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Abstract
We present a fast-simulation application based on a deep neural network, designed to create large analysis-specific datasets. 
Taking as an example the generation of W + jet events produced in 

√

s = 13 TeV proton–proton collisions, we train a neural 
network to model detector resolution effects as a transfer function acting on an analysis-specific set of relevant features, 
computed at generation level, i.e., in absence of detector effects. Based on this model, we propose a novel fast-simulation 
workflow that starts from a large amount of generator-level events to deliver large analysis-specific samples. The adoption 
of this approach would result in about an order-of-magnitude reduction in computing and storage requirements for the col-
lision simulation workflow. This strategy could help the high energy physics community to face the computing challenges 
of the future High-Luminosity LHC.

Keywords  Hadron Collider Physics · Fast Simulation · Deep Learning · High Energy Physics computing

Introduction

At the CERN Large Hadron Collider (LHC), high-energy 
proton–proton (pp) collisions are studied to consolidate our 
understanding of physics at the energy frontier and possi-
bly to search for new phenomena. While these studies are 
typically conducted according to a data driven methodology, 
synthetic data from simulated pp collisions are a key ingre-
dient to a robust analysis development. Particle physicists 

rely extensively on an accurate simulation of the physics 
processes under study, including a detailed description of 
the response of their detector to a given set of incoming par-
ticles. These large sets of synthetic data are typically gener-
ated with experiment-specific simulation software, based on 
the GEANT4 [1] library. Through Monte Carlo techniques, 
GEANT4 provides the state of the art in terms of simula-
tion accuracy. The first two runs of the LHC highlighted 
the remarkable agreement between data and simulation, 
with discrepancies observed at the level of a few percent. 
On the other hand, running GEANT4 is demanding in terms 
of resources. As a consequence of this, delivering synthetic 
data at the pace at which the LHC delivers real data is one of 
the most challenging tasks for the computing infrastructures 
of the LHC experiments. It is then more and more common 
for LHC physics analyses to be affected by large systematic 
uncertainties due to the limited amount of simulated data. 
This is particularly true for precise measurements of Stand-
ard Model processes for which large datasets are already 
available today. In the future, with the high-luminosity LHC 
upgrade, this will become a serious problem for most of the 
LHC data analyses [2]. Our community is called to reduce 
the computing resources needed for central simulation work-
flows by at least one order of magnitude, not to jeopardize 
the accuracy gain expected when operating the LHC at a 
high luminosity.
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To give a concrete example, we consider the event simu-
lation workflow of the CMS experiment, schematically rep-
resented in Fig. 1. The first step (GEN) consists in running 
an event generator library, simulating a pp collision, the pro-
duction of high-mass particles from it, and the decay of these 
particles to those stable particles which are then seen by 
the detector. This step creates the so-called generator-level 
view of a collision event, corresponding to what a perfect 
detector would see. The simulation of the detector response 
(SIM) translates this flow of particles into a set of detec-
tor hits, taking into account detector imperfections and the 
limited experimental resolution. These hits are converted 
to the same digital format (DIGI) produced by the detec-
tor electronics and then reconstructed by the same software 
used to process real collision events (RECO). At this stage, 
high-level objects such as jets are created. Starting from the 
RECO data format, a reduced analysis data format (MINI-
AOD) is derived [3]. Figure 1 also provides a breakdown of 
CPU and disk resources for each of these steps. Details on 
the procedure followed to measure these values are given in 
Appendix 8.

Recently, generative algorithms based on Deep Learning 
(DL) techniques have been proposed as a possible solution 
to speed up GEANT4. When following this approach, one 

typically focuses on an image representation of LHC colli-
sions (e.g., energy deposits in a calorimeter) and develops 
some kind of generative model [4–8] to by-pass GEANT4 
when simulating the detector response to individual parti-
cles [9–13] or to groups of particles, such as jets [14–16] or 
cosmic rays [17]. Generative models were considered also 
for similar applications in HEP, such as amplitude [18] and 
full event topology [19–21] generation. While these stud-
ies demonstrate the potential of generative models for HEP, 
more work is needed to fully integrate this new methodol-
ogy in the centralized computing system of a typical LHC 
experiment. In particular, one needs to work beyond the 
collision-as-image paradigm so that the DL-based simula-
tion accounts for the irregular geometry of a typical detec-
tor while delivering a dataset in a format compatible with 
downstream reconstruction software.

Other studies [22–24] investigated a more extreme 
approach: rather than training models to perform generic 
generation tasks in a broader software framework (e.g., a 
DL-based shower generator in GEANT), one could design 
analysis-specific generators, with the limited scope of 
delivering arrays of values for physics quantities which are 
relevant to a specific analysis. Reducing the event repre-
sentation to a vector of meaningful quantities, one could 

Fig. 1   TOP: The event generation workflow of the CMS experiment. 
The pp collision process is simulated up to the production of stable 
(hence observable) particles (GEN). The simulation of the detec-
tor response is modelled by the GEANT4 library (SIM). The result-
ing energy deposits are turned into digital signals (DIGI) that are 
then reconstructed by the same software used to process real colli-

sion events (RECO). At this stage, high-level objects such as jets 
are reconstructed. Starting from the RECO data format, a reduced 
analysis data format (MINIAOD) is derived. BOTTOM: computing 
resource breakdown for the generation workflow of the CMS experi-
ment, in terms of CPU (left) and storage disk (right). See Appendix 8 
for details
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obtain a large amount of events in short time and with small 
storage requirements by skipping all the intermediate steps 
of the data processing. The considered features could be 
the fundamental quantities used by a given analysis (e.g., 
the four-momenta of the final-state reconstructed objects 
in a search for new particles). In this context, both genera-
tive adversarial networks (GANs) [22, 23] and variational 
autoencoders (VAEs) [22] were considered. In this case, 
one learns the N-dimensional probability density function 
(N-dim pdf) of the event, in a space defined by the quantities 
of interest for a given analysis. Sampling from this function, 
one can then generate new data. The open question with this 
approach stands with the trade-off between statistical preci-
sion (which decreases with the increase amount of generated 
events) and the systematic uncertainty that could be induced 
by a non accurate description of the N-dim pdf. When train-
ing both VAEs and GANs, one learns how to interpolate 
between the samples provided in the training dataset. The 
limited amount of data in the training dataset is the ultimate 
precision-limiting factor, as discussed in Ref. [25], but gen-
erative models retain amplification capability similarly to 
what a fitting function does, as shown in Ref. [26] for GANs. 
Ultimately, one needs to balance the statistical uncertainty 
(i.e., the amplification factor when augmenting the dataset) 
and systematic uncertainties associated to the accuracy with 
which the generative model interpolates between the training 
data points. The balance will be reached tuning, among other 
things, the training dataset size. The optimal configuration, 
intrinsically application specific, determines whether a gen-
erative model is computationally convenient.1

In this paper, we propose to rephrase the problem of 
analysis specific dataset generation. Rather than morphing 
a distribution in a latent space into a target distribution, we 
want to start from the ideal-detector distribution and morph 
it into the actual-detector distribution, learning a fast-and-
accurate detector response model. We do so combining the 
strength of multi dimensional deep neural regressors to the 
adaptive power of kernel density estimation, which has a 
long and successful tradition in particle physics [27]. A simi-
lar goal is presented in Ref. [24] in which invertible neural 
networks are utilized with a focus on being able to perform 
unfolding (morphing from reconstructed level information 
to generator level distributions). For a given physics study, 
we assume that the interesting features can be represented 
by a limited set of high-level quantities (the feature vector 
� ). We assume that a training dataset is provided. For each 
collision event in the dataset, the feature vector is computed 

at three stages: (i) at generator level �G , i.e., before apply-
ing any detector simulation. This view of the collision event 
corresponds to the perfect-resolution ideal detector case; (ii) 
at reconstruction level �R , i.e. after the simulation of the 
detector response, modelled with GEANT4; (iii) at the output 
of the DL model �DL.2 We model the detector response as a 
function of the generator-level feature vector:

where N(�, �) is a one-dimension Normal function centered 
at � with variance �2 and the index i runs over the com-
ponents of the feature vector � . We train a DL model to 
simultaneously learn the functions �R(�G) and �R(�G) and 
then use the Normal model of Eq. (1) to generate �DL from 
�G . Under the assumption that large sets of �G values can 
be obtained in relatively short time (which is typically the 
case for High Energy Physics applications), this strategy 
would result in a sizable save of computing resources. On 
one hand, one would reduce computing time bypassing the 
more intense steps of the generation workflow. In addition, 
one would reduce the need for large storage elements: rather 
than storing individual collision data, which demands an 
event storage allocation between O(1MB) (for raw data) and 
O(10kB) (for analysis-ready object collections), one would 
directly handle a few relevant quantities for a given analysis. 
One could save resources by utilizing analysis-specific fast 
simulation models for data augmentation, e.g., generating 
10% of the required data with the traditional GEANT4 work-
flow and the remaining 90% only up to the GEN step. These 
data, shared among the O(100) analyses, would be used to 
create analysis-specific training and inference datasets. Even 
considering that O(100) analysis teams would have to train 
O(100) specific generative models, the strategy we propose 
would result in an important resource gain, provided a large 
enough training facility.3

We demonstrate this strategy at work on a concrete exam-
ple, namely the generation of W + 1 jet events produced in 
√

s = 13 TeV pp collisions, similar to those recorded at the 
LHC. We discuss the model design and training, its perfor-
mance and its accuracy for factor-ten data augmentation.

This paper is structured as follows: “Benchmark Data-
set” provides a full description of the input dataset and 
its feature-vector representation. “Model Description and 

(1)xi
DL

= N(�i
R
(�G), �

i
R
(�G)),

1  Here, we are assuming that GEANT4 will be used to generate the 
training dataset and the generative model will then be used to scale 
up the simulated dataset size. If the desired accuracy can be reached 
only at the price of more training data to be generated, the net gain of 
this approach would be reduced.

2  Given the limited computing resources at hand, it was not possible 
to carry on this study on a GEANT4-based dataset. Instead, we used 
the DELPHES [28], which provides a realistic setup to demonstrate 
the proposed strategy.
3  The model presented in this work was trained on a RTX2080 GPU 
by NVIDIA in 30 minutes. Even a small-size GPU cluster with O(10) 
GPUs dedicated to this use case could then serve the needs of a large 
collaboration. Its cost is negligible on the scale of the large comput-
ing infrastructures built for the LHC experiments.
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Training” describes the model architecture and the train-
ing setup. “Results” and “Computing Resources” discuss 
the model performance in terms of accuracy and resource 
utilization, respectively. Conclusions and outlook are given 
in “Conclusions”.

Benchmark Dataset

As a benchmark problem, we consider the generation of 
W + 1 jet events produced in 

√

s = 13 TeV pp collisions. 
The starting point is the inclusive production of W → �� 
events using PYTHIA8 [29]. At this stage, we require each 
event to have at least one muon with a transverse momentum 
pT > 22 GeV.4 Detector effects are modelled using DEL-
PHES v3.4.2 [28]. We consider the CMS detector model for 
the HL-LHC upgrade, distributed with DELPHES. At this 
stage, the event is overlaid to minimum-bias events to model 
the effect of pileup, i.e., those parasitic pp collisions happen-
ing at the same beam crossing as the interesting event. For 
each collision, the number of pileup collisions is sampled 
from a Poisson distribution with expectation value set at 200, 
to match the expected conditions for HL-LHC.

At generator level (GEN), jets are clustered using the 
anti-kt algorithm [30] with jet-size parameter R = 0.5 , 
taking the four-momenta of all the stable particles in the 
event as input. We consider events with one clustered jet, 
with pT > 30 GeV and |𝜂| < 2.4 . To avoid the double count-
ing of muons as jets, we require ΔR =

√

Δ𝜂2 + Δ𝜙2 > 0.5 
between the muon and the jet in each event.

At reconstruction level, jets are clustered from the list 
of particles returned by the DELPHES particle-flow algo-
rithm. As for the GEN jets, we consider anti-kt jets with 
R = 0.5 . Both the muon and jet are matched to the corre-
sponding generator-level object, selecting the reconstructed 
object (e.g., a muon) with the smallest ΔR from the cor-
responding generator-level object. Since our final state is 
composed of one jet and one muon, this simple algorithm 
does not generate ambiguity in the association. When gen-
eralizing this approach to more complex event topologies, 
one might modify the matching algorithm to prevent that the 
same gen-level object is associated to multiple reconstructed 
objects. In addition, we discard events with mismatched 
muons by requiring that the relative residual of the muon 

pT to be |pG
T
− pR

T
|∕pG

T
< 10% . This requirement allows us 

to remove a small fraction of events ( ∼ 0.5% of the total) 
in which the muon from the W boson is not reconstructed 
but another muon is found. In DELPHES, inefficiency in 
muon reconstruction happens through an uncorrelated hit-
or-miss procedure based on pseudo-random numbers. Work-
ing in an experimental environment, one would retain the 
whole dataset from a more accurate simulation, based on 
specific physic requirements that would induce learnable 
correlations.

The feature vector � is built considering the following 
nine quantities:

–	 The muon momentum in Cartesian coordinates: p�
x
 , p�

y
 , 

and p�
z
.

–	 The jet momentum in Cartesian coordinates: pjx , p
j
y , and 

p
j
z.

–	 The logarithm of the jet mass log(Mj).
–	 The missing transverse energy in Cartesian coordinates: 

Emiss
x

 and Emiss
y

.

In addition, we consider a set of 12 auxiliary features, com-
puted from the input feature vector �:

–	 The muon momentum in longitudinal-boost-invariant 
coordinates: p�

T
 , �� , and ��.

–	 The jet momentum in longitudinal-boost-invariant coor-
dinates: pj

T
 , �j , and �j.

–	 The missing transverse energy in polar coordinates: Emiss
T

 
and �miss.

–	 The transverse mass MT , i.e., the mass of the four 
momentum obtained summing the the muon transverse 
momentum (E�

T
, p�

x
, p�

y
, 0) to the missing transverse 

energy (Emiss
T

,Emiss
x

,Emiss
y

, 0).
–	 ST , i.e., the scalar sum of Emiss

T
 , p�

T
 , and pj

T
.

–	 The jet mass: Mj.

These quantities are computed at generator and reconstruc-
tion level and are used to assess how well the correlation 
between the generated quantities is modeled. Unlike the 
feature-vector quantities, they do not enter the definition of 
the loss function.

The model training and performance assessment is done 
on a dataset of 2M events, which we separate in a test and 
a learning datasets, containing 20% and 80% of the events, 
respectively. The learning dataset is further split into a train-
ing (70%) and a validation (30%) dataset. To test the data 
augmentation properties of the proposed strategy, we also 
consider a larger test dataset, containing 10 M events.

Both the training and large-size testing datasets are pub-
lished on Zenodo [31, 32].

4  We use a Cartesian coordinate system with the z axis oriented 
along the beam axis, the x axis on the horizontal plane, and the y axis 
oriented upward. The x and y axes define the transverse plane, while 
the z axis identifies the longitudinal direction. The azimuth angle � 
is computed with respect to the x axis. The polar angle � is used to 
compute the pseudorapidity � = − log(tan(�∕2)) . The transverse 
momentum ( pT ) is the projection of the particle momentum on the (x, 
y) plane. We fix units such that c = ℏ = 1.
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Model Description and Training

Our model architecture is represented in Fig.  2. The 
input vector �G of generator-level features is passed to 
two regressive models, each returning a vector with the 
same dimensionality of �G . One is interpreted as a vec-
tor of mean values �DL . The other one is interpreted as 
the “ ±1� ” quantile �DL . By taking the absolute difference 
between each mean value and its corresponding quantile, 
we compute the RMS values �DL.

Each regressive model consists of a six-layer dense neu-
ral network. The first and last layers have nine nodes each, 
while the intermediate layers have 100 nodes. All layers 
except the last one are activated by LeakyReLU [33] func-
tions, with � = 0.05 . Linear activation functions are used 
for the last layer. The model output is then computed as 
�DL = �DL + �DL ⋅ � , where the vector � contains random 
numbers sampled from a Normal function centered at 0 
with unit variance. In addition to the main features � , we 
compute a set of auxiliary features (see “Benchmark Data-
set”) used for a further post-training validation.

The loss function is defined as the sum of a mean abso-
lute error on �DL and a quantile regression on �DL:

where the average is done over a training subset, and the 
quantile regression loss QR is defined as:

(2)LRECO =
⟨

‖

‖

�DL − �R
‖

‖1
+ QR(�DL, �R)

⟩

,

(3)QR(�, �) =

k
∑

i=1

Θ(xi, yi)|xi − yi|,

where

The step function �(t) is set to one (zero) for positive (nega-
tive) values of t and � = 0.841 . This choice of � guarantees 
that the loss is minimized to learn the quantile correspond-
ing to one standard deviation.

We implement the model in KERAS [34] and train it 
with the Adam [35] optimizer, with batches of 128 and an 
epoch-dependent learning rate lr = 0.001∕(1 + nepoch) . The 
model is trained for 100 epochs, but convergence is typically 
reached between 30 epochs. The network parameter values 
corresponding to the smallest validation loss are taken as the 
optimal configuration.

Results

The trained model is used to generate samples of recon-
structed events from generator-level events. We evaluate the 
training performance by comparing the output distributions 
with those obtained by DELPHES for the same generator-
level events.

A comparison is shown in Fig. 3 for the feature-vector 
quantities. The sample derived from the DL model is simi-
lar to the the one obtained running a classic generation 
workflow. We train the model ten times and produce ten 
distributions. The bin-by-bin spread of these distributions 
is considered as a systematic uncertainty associated to the 
DL model, which is summed in quadrature to the statistical 
uncertainty in the same bin to compute the total uncertainty, 

(4)Θ(x, y) = (1 − �)�(x − y) + ��(y − x).

Fig. 2   Model architecture: a feature vector at generator level �
G
 is given as input to two regression models, returning vectors of central values 

( �
DL

 ) and RMS ( �
DL

 ), from which the reconstructed feature vector predicted by the DL model �
DL

 is generated
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shown by the error bars of the DL model in the figure. These 
systematic uncertainties are included to all the DL distribu-
tions shown in this paper. Only the statistical uncertainty is 
shown for the corresponding distributions of reconstructed 
quantities.

The model can account for small perturbations and major 
distortions of the GEN distribution, as well as the default 
detector simulation workflow. The agreement is not perfect, 
and certainly the model can be improved. Nevertheless, the 
reached accuracy is comparable to that of a typical data-to-
simulation comparison and certainly sufficient to support the 
novel procedure that we want to put forward in this study. 
The observed agreement goes beyond one-dimensional pro-
jections of the input features. The distributions of auxiliary 
quantities, computed as a function of the feature-vector 
quantities, are also modelled to a good precision (see Fig. 4). 
This demonstrates that the DL-based generator accounts for 

correlations between quantities, as much as the traditional 
DELPHES workflow does.

While a comparison of dataset distribution gives a con-
fidence of the quality achieved by the DL model, one can 
further test the achieved precision by looking at relative 
residual distributions. Our DL model does not sample events 
from a latent space (like a GAN or a plain VAE). Instead, it 
works as a fast simulation of a given generator-level event, 
preserving the correspondence between the reconstructed 
and the generated event, which allows us to compare event-
by-event relative residual distributions. These distributions, 
which quantify the detector effects on the analysis-specific 
interesting quantities, are shown in Fig. 5. There, we com-
pare the relative residuals between reconstructed and gener-
ated quantities, for the DL-based and the traditional simula-
tion workflow. An overall agreement is observed, despite a 
bias on the muon and jet momentum coordinates. While the 

Fig. 3   Distribution of reconstructed and model-predicted quantities 
for the feature-vector quantities, compared to the corresponding quan-
tities from generator-level quantities provided as input to the model. 
The bottom panel below each plot shows the bin-by-bin ratio of the 

model-predicted over reconstructed distribution for each quantity, 
labelled DL/Reco. The error bars on the model-predicted quantities 
is composed of the statistical uncertainty and systematic uncertainty 
associated with model training, represented by the different colors
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distribution ratio shown in the bottom panel tends to mag-
nify the effect that the distribution shift has on the tails, this 
residual difference between the target and learned resolu-
tion model has little impact on the simulation quality down-
stream, as one could judge by looking at the corresponding 
distributions in Fig. 3.

Figure 6 shows the same comparison for the auxiliary 
quantities. As the plot shows, a correct modeling of the 
residuals is obtained for energies, masses, and momenta. 
On the other hand, the model struggles to account for the 
high-resolution detector response on the � and � coordi-
nates. While this has little impact on the modeling of the � 
and � distributions (see Fig. 3), this is certainly an aspect to 
improve in real-life applications. Deeper models on larger 
training data could learn the function better. In addition, 
one could modify the loss function to force the network to 
learn specific auxiliary quantities (e.g., the jet mass) with 
critic networks (as done in the context of GAN training) 
and explore non-Gaussian response functions. To this extent, 

working in Cartesian coordinates might be a better choice, to 
facilitate the calculation of the auxiliary quantities in the loss 
function. We did not expand our study in these directions, 
for which a target dataset based on a full detector simulation 
would be more appropriate.

Appendix 9 provides further assessments of the genera-
tion quality, showing 2D distributions of quantities derived 
from the DL-based generator vs the traditional one.

While our method relies on a Gaussian smearing func-
tion, it could be generalized to more complex functions if 
needed. In that case, one would have to learn more quantiles 
to model response functions with more than two parame-
ters and then express these parameters as a function of the 
learned quantiles. On the other hand, it should be stressed 
that the response functions learned by our method are the 
result a convolution of the � and � distribution (approxi-
mated by the Neural Network) and the Gaussian sampling 
function. Since the former is typically described by a non-
Gaussian distribution, our model can learn non-Gaussian 

Fig. 4   Distribution of reconstructed and model-predicted auxiliary 
quantities, compared to the corresponding generator-level quantities. 
The bottom panel below each plot shows the bin-by-bin ratio of the 
model-predicted over reconstructed distribution for each quantity, 

labelled DL/Reco. The error bars on the model-predicted quantities 
is composed of the statistical uncertainty and systematic uncertainty 
associated with model training, represented by the different colors
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detector response even when relying on a simple Gaussian 
sampling. This is the case, for instance, of the asymmetric 
tail of the MET residual distribution or the �miss double-peak 
structure shown in Fig. 6. On a practical side, a Gaussian 
sampling was adequate for this study, based on DELPHES 
data, but one might have to consider more complex sam-
pling functions when trying to emulate with GEANT-based 
simulation.

To test the scaling of model accuracy with the inference 
dataset size, we apply our DL-based fast simulation strategy 
to a dataset five times bigger than what used for training. 
Figures 7 and 8 show the comparison of the distributions 
obtained in this case, compared to what is obtained with 
DELPHES, respectively for the input vector and the auxiliary 
features. The corresponding relative residual distributions 
are shown in Appendix 10. Figure 9 shows the differential 
double ratio distribution (high-statistics over low-statistics) 

for the reco-to-DL ratios. In presence of a systematic effect 
masked at low statistics, the reduction of the uncertainty in 
the high-statistics sample would unveil the problem. Instead 
we do observe flat double ratios, i.e. a similar behavior of the 
DL model for the small and the large sample. In view of this 
empirical observation, we are confident that the DL model 
accuracy would scale at much larger dataset size than what 
is used for training.

These distributions agree with those obtained when the 
training and inference dataset size agree, i.e., no accuracy 
deterioration is observed due to the scaling of the dataset 
size. This fact suggests that the proposed methodology 
scales adequately with the inference dataset size.

Fig. 5   Relative residual distribution for reconstructed and model-
predicted quantities in the feature vector, computing with respect to 
the reference input. The bottom panel of each plot shows the ratio 
between the two relative residuals, expected to be consistent with 1 

for a DL model which correctly models the detector response of the 
traditional workflow. The error bars on the model-predicted quantities 
is composed of the statistical uncertainty and systematic uncertainty 
associated with model training, represented by the different colors
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Computing Resources

To fully assess the advantage of the proposed generation 
workflow, we consider the following use case: an analysis 
team requests N events to be centrally produced by the cen-
tral computing infrastructure of their experimental collabo-
ration. Instead, the central system would deliver N events 
at generator level (GEN step of Fig. 1), while processing 
only n < N  of them through the full chain. The analysis 
team would then (i) run their data analysis software on the 
n events, and (ii) train on these data a DL-based fast-sim-
ulation like the one presented in “Model Description and 
Training”. With this model, they would then (iii) process the 
other (N − n) generator-level events and produce the dataset 
required for their analysis.

To assess the resource savings, we point out that step 
(iii) comes with negligible computational costs. Model 
inference on a CPU requires 100 s to run on 100,000 events 
(i.e., O(1) ms/event), which results in a 8 MB file (saved 

as a compressed HDF5 file) for the example use case we 
discussed. While these details would change depending on 
the analysis-specific event representation, the quoted val-
ues give a reasonable order-of-magnitude estimate of the 
expected resource needs. Step (ii) can run at a minimal cost: 
our model could train within 30 minutes when running on a 
commercial GPU. The residual cost is then entirely driven 
by step (i). While a traditional workflow requires O(100) s/
event of CPU time and occupies O(1) MB/event of storage, 
producing the same statistics (N events) of GEN-only events 
would require 10% disk allocation with a negligible CPU 
cost, as shown in Fig. 1.

As a consequence, by adopting the strategy outlined 
above, one would save a factor N/n in CPU (i.e., only spend 
sizable CPU resources to produce the training dataset, which 
would remain generic and could serve more than one analy-
sis). The storage allocation would result from the sum of n 
events in full format and (N − n) GEN-only events, for a total 
saving of N∕(n + 10%(N − n)) . For instance, considering 

Fig. 6   Relative residual distribution for reconstructed and model-
predicted auxiliary quantities, computing with respect to the reference 
input. The bottom panel of each plot shows the ratio between the two 
relative residuals, expected to be consistent with 1 for a DL model 

which correctly models the detector response of the traditional work-
flow. The error bars on the model-predicted quantities is composed of 
the statistical uncertainty and systematic uncertainty associated with 
model training, represented by the different colors
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N = 1M events and n = 10%N , one would save 90% of the 
CPU resources and 79% of the disk storage, almost equally 
shared among the full-format training data and the (N − n) 
GEN-only data.

In principle, the adoption of Next-to-Leading order pre-
cision as a default for event generators could make the cost 
of the GEN step more relevant in the future. On the other 
hand, the upgrade of the detectors towards more granular-
ity will also substantially increase the SIM. We then expect 
that the SIM step would still be the dominant consumer of 
CPU time, unless acceleration strategies like those proposed 
here will introduce beyond-GEANT alternatives. In addition, 
we do expect progresses to speed up the GEN step as well, 

e.,g., moving the computation to GPUs or similar accelera-
tors [36], or using deep learning in phase-space integration 
[37–40].

Conclusions

We presented a proposal for a new data augmentation strat-
egy for fast simulation workflows at LHC experiments, 
which exploits a generative Deep Learning model to con-
vert an analysis-specific representation of collision events 
at generator level to the corresponding representation at 
reconstruction level. Following this procedure, one could 

Fig. 7   Distribution of reconstructed and model-predicted quantities 
for the feature-vector quantities, compared to the corresponding quan-
tities from generator-level input. In this case, the model is applied to 
a dataset five times larger than the training dataset. The error bars on 

the model-predicted quantities is composed of the statistical uncer-
tainty and systematic uncertainty associated with model training, rep-
resented by the different colors
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replace any request of N simulated events with an n < N 
request, providing the residual (N − n) events at generator 
level. Bypassing the detector simulation and reconstruction 
process for the (N − n) events, one would benefit of a sub-
stantial reduction in terms of required resources.

We demonstrated that a simple mean-and-variance 
regression model with a Gaussian sampling function allows 
to reach a good performance, producing a dataset which 

resembles that from a traditional workflow. We showed that 
the accuracy is preserved when applying our strategy to a 
test dataset much larger than the training dataset.

The proposed model is much simpler than a generative 
model, e.g., a GAN. The architecture is easier to train and 
the task it learns to solve is simpler than generative realistic 
events from random points in a latent space. The generator-
level input carries much of the domain knowledge and the 
statistical fluctuations of the target dataset size. In addition, 
thanks to the light computational weight of the training and 
inference steps, one could consider to train several models 
and apply them to the same test dataset, using the spread of 
predictions to evaluate a simulation systematic uncertainty.

We believe that the LHC experiments could benefit from 
adopting the proposed procedure, particularly for the high-
precision measurement era during the High-Luminosity 
LHC phase.

Fig. 8   Distribution of reconstructed and model-predicted quantities 
in the auxiliary quantities, compared to the corresponding quanti-
ties from generator-level input. In this case, the model is applied to 
a dataset five times larger than the training dataset. The error bars on 

the model-predicted quantities is composed of the statistical uncer-
tainty and systematic uncertainty associated with model training, rep-
resented by the different colors
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Appendix

Resource Utilization for a Standard 
GEANT4‑Based Generation Workflow

In this appendix, we describe how we derived the values 
quoted in Fig. 1. We take as a reference the CMS experi-
ment. In absence of a published reference with a breakdown 
of CPU and disk resources for GEN, SIM, and DIGI+RECO 

steps, we derived the quantities quoted in Fig. 1 by generat-
ing QCD events on CPU, through the CERN batch system. 
To do so, we relied on the open-source CMSSW software 
[41] and followed the instructions provided by the CMS col-
laboration on the CERN Open Data portal [42].

We consider the same setup used to generate one of the 
QCD Run II samples published on the CERN Open Data 
portal [43] and the software installation available on CERN 
cvmfs distributed file system.

For each step, we ran jobs with 100 and 10 events. For 
each job, we recorded CPU time and output file size. Each 

Fig. 9   Differential double ratio distribution (high-statistics over low-statistics) for the reco-to-DL ratios shown in Figs. 3 and 7 and in Figs. 4 and 
8
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step is repeated 10 times and the average of each quantity 
is considered. The typical uncertainty on these mean val-
ues, measured by the standard deviation of the 10 values, is 
found to be at most of a few percent and hence considered 
negligible. After computing the average for each set of jobs, 
we take the difference between the 100-event and 10-event 
job of each kind, to remove the overhead CPU time and file 
size that doesn’t originate from per-event tasks. By dividing 
these differences by 90, we derive the per-event quantities 
quoted in Fig. 1.

Further Validation of the DL Generation 
Workflow

Figures 10 and 11 show the distribution predicted by the 
model as a function of the corresponding quantities from 
detector simulation, respectively for input and auxiliary 
features. Both the reconstruction techniques start from the 
generator-level information and model the detector response 
through a set of random degrees of freedom. The strong cor-
relation and the symmetric distribution around the diagonal 

Fig. 10   Distribution of input features predicted by the model as a function of the corresponding quantities from detector simulation
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demonstrate that, to a large extent, the two event representa-
tions are equivalent. 

Scaling with Dataset Size

Figures 12 and 13 show the comparison between reconstructed 
and generated quantities with five times more data, computed 
from detector simulation and processing the generator-level 

event with our model. Qualitatively, these distributions agree 
with those of Figs. 5 and 6, i.e., no accuracy deterioration is 
observed due to the scaling of the dataset size. This fact proves 
the robustness of the proposed methodology and its effective-
ness for data augmentation. 

Fig. 11   Distribution of auxiliary features predicted by the model as a function of the corresponding quantities from detector simulation
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Fig. 12   Predict on an inference dataset five times larger than the training dataset. Relative residual distribution for reconstructed and model-
predicted quantities in the feature vector, computing with respect to the reference input
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