum leaf thickness of 53 µm. After re-watering, the leaf thickness
quickly recovered. S2 was not wilting, which is supported by a more constant pattern of the leaf
thickness towards this time point of observation (Figure 5c, in green). Once wilting started, there
was also a clear decrease in leaf thickness for S1 to approximately 75 µm the first time and 53 µm the
second time. The leaf thickness quickly recovered after watering, clearly highlighting the need for
monitoring systems with high temporal resolution. Without them, it would not be possible to measure
the recovery time of the leaf thickness of S1. Furthermore, there was no clear difference before and
after the watering time point for S2, indicating that this plant was not perceiving drought stress in this
period. S2 was probably not wilting due to its lower leaf area compared to S1, while the pot sizes were
the same. As a result, we presume that the water content in the pot of S2 was still sufficient since the
water content in both pots was the same when the experiment started.

For S1, the leaf elongation did not show drastic variations in response to the drying conditions,
other than a small gradual growth during the experiment. The leaf elongation of the tomato plant T
did not show a decrease in response to limited water availability. However, a marked increase in
leaf elongation coincided with the two re-watering events, indicating that leaf elongation was slowed
down before re-watering.

Besides the effects of drying and re-watering, the leaf thickness and leaf elongation sensors also
demonstrated a pattern of shrinkage during the day and increased during the night. Indeed, leaf length
and thickness decrease when water loss due to transpiration is not fully compensated by the water
uptake, and increase when transpiration decreases and tissues are replenished with water. The pattern
of swelling and shrinking was most explicit in the leaf elongation of the tomato leaf T. Additionally,
the leaf thickness in plants S1 and S2 did not increase throughout the experiment, as these leaves had
already reached their final leaf thickness. The elongation sensors on plants S1 and T, showed a gradual
increase in leaf length, indicating that these leaves were still expanding. The elongation of the young
tomato leaf was much faster than that of the leaf of the strawberry plant S1 [39,40].

From Figure 8, we can conclude that the leaf thickness is strongly influenced by the relative
humidity, where the drop in relative humidity corresponds to a similar decrease of the leaf thickness
around 18:35. The time offset is probably due to the heterogeneously of the air in the growth chamber.
A similar effect is observed between 18:55 and 18:58. When the relative humidity decreases, water will
evaporate more quickly, resulting in reduced leaf thickness. Since there is a variation of less than 1 ◦C,
there is a limited effect of the temperature. These physiological responses are only detectable when a
high temporal resolution is used, illustrating the need for systems such as Gloxinia. The leaf length
variation remains limited. Compared to leaf thickness, leaf length features less variation on a short
timescale for strawberry plants in this experiment.

As expected, soil water content consistently decreased after watering. However, slight increases
at the start of the day are due to the temperature dependence of the sensor. A possible explanation
is that the soil temperature was not measured, only air temperature. As a result, there is some
over-compensation when the temperature changes drastically due to the slower temperature increase
of the soil.

5.2. Design Validation and Comparison to Existing Platforms

In the introduction, four key design criteria were identified. A comparison between our design,
a commercial data logger, a single board computer with analogue capabilities (BeagleBone Black), and
a microcontroller platform (Arduino) is depicted in Figure 9 on a 1 to 5 scale. The higher the scale,
the better the performance for this criterion.
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versatility
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Arduino
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Gloxinia

Commercial
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Figure 9. Spider chart comparing different data logging approaches. The higher the number, the better
the performance for this specific metric. For instance, a score of 5 on the cost scale means this has the
best cost performance, i.e., lowest cost.

We evaluate the requirements for two experiments: a smaller experiment where one plant is
monitored closely with 15 analogue sensors, and a larger experiment where ten plants are monitored in
a greenhouse with 15 analogue sensors connected to each plant. Additionally, the environment will be
characterised at each plant in both experiments for temperature, relative humidity, and light intensity.
In addition to analogue sensors, a digital sensor is employed that uses I2C to measure the temperature,
relative humidity, and light intensity. To simplify the comparison, it is restricted to sensors that do not
require an input waveform. All sensors are sampled every 10 s.

To evaluate the platforms for each of the criteria, we define the four measures, one for each of
the design criteria. First, to assess the sensor scalability, we compare the average number of boards
per sensor for each of the trials. Second, to assess the accuracy, we compare the number of bits of the
output sample. While this is not the actual accuracy, this estimate provides a first indication thereof.
Third, the cost is defined as the average cost per sensor of the entire readout system per platform.
Fourth, versatility is assessed by qualitative comparison of the difference between the first three design
criteria for the two experimental set-ups aforementioned.

The official Arduino Uno board can interface with up to six sensors on a single board, with a
resolution of 10-bit. A single board costs 18.81 e (Mouser, USA, 30 January 2020). Different boards are
connected using I2C since a robust protocol is not supported without additional hardware. As a result,
three boards are needed for the first experiment and 25 for the second [41].

The BeagleBone Black Rev. C board can also interface with up to six analogue sensors per board.
The resolution is 12-bit per sensors and costs 62.75 e per board (Mouser, USA, 30 January 2020).
Different nodes are connected using the CAN bus. As a result, three boards are needed for the first
experiment and 25 for the second [42].

Commercial data loggers are very popular and widely used by researchers in plant and
environmental monitoring trials. The cost of such commercial systems is approximately 1000 to 1500 e.
A single data logger can typically measure 16 sensors sequentially. And have a resolution of 12-bit to
13-bit. Thus, one data logger is needed in the first experiment and ten in the second. However, in a
real set-up researchers will typically use a multiplexer to readout all sensors and keep the overall cost
of the setup more manageable.
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The Gloxinia system discussed here requires the Dicio control board and the Sylvatica sensor
board to interface with these sensors, one Sylvatica board can measure up to eight analogue sensors
and has a resolution of 16-bit. Different Dicio boards are connected using the CAN bus. A cost
overview is depicted in Table 4, where a categorical separation is made. For the first experiment,
one Dicio board is needed, while for the second ten boards are required. Per Dicio board, two Sylvatica
sensor boards are necessary in both cases.

Table 4. Cost calculation assuming ten boards are produced of a particular type. The cost calculation is
based on the Mouser inventory and component prices of 17 December 2019. Enclosure is optionally
available from Hammond Manufacturing for 20.21 e. All prices are excluding VAT.

Board Cost Category (e) Total Cost (e)

Cap
ac

ito
rs
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ors

Connec
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plifi
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Volta
ge Ref

er
en

ce

Oth
er

ADC

Dicio 3.16 0.74 10.43 6.68 5.09 4.64 1.9 32.64

Sylvatica 3.41 1.25 3.52 6.68 3.26 15.84 4.81 1.35 9.44 49.56

Planalta 6.47 2.03 2.96 6.68 3.26 16.44 4.81 5.25 9.44 57.34

From the foregoing, it is clear that in terms of scalability, the Arduino performs worst due to the
lack of a robust communication interface for larger distances. Commercial systems usually require
expansion units, though the cable length between expansion units is usually limited. Often, this is
compensated by use of expensive measurement cables with low attenuation. The BeagleBone Black and
Gloxinia both support the CAN bus. Some additional hardware is required for the BeagleBone Black
to interface with other CAN-enabled devices though.

The versatility of the platform depends upon the needs of the application. Therefore we
compared the available sensor interfaces and the change in the number of boards needed between
both experiments. The Arduino has the lowest number of interfaces, followed by the BeagleBone Black.
Both lack the ability to interface with LIA-based sensors for instance. The number of boards scales
similarly for Arduino and BeagleBone Black. The commercial system is the most versatile, since it has
the widest range of sensor interfaces and expansion units can be added. Gloxinia’s performance is
intermediate between the BeagleBone Black and commercial data logger thanks to its wider range
of interfaces.

A summary of these observations is depicted in Table 5 and Figure 9. The Gloxinia platform is not
the most effective on all criteria but provides the best trade-off to achieve a good score on all criteria.

Table 5. Detailed comparison and summary of the evaluation of the different sensor platforms. The
cost values are based on the cost per sensor for the small first experiment. The following scores are
given from lowest to highest for a particular metric: −, +/−, +, ++, and +++.

Criterion Platform

Arduino BeagleBone Black Commercial Gloxinia

scalability − ++ +/− +++
accuracy [bit] 10 (+/−) 12 (+) 12/13 (++) 16 (+++)

cost [per sensor, e] 3.76 (+++) 12.55 (+) 66.67–100 (−) 8.78 (++)
versatility +/− + +++ ++
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5.3. Future Improvements and Possibilities

While not tested in the experimental setup, the system should easily scale to large trials that need
to monitor sensors over large distances thanks to the CAN bus. Theoretically, there is an upper limit
of approximately 400 Dicio boards that are connected to a single CAN bus, based on the differential
input resistance and drive capability of the MCP2542FD CAN transmitter. However, we advise that no
more than 100 Dicio nodes are connected to the same bus for error-free operation. Each Dicio node
supports up to four Planalta and five Sylvatica sensor nodes. A second CAN bus has to be used in case
more sensors have to be measured.

To stimulate usage of this data logging tool, both hardware and software have been open-sourced
in a GitHub repository. All relevant files can be downloaded from GitHub (https://github.com/
opieters/gloxinia).

6. Conclusions

The Gloxinia sensor platform aims to advance monitoring in fundamental and applied plant
research from modelling to irrigation and crop management. Four key needs were identified: sensor
scalability, accuracy, cost and versatility. The whole platform has been designed to address these needs
with an open-source design. The platform comprises of individual sensor nodes that communicate
with each other. Each node has a control board Dicio to which sensor nodes are connected. Sylvatica
and Planalta are two sensor boards that provide an interface that matches most analogue sensors
used in plant research. Digital sensors can also be connected to the control boards. Most of the
application-specific optimisations are done in software, making it easier for the user to optimise for a
specific application. To validate the accuracy of the system, an experimental trial was set up in a growth
chamber. Environmental conditions, leaf length, and leaf elongation were successfully measured at
high resolution on one tomato and two strawberry plants to validate the functionality of the system.
The overall system scales well due to the multiplexed sampling of up to eight channels on Sylvatica
and four on Planalta, accurate 16-bit data acquisition, lost unit cost, and distributed architecture.
Consequently, the system strikes a good trade-off between these various requirements, making it
well-suited for research, breeding, and precision crop phenotyping.
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The following abbreviations are used in this manuscript:
LVDT Linear Variable Displacement Transducers
CAN Controller Area Network
UART Universal Synchronous Receiver-Transmitter
I2C Inter-Integrated Circuit
LIA lock-in amplifier
ADC analogue-to-digital converter
PWM pulse-width modulation
PGA Programmable Gain Amplifier
SPI serial peripheral interface
THD total harmonic distortion
USB universal serial bus
SAR successive approximation register
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Appendix A. Analogue Front-End Specifications

The PGA meets the noise specification for the first design criteria of the selected ADC for the first
three gain settings (1, 2 and 5). However, the PGA does just not meet the distortion requirement for a
unity gain configuration. The PGA has a Total Harmonic Distortion (THD) of −104 dB, and the ADC
−100 dB at 1 kHz. Though, this should not be a limiting factor, since the signal frequencies of interest
are typically much lower for Sylvatica. The digital filter on Planalta has a very narrow bandwidth,
so this should also be sufficient. A simulation was not performed since there is no simulation model
available for this PGA.

For sensors that use a constant supply voltage, there are three possible supply voltages: 3.3 V, 5 V
and 12 V. All these supplies are located on Dicio, so all boards that are connected to the same Dicio
control board have the same supply voltages available. Each sensor board features one additional
power supply of 4 V to power the buffer, PGA and ADC. This is the only supply that is not available to
the user from one of the connection ports. Furthermore, this supply voltage generated independently
on each sensor board. The 3.3 V supply can deliver up to 1 A.

The 12 V switching power supply enables Sylvatica to interface with common environmental
sensors such as HMP50-L and CS616 from Campbell Scientific Logan, UT, USA. The on-board supply
can deliver up to 35 mA.

A stable 5 V reference is not always available, for example when the Dicio main power supply
is derived from Universal Serial Bus (USB) or when the supply is located at a large distance from
the node. For these situations, a power supply (RP604Z501B, Ricoh, Ohta-ku, Tokyo, Japan) can be
soldered on Dicio to stabilise the 5 V supply rail and deliver up to 300 mA.

References

1. Lawson, T.; Blatt, M.R. Stomatal Size, Speed, and Responsiveness Impact on Photosynthesis and Water Use
Efficiency. Plant Physiol. 2014, 164, 1556–1570. [CrossRef] [PubMed]

2. Barillot, R.; Frak, E.; Combes, D.; Durand, J.L.; Escobar-Gutiérrez, A.J. What Determines the Complex
Kinetics of Stomatal Conductance under Blueless PAR in Festuca Arundinacea? Subsequent Effects on Leaf
Transpiration. J. Exp. Bot. 2010, 61, 2795–2806. [CrossRef] [PubMed]

3. Windt, C.W.; Vergeldt, F.J.; Jager, P.A.D.; As, H.V. MRI of Long-Distance Water Transport: A Comparison
of the Phloem and Xylem Flow Characteristics and Dynamics in Poplar, Castor Bean, Tomato and Tobacco.
Plant Cell Environ. 2006, 29, 1715–1729. [CrossRef] [PubMed]

4. Behrens, H.M.; Weisenseel, M.H.; Sievers, A. Rapid Changes in the Pattern of Electric Current around the
Root Tip of Lepidium Sativum L. Following Gravistimulation. Plant Physiol. 1982, 70, 1079–1083. [CrossRef]

5. Hubeau, M.; Steppe, K. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning. Trends Plant Sci.
2015, 20, 676–685. [CrossRef]

6. Rascher, U.; Blossfeld, S.; Fiorani, F.; Jahnke, S.; Jansen, M.; Kuhn, A.J.; Matsubara, S.; Märtin, L.L.A.;
Merchant, A.; Metzner, R.; et al. Non-Invasive Approaches for Phenotyping of Enhanced Performance Traits
in Bean. Funct. Plant Biol. 2011, 38, 968–983. [CrossRef]

7. Caldeira, C.F.; Bosio, M.; Parent, B.; Jeanguenin, L.; Chaumont, F.; Tardieu, F. A Hydraulic Model Is
Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water
Status. Plant Physiol. 2014, 164, 1718–1730. [CrossRef]

8. De Swaef, T.; De Schepper, V.; Vandegehuchte, M.W.; Steppe, K. Stem Diameter Variations as a Versatile
Research Tool in Ecophysiology. Tree Physiol. 2015, 35, 1047–1061. [CrossRef]

9. De Swaef, T.; Steppe, K.; Lemeur, R. Determining Reference Values for Stem Water Potential and Maximum
Daily Trunk Shrinkage in Young Apple Trees Based on Plant Responses to Water Deficit. Agric. Water Manag.
2009, 96, 541–550. [CrossRef]

10. Fernández, J.E.; Cuevas, M.V. Irrigation Scheduling from Stem Diameter Variations: A Review. Agric. For. Meteorol.
2010, 150, 135–151. [CrossRef]

11. De Swaef, T.; Bellocchi, G.; Aper, J.; Lootens, P.; Roldán-Ruiz, I. Use of Identifiability Analysis in Designing
Phenotyping Experiments for Modelling Forage Production and Quality. J. Exp. Bot. 2019, 70, 2587–2604.
[CrossRef] [PubMed]

http://dx.doi.org/10.1104/pp.114.237107
http://www.ncbi.nlm.nih.gov/pubmed/24578506
http://dx.doi.org/10.1093/jxb/erq115
http://www.ncbi.nlm.nih.gov/pubmed/20444905
http://dx.doi.org/10.1111/j.1365-3040.2006.01544.x
http://www.ncbi.nlm.nih.gov/pubmed/16913861
http://dx.doi.org/10.1104/pp.70.4.1079
http://dx.doi.org/10.1016/j.tplants.2015.07.008
http://dx.doi.org/10.1071/FP11164
http://dx.doi.org/10.1104/pp.113.228379
http://dx.doi.org/10.1093/treephys/tpv080
http://dx.doi.org/10.1016/j.agwat.2008.09.013
http://dx.doi.org/10.1016/j.agrformet.2009.11.006
http://dx.doi.org/10.1093/jxb/erz049
http://www.ncbi.nlm.nih.gov/pubmed/30753587


Sensors 2020, 20, 3055 19 of 20

12. Walter, A.; Liebisch, F.; Hund, A. Plant Phenotyping: From Bean Weighing to Image Analysis. Plant Methods
2015, 11, 14. [CrossRef] [PubMed]

13. Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014,
14, 20078–20111. [CrossRef] [PubMed]

14. Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci.
2014, 19, 52–61. [CrossRef]

15. Busemeyer, L.; Mentrup, D.; Möller, K.; Wunder, E.; Alheit, K.; Hahn, V.; Maurer, H.P.; Reif, J.C.;
Würschum, T.; Müller, J.; et al. BreedVision—A Multi-Sensor Platform for Non-Destructive Field-Based
Phenotyping in Plant Breeding. Sensors 2013, 13, 2830–2847. [CrossRef]

16. Shafiekhani, A.; Kadam, S.; Fritschi, F.B.; DeSouza, G.N. Vinobot and Vinoculer: Two Robotic Platforms for
High-Throughput Field Phenotyping. Sensors 2017, 17, 214. [CrossRef]

17. Andrade-Sanchez, P.; Gore, M.A.; Heun, J.T.; Thorp, K.R.; Carmo-Silva, A.E.; French, A.N.; Salvucci, M.E.;
White, J.W. Development and Evaluation of a Field-Based High-Throughput Phenotyping Platform.
Funct. Plant Biol. 2014, 41, 68–79. [CrossRef]

18. Granier, C.; Aguirrezabal, L.; Chenu, K.; Cookson, S.J.; Dauzat, M.; Hamard, P.; Thioux, J.J.; Rolland, G.;
Bouchier-Combaud, S.; Lebaudy, A.; et al. PHENOPSIS, an Automated Platform for Reproducible
Phenotyping of Plant Responses to Soil Water Deficit in Arabidopsis Thaliana Permitted the Identification of
an Accession with Low Sensitivity to Soil Water Deficit. New Phytol. 2006, 169, 623–635. [CrossRef]

19. Hartmann, A.; Czauderna, T.; Hoffmann, R.; Stein, N.; Schreiber, F. HTPheno: An Image Analysis Pipeline
for High-Throughput Plant Phenotyping. BMC Bioinform. 2011, 12, 148. [CrossRef]

20. Clearwater, M.J.; Meinzer, F.C.; Andrade, J.L.; Goldstein, G.; Holbrook, N.M. Potential Errors in Measurement
of Nonuniform Sap Flow Using Heat Dissipation Probes. Tree Physiol. 1999, 19, 681–687. [CrossRef]

21. Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap Flow as a Key Trait in the Understanding
of Plant Hydraulic Functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]

22. Xu, Y. Envirotyping for Deciphering Environmental Impacts on Crop Plants. Theor. Appl. Genet. 2016,
129, 653–673. [CrossRef] [PubMed]

23. Tardieu, F.; Cabrera-Bosquet, L.; Pridmore, T.; Bennett, M. Plant Phenomics, From Sensors to Knowledge.
Curr. Biol. 2017, 27, R770–R783. [CrossRef] [PubMed]

24. Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, Aspect and Climate: Spatially Explicit and
Implicit Models of Topographic Microclimate in Chalk Grassland. Ecol. Model. 2008, 216, 47–59. [CrossRef]

25. Artru, S.; Garré, S.; Dupraz, C.; Hiel, M.P.; Blitz-Frayret, C.; Lassois, L. Impact of Spatio-Temporal Shade
Dynamics on Wheat Growth and Yield, Perspectives for Temperate Agroforestry. Eur. J. Agron. 2017,
82, 60–70. [CrossRef]

26. Cabrera-Bosquet, L.; Fournier, C.; Brichet, N.; Welcker, C.; Suard, B.; Tardieu, F. High-Throughput Estimation
of Incident Light, Light Interception and Radiation-Use Efficiency of Thousands of Plants in a Phenotyping
Platform. New Phytol. 2016, 212, 269–281. [CrossRef]

27. Inoue, Y.; Peñuelas, J.; Miyata, A.; Mano, M. Normalized Difference Spectral Indices for Estimating
Photosynthetic Efficiency and Capacity at a Canopy Scale Derived from Hyperspectral and CO2 Flux
Measurements in Rice. Remote Sens. Environ. 2008, 112, 156–172. [CrossRef]

28. Wallach, R.; Da-Costa, N.; Raviv, M.; Moshelion, M. Development of Synchronized, Autonomous, and
Self-Regulated Oscillations in Transpiration Rate of a Whole Tomato Plant under Water Stress. J. Exp. Bot.
2010, 61, 3439–3449. [CrossRef]

29. Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008,
59, 89–113. [CrossRef]

30. Maes, W.H.; Steppe, K. Estimating Evapotranspiration and Drought Stress with Ground-Based Thermal
Remote Sensing in Agriculture: A Review. J. Exp. Bot. 2012, 63, 4671–4712. [CrossRef]

31. Jones, H.G. Use of Thermography for Quantitative Studies of Spatial and Temporal Variation of Stomatal
Conductance over Leaf Surfaces. Plant Cell Environ. 1999, 22, 1043–1055. [CrossRef]

32. Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to Explore Plant–Environment Interactions.
J. Exp. Bot. 2013, 64, 3937–3949. [CrossRef] [PubMed]

33. Neveu, P.; Tireau, A.; Hilgert, N.; Nègre, V.; Mineau-Cesari, J.; Brichet, N.; Chapuis, R.; Sanchez, I.; Pommier,
C.; Charnomordic, B.; et al. Dealing with Multi-Source and Multi-Scale Information in Plant Phenomics:

http://dx.doi.org/10.1186/s13007-015-0056-8
http://www.ncbi.nlm.nih.gov/pubmed/25767559
http://dx.doi.org/10.3390/s141120078
http://www.ncbi.nlm.nih.gov/pubmed/25347588
http://dx.doi.org/10.1016/j.tplants.2013.09.008
http://dx.doi.org/10.3390/s130302830
http://dx.doi.org/10.3390/s17010214
http://dx.doi.org/10.1071/FP13126
http://dx.doi.org/10.1111/j.1469-8137.2005.01609.x
http://dx.doi.org/10.1186/1471-2105-12-148
http://dx.doi.org/10.1093/treephys/19.10.681
http://dx.doi.org/10.1093/treephys/tpv033
http://www.ncbi.nlm.nih.gov/pubmed/25926534
http://dx.doi.org/10.1007/s00122-016-2691-5
http://www.ncbi.nlm.nih.gov/pubmed/26932121
http://dx.doi.org/10.1016/j.cub.2017.05.055
http://www.ncbi.nlm.nih.gov/pubmed/28787611
http://dx.doi.org/10.1016/j.ecolmodel.2008.04.010
http://dx.doi.org/10.1016/j.eja.2016.10.004
http://dx.doi.org/10.1111/nph.14027
http://dx.doi.org/10.1016/j.rse.2007.04.011
http://dx.doi.org/10.1093/jxb/erq168
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759
http://dx.doi.org/10.1093/jxb/ers165
http://dx.doi.org/10.1046/j.1365-3040.1999.00468.x
http://dx.doi.org/10.1093/jxb/ert029
http://www.ncbi.nlm.nih.gov/pubmed/23599272


Sensors 2020, 20, 3055 20 of 20

The Ontology-Driven Phenotyping Hybrid Information System. New Phytol. 2019, 221, 588–601. [CrossRef]
[PubMed]

34. Robert Bosch GmbH. CAN Specification, 1991. Postfach 50, D-7000 Stuttgart 1, Germany. Available online:
http://esd.cs.ucr.edu/webres/can20.pdf (accessed on 15 December 2019).

35. Corrigan, S. Controller Area Network Physical Layer Requirements,Texas Instruments: Dallas, TX, USA, 2008.
36. NXP Semiconductors. UM10204 I2C-Bus Specification and User Manual; NXP Semiconductors: Eindhoven,

The Netherlands, 2014.
37. Dixon, P.K.; Wu, L. Broadband Digital Lock-in Amplifier Techniques. Rev. Sci. Instrum. 1989, 60, 3329–3336.

[CrossRef]
38. Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010.
39. De Swaef, T.; Vermeulen, K.; Vergote, N.; Van Lommel, J.; Van Labeke, M.C.; Bleyaert, P.; Steppe, K. Plant

Sensors Help to Understand Tipburn in Lettuce. In Acta Horticulturae; International Society for Horticultural
Science (ISHS): Leuven, Belgium, 2015; Volume 1099, pp. 63–70. [CrossRef]

40. Fabbri, A.; Sutter, E.; Dunston, S.K. Anatomical Changes in Persistent Leaves of Tissuecultured Strawberry
Plants after Removal from Culture. Sci. Hortic. 1986, 28, 331–337. [CrossRef]

41. Arduino—Board. Available online: https://www.arduino.cc/en/reference/board (accessed on 30 January
2020).

42. Kridner, J.; Coley, G. BeagleBone Black: System Reference Manual; Number C; Texas Instruments: Dallas, TX,
USA, 2014.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/nph.15385
http://www.ncbi.nlm.nih.gov/pubmed/30152011
http://esd.cs.ucr.edu/webres/can20.pdf
http://dx.doi.org/10.1063/1.1140523
http://dx.doi.org/10.17660/ActaHortic.2015.1099.3
http://dx.doi.org/10.1016/0304-4238(86)90107-X
https://www.arduino.cc/en/reference/board
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Architecture
	Measurement System Design
	Analogue Front-End Design
	Digital Signal Processing
	Digital Interfacing with Sensor Boards

	Results
	Discussion
	Evaluation of the Experiment and Future Improvements
	Design Validation and Comparison to Existing Platforms
	Future Improvements and Possibilities

	Conclusions
	Analogue Front-End Specifications
	References

