
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:15
https://doi.org/10.1007/s41781-021-00060-4

ORIGINAL ARTICLE

Analysis‑Specific Fast Simulation at the LHC with Deep Learning

C. Chen1 · O. Cerri2 · T. Q. Nguyen2 · J. R. Vlimant2 · M. Pierini3 

Received: 12 October 2020 / Accepted: 12 May 2021 / Published online: 9 June 2021
© The Author(s) 2021

Abstract
We present a fast-simulation application based on a deep neural network, designed to create large analysis-specific datasets.
Taking as an example the generation of W + jet events produced in

√

s = 13 TeV proton–proton collisions, we train a neural
network to model detector resolution effects as a transfer function acting on an analysis-specific set of relevant features,
computed at generation level, i.e., in absence of detector effects. Based on this model, we propose a novel fast-simulation
workflow that starts from a large amount of generator-level events to deliver large analysis-specific samples. The adoption
of this approach would result in about an order-of-magnitude reduction in computing and storage requirements for the col-
lision simulation workflow. This strategy could help the high energy physics community to face the computing challenges
of the future High-Luminosity LHC.

Keywords  Hadron Collider Physics · Fast Simulation · Deep Learning · High Energy Physics computing

Introduction

At the CERN Large Hadron Collider (LHC), high-energy
proton–proton (pp) collisions are studied to consolidate our
understanding of physics at the energy frontier and possi-
bly to search for new phenomena. While these studies are
typically conducted according to a data driven methodology,
synthetic data from simulated pp collisions are a key ingre-
dient to a robust analysis development. Particle physicists

rely extensively on an accurate simulation of the physics
processes under study, including a detailed description of
the response of their detector to a given set of incoming par-
ticles. These large sets of synthetic data are typically gener-
ated with experiment-specific simulation software, based on
the GEANT4 [1] library. Through Monte Carlo techniques,
GEANT4 provides the state of the art in terms of simula-
tion accuracy. The first two runs of the LHC highlighted
the remarkable agreement between data and simulation,
with discrepancies observed at the level of a few percent.
On the other hand, running GEANT4 is demanding in terms
of resources. As a consequence of this, delivering synthetic
data at the pace at which the LHC delivers real data is one of
the most challenging tasks for the computing infrastructures
of the LHC experiments. It is then more and more common
for LHC physics analyses to be affected by large systematic
uncertainties due to the limited amount of simulated data.
This is particularly true for precise measurements of Stand-
ard Model processes for which large datasets are already
available today. In the future, with the high-luminosity LHC
upgrade, this will become a serious problem for most of the
LHC data analyses [2]. Our community is called to reduce
the computing resources needed for central simulation work-
flows by at least one order of magnitude, not to jeopardize
the accuracy gain expected when operating the LHC at a
high luminosity.

 *	 M. Pierini
	 maurizio.pierini@cern.ch

	 C. Chen
	 c.chen@cern.ch

	 O. Cerri
	 olmo@caltech.edu

	 T. Q. Nguyen
	 thong@caltech.edu

	 J. R. Vlimant
	 jvlimant@caltech.edu

1	 State Key Laboratory of Nuclear Physics and Technology,
School of Physics, Peking University Haidan,
Beijing 100871, China

2	 California Institute of Technology, Pasadena, CA 91125,
USA

3	 European Organization for Nuclear Research (CERN),
1211 Geneva 23, Switzerland

http://orcid.org/0000-0003-1939-4268
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00060-4&domain=pdf

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 2 of 17

To give a concrete example, we consider the event simu-
lation workflow of the CMS experiment, schematically rep-
resented in Fig. 1. The first step (GEN) consists in running
an event generator library, simulating a pp collision, the pro-
duction of high-mass particles from it, and the decay of these
particles to those stable particles which are then seen by
the detector. This step creates the so-called generator-level
view of a collision event, corresponding to what a perfect
detector would see. The simulation of the detector response
(SIM) translates this flow of particles into a set of detec-
tor hits, taking into account detector imperfections and the
limited experimental resolution. These hits are converted
to the same digital format (DIGI) produced by the detec-
tor electronics and then reconstructed by the same software
used to process real collision events (RECO). At this stage,
high-level objects such as jets are created. Starting from the
RECO data format, a reduced analysis data format (MINI-
AOD) is derived [3]. Figure 1 also provides a breakdown of
CPU and disk resources for each of these steps. Details on
the procedure followed to measure these values are given in
Appendix 8.

Recently, generative algorithms based on Deep Learning
(DL) techniques have been proposed as a possible solution
to speed up GEANT4. When following this approach, one

typically focuses on an image representation of LHC colli-
sions (e.g., energy deposits in a calorimeter) and develops
some kind of generative model [4–8] to by-pass GEANT4
when simulating the detector response to individual parti-
cles [9–13] or to groups of particles, such as jets [14–16] or
cosmic rays [17]. Generative models were considered also
for similar applications in HEP, such as amplitude [18] and
full event topology [19–21] generation. While these stud-
ies demonstrate the potential of generative models for HEP,
more work is needed to fully integrate this new methodol-
ogy in the centralized computing system of a typical LHC
experiment. In particular, one needs to work beyond the
collision-as-image paradigm so that the DL-based simula-
tion accounts for the irregular geometry of a typical detec-
tor while delivering a dataset in a format compatible with
downstream reconstruction software.

Other studies [22–24] investigated a more extreme
approach: rather than training models to perform generic
generation tasks in a broader software framework (e.g., a
DL-based shower generator in GEANT), one could design
analysis-specific generators, with the limited scope of
delivering arrays of values for physics quantities which are
relevant to a specific analysis. Reducing the event repre-
sentation to a vector of meaningful quantities, one could

Fig. 1   TOP: The event generation workflow of the CMS experiment.
The pp collision process is simulated up to the production of stable
(hence observable) particles (GEN). The simulation of the detec-
tor response is modelled by the GEANT4 library (SIM). The result-
ing energy deposits are turned into digital signals (DIGI) that are
then reconstructed by the same software used to process real colli-

sion events (RECO). At this stage, high-level objects such as jets
are reconstructed. Starting from the RECO data format, a reduced
analysis data format (MINIAOD) is derived. BOTTOM: computing
resource breakdown for the generation workflow of the CMS experi-
ment, in terms of CPU (left) and storage disk (right). See Appendix 8
for details

Computing and Software for Big Science (2021) 5:15	

1 3

Page 3 of 17  15

obtain a large amount of events in short time and with small
storage requirements by skipping all the intermediate steps
of the data processing. The considered features could be
the fundamental quantities used by a given analysis (e.g.,
the four-momenta of the final-state reconstructed objects
in a search for new particles). In this context, both genera-
tive adversarial networks (GANs) [22, 23] and variational
autoencoders (VAEs) [22] were considered. In this case,
one learns the N-dimensional probability density function
(N-dim pdf) of the event, in a space defined by the quantities
of interest for a given analysis. Sampling from this function,
one can then generate new data. The open question with this
approach stands with the trade-off between statistical preci-
sion (which decreases with the increase amount of generated
events) and the systematic uncertainty that could be induced
by a non accurate description of the N-dim pdf. When train-
ing both VAEs and GANs, one learns how to interpolate
between the samples provided in the training dataset. The
limited amount of data in the training dataset is the ultimate
precision-limiting factor, as discussed in Ref. [25], but gen-
erative models retain amplification capability similarly to
what a fitting function does, as shown in Ref. [26] for GANs.
Ultimately, one needs to balance the statistical uncertainty
(i.e., the amplification factor when augmenting the dataset)
and systematic uncertainties associated to the accuracy with
which the generative model interpolates between the training
data points. The balance will be reached tuning, among other
things, the training dataset size. The optimal configuration,
intrinsically application specific, determines whether a gen-
erative model is computationally convenient.1

In this paper, we propose to rephrase the problem of
analysis specific dataset generation. Rather than morphing
a distribution in a latent space into a target distribution, we
want to start from the ideal-detector distribution and morph
it into the actual-detector distribution, learning a fast-and-
accurate detector response model. We do so combining the
strength of multi dimensional deep neural regressors to the
adaptive power of kernel density estimation, which has a
long and successful tradition in particle physics [27]. A simi-
lar goal is presented in Ref. [24] in which invertible neural
networks are utilized with a focus on being able to perform
unfolding (morphing from reconstructed level information
to generator level distributions). For a given physics study,
we assume that the interesting features can be represented
by a limited set of high-level quantities (the feature vector
� ). We assume that a training dataset is provided. For each
collision event in the dataset, the feature vector is computed

at three stages: (i) at generator level �G , i.e., before apply-
ing any detector simulation. This view of the collision event
corresponds to the perfect-resolution ideal detector case; (ii)
at reconstruction level �R , i.e. after the simulation of the
detector response, modelled with GEANT4; (iii) at the output
of the DL model �DL.2 We model the detector response as a
function of the generator-level feature vector:

where N(�, �) is a one-dimension Normal function centered
at � with variance �2 and the index i runs over the com-
ponents of the feature vector � . We train a DL model to
simultaneously learn the functions �R(�G) and �R(�G) and
then use the Normal model of Eq. (1) to generate �DL from
�G . Under the assumption that large sets of �G values can
be obtained in relatively short time (which is typically the
case for High Energy Physics applications), this strategy
would result in a sizable save of computing resources. On
one hand, one would reduce computing time bypassing the
more intense steps of the generation workflow. In addition,
one would reduce the need for large storage elements: rather
than storing individual collision data, which demands an
event storage allocation between O(1MB) (for raw data) and
O(10kB) (for analysis-ready object collections), one would
directly handle a few relevant quantities for a given analysis.
One could save resources by utilizing analysis-specific fast
simulation models for data augmentation, e.g., generating
10% of the required data with the traditional GEANT4 work-
flow and the remaining 90% only up to the GEN step. These
data, shared among the O(100) analyses, would be used to
create analysis-specific training and inference datasets. Even
considering that O(100) analysis teams would have to train
O(100) specific generative models, the strategy we propose
would result in an important resource gain, provided a large
enough training facility.3

We demonstrate this strategy at work on a concrete exam-
ple, namely the generation of W + 1 jet events produced in
√

s = 13 TeV pp collisions, similar to those recorded at the
LHC. We discuss the model design and training, its perfor-
mance and its accuracy for factor-ten data augmentation.

This paper is structured as follows: “Benchmark Data-
set” provides a full description of the input dataset and
its feature-vector representation. “Model Description and

(1)xi
DL

= N(�i
R
(�G), �

i
R
(�G)),

1  Here, we are assuming that GEANT4 will be used to generate the
training dataset and the generative model will then be used to scale
up the simulated dataset size. If the desired accuracy can be reached
only at the price of more training data to be generated, the net gain of
this approach would be reduced.

2  Given the limited computing resources at hand, it was not possible
to carry on this study on a GEANT4-based dataset. Instead, we used
the DELPHES [28], which provides a realistic setup to demonstrate
the proposed strategy.
3  The model presented in this work was trained on a RTX2080 GPU
by NVIDIA in 30 minutes. Even a small-size GPU cluster with O(10)
GPUs dedicated to this use case could then serve the needs of a large
collaboration. Its cost is negligible on the scale of the large comput-
ing infrastructures built for the LHC experiments.

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 4 of 17

Training” describes the model architecture and the train-
ing setup. “Results” and “Computing Resources” discuss
the model performance in terms of accuracy and resource
utilization, respectively. Conclusions and outlook are given
in “Conclusions”.

Benchmark Dataset

As a benchmark problem, we consider the generation of
W + 1 jet events produced in

√

s = 13 TeV pp collisions.
The starting point is the inclusive production of W → ��
events using PYTHIA8 [29]. At this stage, we require each
event to have at least one muon with a transverse momentum
pT > 22 GeV.4 Detector effects are modelled using DEL-
PHES v3.4.2 [28]. We consider the CMS detector model for
the HL-LHC upgrade, distributed with DELPHES. At this
stage, the event is overlaid to minimum-bias events to model
the effect of pileup, i.e., those parasitic pp collisions happen-
ing at the same beam crossing as the interesting event. For
each collision, the number of pileup collisions is sampled
from a Poisson distribution with expectation value set at 200,
to match the expected conditions for HL-LHC.

At generator level (GEN), jets are clustered using the
anti-kt algorithm [30] with jet-size parameter R = 0.5 ,
taking the four-momenta of all the stable particles in the
event as input. We consider events with one clustered jet,
with pT > 30 GeV and |𝜂| < 2.4 . To avoid the double count-
ing of muons as jets, we require ΔR =

√

Δ𝜂2 + Δ𝜙2 > 0.5
between the muon and the jet in each event.

At reconstruction level, jets are clustered from the list
of particles returned by the DELPHES particle-flow algo-
rithm. As for the GEN jets, we consider anti-kt jets with
R = 0.5 . Both the muon and jet are matched to the corre-
sponding generator-level object, selecting the reconstructed
object (e.g., a muon) with the smallest ΔR from the cor-
responding generator-level object. Since our final state is
composed of one jet and one muon, this simple algorithm
does not generate ambiguity in the association. When gen-
eralizing this approach to more complex event topologies,
one might modify the matching algorithm to prevent that the
same gen-level object is associated to multiple reconstructed
objects. In addition, we discard events with mismatched
muons by requiring that the relative residual of the muon

pT to be |pG
T
− pR

T
|∕pG

T
< 10% . This requirement allows us

to remove a small fraction of events ( ∼ 0.5% of the total)
in which the muon from the W boson is not reconstructed
but another muon is found. In DELPHES, inefficiency in
muon reconstruction happens through an uncorrelated hit-
or-miss procedure based on pseudo-random numbers. Work-
ing in an experimental environment, one would retain the
whole dataset from a more accurate simulation, based on
specific physic requirements that would induce learnable
correlations.

The feature vector � is built considering the following
nine quantities:

–	 The muon momentum in Cartesian coordinates: p�
x
 , p�

y
 ,

and p�
z
.

–	 The jet momentum in Cartesian coordinates: pjx , p
j
y , and

p
j
z.

–	 The logarithm of the jet mass log(Mj).
–	 The missing transverse energy in Cartesian coordinates:

Emiss
x

 and Emiss
y

.

In addition, we consider a set of 12 auxiliary features, com-
puted from the input feature vector �:

–	 The muon momentum in longitudinal-boost-invariant
coordinates: p�

T
 , �� , and ��.

–	 The jet momentum in longitudinal-boost-invariant coor-
dinates: pj

T
 , �j , and �j.

–	 The missing transverse energy in polar coordinates: Emiss
T

and �miss.

–	 The transverse mass MT , i.e., the mass of the four
momentum obtained summing the the muon transverse
momentum (E�

T
, p�

x
, p�

y
, 0) to the missing transverse

energy (Emiss
T

,Emiss
x

,Emiss
y

, 0).
–	 ST , i.e., the scalar sum of Emiss

T
 , p�

T
 , and pj

T
.

–	 The jet mass: Mj.

These quantities are computed at generator and reconstruc-
tion level and are used to assess how well the correlation
between the generated quantities is modeled. Unlike the
feature-vector quantities, they do not enter the definition of
the loss function.

The model training and performance assessment is done
on a dataset of 2M events, which we separate in a test and
a learning datasets, containing 20% and 80% of the events,
respectively. The learning dataset is further split into a train-
ing (70%) and a validation (30%) dataset. To test the data
augmentation properties of the proposed strategy, we also
consider a larger test dataset, containing 10 M events.

Both the training and large-size testing datasets are pub-
lished on Zenodo [31, 32].

4  We use a Cartesian coordinate system with the z axis oriented
along the beam axis, the x axis on the horizontal plane, and the y axis
oriented upward. The x and y axes define the transverse plane, while
the z axis identifies the longitudinal direction. The azimuth angle �
is computed with respect to the x axis. The polar angle � is used to
compute the pseudorapidity � = − log(tan(�∕2)) . The transverse
momentum ( pT ) is the projection of the particle momentum on the (x,
y) plane. We fix units such that c = ℏ = 1.

Computing and Software for Big Science (2021) 5:15	

1 3

Page 5 of 17  15

Model Description and Training

Our model architecture is represented in Fig. 2. The
input vector �G of generator-level features is passed to
two regressive models, each returning a vector with the
same dimensionality of �G . One is interpreted as a vec-
tor of mean values �DL . The other one is interpreted as
the “ ±1� ” quantile �DL . By taking the absolute difference
between each mean value and its corresponding quantile,
we compute the RMS values �DL.

Each regressive model consists of a six-layer dense neu-
ral network. The first and last layers have nine nodes each,
while the intermediate layers have 100 nodes. All layers
except the last one are activated by LeakyReLU [33] func-
tions, with � = 0.05 . Linear activation functions are used
for the last layer. The model output is then computed as
�DL = �DL + �DL ⋅ � , where the vector � contains random
numbers sampled from a Normal function centered at 0
with unit variance. In addition to the main features � , we
compute a set of auxiliary features (see “Benchmark Data-
set”) used for a further post-training validation.

The loss function is defined as the sum of a mean abso-
lute error on �DL and a quantile regression on �DL:

where the average is done over a training subset, and the
quantile regression loss QR is defined as:

(2)LRECO =
⟨

‖

‖

�DL − �R
‖

‖1
+ QR(�DL, �R)

⟩

,

(3)QR(�, �) =

k
∑

i=1

Θ(xi, yi)|xi − yi|,

where

The step function �(t) is set to one (zero) for positive (nega-
tive) values of t and � = 0.841 . This choice of � guarantees
that the loss is minimized to learn the quantile correspond-
ing to one standard deviation.

We implement the model in KERAS [34] and train it
with the Adam [35] optimizer, with batches of 128 and an
epoch-dependent learning rate lr = 0.001∕(1 + nepoch) . The
model is trained for 100 epochs, but convergence is typically
reached between 30 epochs. The network parameter values
corresponding to the smallest validation loss are taken as the
optimal configuration.

Results

The trained model is used to generate samples of recon-
structed events from generator-level events. We evaluate the
training performance by comparing the output distributions
with those obtained by DELPHES for the same generator-
level events.

A comparison is shown in Fig. 3 for the feature-vector
quantities. The sample derived from the DL model is simi-
lar to the the one obtained running a classic generation
workflow. We train the model ten times and produce ten
distributions. The bin-by-bin spread of these distributions
is considered as a systematic uncertainty associated to the
DL model, which is summed in quadrature to the statistical
uncertainty in the same bin to compute the total uncertainty,

(4)Θ(x, y) = (1 − �)�(x − y) + ��(y − x).

Fig. 2   Model architecture: a feature vector at generator level �
G
 is given as input to two regression models, returning vectors of central values

( �
DL

 ) and RMS ( �
DL

 ), from which the reconstructed feature vector predicted by the DL model �
DL

 is generated

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 6 of 17

shown by the error bars of the DL model in the figure. These
systematic uncertainties are included to all the DL distribu-
tions shown in this paper. Only the statistical uncertainty is
shown for the corresponding distributions of reconstructed
quantities.

The model can account for small perturbations and major
distortions of the GEN distribution, as well as the default
detector simulation workflow. The agreement is not perfect,
and certainly the model can be improved. Nevertheless, the
reached accuracy is comparable to that of a typical data-to-
simulation comparison and certainly sufficient to support the
novel procedure that we want to put forward in this study.
The observed agreement goes beyond one-dimensional pro-
jections of the input features. The distributions of auxiliary
quantities, computed as a function of the feature-vector
quantities, are also modelled to a good precision (see Fig. 4).
This demonstrates that the DL-based generator accounts for

correlations between quantities, as much as the traditional
DELPHES workflow does.

While a comparison of dataset distribution gives a con-
fidence of the quality achieved by the DL model, one can
further test the achieved precision by looking at relative
residual distributions. Our DL model does not sample events
from a latent space (like a GAN or a plain VAE). Instead, it
works as a fast simulation of a given generator-level event,
preserving the correspondence between the reconstructed
and the generated event, which allows us to compare event-
by-event relative residual distributions. These distributions,
which quantify the detector effects on the analysis-specific
interesting quantities, are shown in Fig. 5. There, we com-
pare the relative residuals between reconstructed and gener-
ated quantities, for the DL-based and the traditional simula-
tion workflow. An overall agreement is observed, despite a
bias on the muon and jet momentum coordinates. While the

Fig. 3   Distribution of reconstructed and model-predicted quantities
for the feature-vector quantities, compared to the corresponding quan-
tities from generator-level quantities provided as input to the model.
The bottom panel below each plot shows the bin-by-bin ratio of the

model-predicted over reconstructed distribution for each quantity,
labelled DL/Reco. The error bars on the model-predicted quantities
is composed of the statistical uncertainty and systematic uncertainty
associated with model training, represented by the different colors

Computing and Software for Big Science (2021) 5:15	

1 3

Page 7 of 17  15

distribution ratio shown in the bottom panel tends to mag-
nify the effect that the distribution shift has on the tails, this
residual difference between the target and learned resolu-
tion model has little impact on the simulation quality down-
stream, as one could judge by looking at the corresponding
distributions in Fig. 3.

Figure 6 shows the same comparison for the auxiliary
quantities. As the plot shows, a correct modeling of the
residuals is obtained for energies, masses, and momenta.
On the other hand, the model struggles to account for the
high-resolution detector response on the � and � coordi-
nates. While this has little impact on the modeling of the �
and � distributions (see Fig. 3), this is certainly an aspect to
improve in real-life applications. Deeper models on larger
training data could learn the function better. In addition,
one could modify the loss function to force the network to
learn specific auxiliary quantities (e.g., the jet mass) with
critic networks (as done in the context of GAN training)
and explore non-Gaussian response functions. To this extent,

working in Cartesian coordinates might be a better choice, to
facilitate the calculation of the auxiliary quantities in the loss
function. We did not expand our study in these directions,
for which a target dataset based on a full detector simulation
would be more appropriate.

Appendix 9 provides further assessments of the genera-
tion quality, showing 2D distributions of quantities derived
from the DL-based generator vs the traditional one.

While our method relies on a Gaussian smearing func-
tion, it could be generalized to more complex functions if
needed. In that case, one would have to learn more quantiles
to model response functions with more than two parame-
ters and then express these parameters as a function of the
learned quantiles. On the other hand, it should be stressed
that the response functions learned by our method are the
result a convolution of the � and � distribution (approxi-
mated by the Neural Network) and the Gaussian sampling
function. Since the former is typically described by a non-
Gaussian distribution, our model can learn non-Gaussian

Fig. 4   Distribution of reconstructed and model-predicted auxiliary
quantities, compared to the corresponding generator-level quantities.
The bottom panel below each plot shows the bin-by-bin ratio of the
model-predicted over reconstructed distribution for each quantity,

labelled DL/Reco. The error bars on the model-predicted quantities
is composed of the statistical uncertainty and systematic uncertainty
associated with model training, represented by the different colors

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 8 of 17

detector response even when relying on a simple Gaussian
sampling. This is the case, for instance, of the asymmetric
tail of the MET residual distribution or the �miss double-peak
structure shown in Fig. 6. On a practical side, a Gaussian
sampling was adequate for this study, based on DELPHES
data, but one might have to consider more complex sam-
pling functions when trying to emulate with GEANT-based
simulation.

To test the scaling of model accuracy with the inference
dataset size, we apply our DL-based fast simulation strategy
to a dataset five times bigger than what used for training.
Figures 7 and 8 show the comparison of the distributions
obtained in this case, compared to what is obtained with
DELPHES, respectively for the input vector and the auxiliary
features. The corresponding relative residual distributions
are shown in Appendix 10. Figure 9 shows the differential
double ratio distribution (high-statistics over low-statistics)

for the reco-to-DL ratios. In presence of a systematic effect
masked at low statistics, the reduction of the uncertainty in
the high-statistics sample would unveil the problem. Instead
we do observe flat double ratios, i.e. a similar behavior of the
DL model for the small and the large sample. In view of this
empirical observation, we are confident that the DL model
accuracy would scale at much larger dataset size than what
is used for training.

These distributions agree with those obtained when the
training and inference dataset size agree, i.e., no accuracy
deterioration is observed due to the scaling of the dataset
size. This fact suggests that the proposed methodology
scales adequately with the inference dataset size.

Fig. 5   Relative residual distribution for reconstructed and model-
predicted quantities in the feature vector, computing with respect to
the reference input. The bottom panel of each plot shows the ratio
between the two relative residuals, expected to be consistent with 1

for a DL model which correctly models the detector response of the
traditional workflow. The error bars on the model-predicted quantities
is composed of the statistical uncertainty and systematic uncertainty
associated with model training, represented by the different colors

Computing and Software for Big Science (2021) 5:15	

1 3

Page 9 of 17  15

Computing Resources

To fully assess the advantage of the proposed generation
workflow, we consider the following use case: an analysis
team requests N events to be centrally produced by the cen-
tral computing infrastructure of their experimental collabo-
ration. Instead, the central system would deliver N events
at generator level (GEN step of Fig. 1), while processing
only n < N of them through the full chain. The analysis
team would then (i) run their data analysis software on the
n events, and (ii) train on these data a DL-based fast-sim-
ulation like the one presented in “Model Description and
Training”. With this model, they would then (iii) process the
other (N − n) generator-level events and produce the dataset
required for their analysis.

To assess the resource savings, we point out that step
(iii) comes with negligible computational costs. Model
inference on a CPU requires 100 s to run on 100,000 events
(i.e., O(1) ms/event), which results in a 8 MB file (saved

as a compressed HDF5 file) for the example use case we
discussed. While these details would change depending on
the analysis-specific event representation, the quoted val-
ues give a reasonable order-of-magnitude estimate of the
expected resource needs. Step (ii) can run at a minimal cost:
our model could train within 30 minutes when running on a
commercial GPU. The residual cost is then entirely driven
by step (i). While a traditional workflow requires O(100) s/
event of CPU time and occupies O(1) MB/event of storage,
producing the same statistics (N events) of GEN-only events
would require 10% disk allocation with a negligible CPU
cost, as shown in Fig. 1.

As a consequence, by adopting the strategy outlined
above, one would save a factor N/n in CPU (i.e., only spend
sizable CPU resources to produce the training dataset, which
would remain generic and could serve more than one analy-
sis). The storage allocation would result from the sum of n
events in full format and (N − n) GEN-only events, for a total
saving of N∕(n + 10%(N − n)) . For instance, considering

Fig. 6   Relative residual distribution for reconstructed and model-
predicted auxiliary quantities, computing with respect to the reference
input. The bottom panel of each plot shows the ratio between the two
relative residuals, expected to be consistent with 1 for a DL model

which correctly models the detector response of the traditional work-
flow. The error bars on the model-predicted quantities is composed of
the statistical uncertainty and systematic uncertainty associated with
model training, represented by the different colors

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 10 of 17

N = 1M events and n = 10%N , one would save 90% of the
CPU resources and 79% of the disk storage, almost equally
shared among the full-format training data and the (N − n)
GEN-only data.

In principle, the adoption of Next-to-Leading order pre-
cision as a default for event generators could make the cost
of the GEN step more relevant in the future. On the other
hand, the upgrade of the detectors towards more granular-
ity will also substantially increase the SIM. We then expect
that the SIM step would still be the dominant consumer of
CPU time, unless acceleration strategies like those proposed
here will introduce beyond-GEANT alternatives. In addition,
we do expect progresses to speed up the GEN step as well,

e.,g., moving the computation to GPUs or similar accelera-
tors [36], or using deep learning in phase-space integration
[37–40].

Conclusions

We presented a proposal for a new data augmentation strat-
egy for fast simulation workflows at LHC experiments,
which exploits a generative Deep Learning model to con-
vert an analysis-specific representation of collision events
at generator level to the corresponding representation at
reconstruction level. Following this procedure, one could

Fig. 7   Distribution of reconstructed and model-predicted quantities
for the feature-vector quantities, compared to the corresponding quan-
tities from generator-level input. In this case, the model is applied to
a dataset five times larger than the training dataset. The error bars on

the model-predicted quantities is composed of the statistical uncer-
tainty and systematic uncertainty associated with model training, rep-
resented by the different colors

Computing and Software for Big Science (2021) 5:15	

1 3

Page 11 of 17  15

replace any request of N simulated events with an n < N
request, providing the residual (N − n) events at generator
level. Bypassing the detector simulation and reconstruction
process for the (N − n) events, one would benefit of a sub-
stantial reduction in terms of required resources.

We demonstrated that a simple mean-and-variance
regression model with a Gaussian sampling function allows
to reach a good performance, producing a dataset which

resembles that from a traditional workflow. We showed that
the accuracy is preserved when applying our strategy to a
test dataset much larger than the training dataset.

The proposed model is much simpler than a generative
model, e.g., a GAN. The architecture is easier to train and
the task it learns to solve is simpler than generative realistic
events from random points in a latent space. The generator-
level input carries much of the domain knowledge and the
statistical fluctuations of the target dataset size. In addition,
thanks to the light computational weight of the training and
inference steps, one could consider to train several models
and apply them to the same test dataset, using the spread of
predictions to evaluate a simulation systematic uncertainty.

We believe that the LHC experiments could benefit from
adopting the proposed procedure, particularly for the high-
precision measurement era during the High-Luminosity
LHC phase.

Fig. 8   Distribution of reconstructed and model-predicted quantities
in the auxiliary quantities, compared to the corresponding quanti-
ties from generator-level input. In this case, the model is applied to
a dataset five times larger than the training dataset. The error bars on

the model-predicted quantities is composed of the statistical uncer-
tainty and systematic uncertainty associated with model training, rep-
resented by the different colors

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 12 of 17

Appendix

Resource Utilization for a Standard
GEANT4‑Based Generation Workflow

In this appendix, we describe how we derived the values
quoted in Fig. 1. We take as a reference the CMS experi-
ment. In absence of a published reference with a breakdown
of CPU and disk resources for GEN, SIM, and DIGI+RECO

steps, we derived the quantities quoted in Fig. 1 by generat-
ing QCD events on CPU, through the CERN batch system.
To do so, we relied on the open-source CMSSW software
[41] and followed the instructions provided by the CMS col-
laboration on the CERN Open Data portal [42].

We consider the same setup used to generate one of the
QCD Run II samples published on the CERN Open Data
portal [43] and the software installation available on CERN
cvmfs distributed file system.

For each step, we ran jobs with 100 and 10 events. For
each job, we recorded CPU time and output file size. Each

Fig. 9   Differential double ratio distribution (high-statistics over low-statistics) for the reco-to-DL ratios shown in Figs. 3 and 7 and in Figs. 4 and
8

Computing and Software for Big Science (2021) 5:15	

1 3

Page 13 of 17  15

step is repeated 10 times and the average of each quantity
is considered. The typical uncertainty on these mean val-
ues, measured by the standard deviation of the 10 values, is
found to be at most of a few percent and hence considered
negligible. After computing the average for each set of jobs,
we take the difference between the 100-event and 10-event
job of each kind, to remove the overhead CPU time and file
size that doesn’t originate from per-event tasks. By dividing
these differences by 90, we derive the per-event quantities
quoted in Fig. 1.

Further Validation of the DL Generation
Workflow

Figures 10 and 11 show the distribution predicted by the
model as a function of the corresponding quantities from
detector simulation, respectively for input and auxiliary
features. Both the reconstruction techniques start from the
generator-level information and model the detector response
through a set of random degrees of freedom. The strong cor-
relation and the symmetric distribution around the diagonal

Fig. 10   Distribution of input features predicted by the model as a function of the corresponding quantities from detector simulation

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 14 of 17

demonstrate that, to a large extent, the two event representa-
tions are equivalent.

Scaling with Dataset Size

Figures 12 and 13 show the comparison between reconstructed
and generated quantities with five times more data, computed
from detector simulation and processing the generator-level

event with our model. Qualitatively, these distributions agree
with those of Figs. 5 and 6, i.e., no accuracy deterioration is
observed due to the scaling of the dataset size. This fact proves
the robustness of the proposed methodology and its effective-
ness for data augmentation.

Fig. 11   Distribution of auxiliary features predicted by the model as a function of the corresponding quantities from detector simulation

Computing and Software for Big Science (2021) 5:15	

1 3

Page 15 of 17  15

Fig. 12   Predict on an inference dataset five times larger than the training dataset. Relative residual distribution for reconstructed and model-
predicted quantities in the feature vector, computing with respect to the reference input

	 Computing and Software for Big Science (2021) 5:15

1 3

15  Page 16 of 17

Acknowledgements  This project is partially supported by the Euro-
pean Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant agreement n o 772369)
and by the United States Department of Energy, Office of High Energy
Physics Research under Caltech Contract No. DE-SC0011925. This
work was conducted at “iBanks,” the AI GPU cluster at Caltech. We
acknowledge NVIDIA, SuperMicro and the Kavli Foundation for their
support of “iBanks.”

Funding  Open Access funding provided by CERN.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl
Instrum Method A 506:250. https://​doi.​org/​10.​1016/​S0168-​
9002(03)​01368-8

	 2.	 Albrecht J et al (2019) A Roadmap for HEP software and com-
puting R&D for the 2020s. Comput. Softw. Big Sci. 3(1):7.
https://​doi.​org/​10.​1007/​s41781-​018-​0018-8

	 3.	 Petrucciani G, Rizzi A, Vuosalo C (2015) Mini-AOD: a new
analysis data format for CMS. J Phys Conf Ser 664(7):7. https://​
doi.​org/​10.​1088/​1742-​6596/​664/7/​072052

	 4.	 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adver-
sarial networks

	 5.	 Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN

Fig. 13   Predict on an inference dataset five times larger than the training dataset. Relative residual distribution for reconstructed and model-
predicted auxiliary quantities, computing with respect to the reference input

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1088/1742-6596/664/7/072052
https://doi.org/10.1088/1742-6596/664/7/072052

Computing and Software for Big Science (2021) 5:15	

1 3

Page 17 of 17  15

	 6.	 Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A
(2017) Improved training of Wasserstein GANs

	 7.	 Rezende D.J, Mohamed S, Wierstra D (2014) Stochastic back-
propagation and approximate inference in deep generative
models. In: Proceedings of the 31st international conference
on machine learning, proceedings of machine learning research,
vol 32. http://​proce​edings.​mlr.​press/​v32/​rezen​de14.​html

	 8.	 Kingma DP, Welling M (2013) Auto-encoding variational bayes.
ArXiv e-prints

	 9.	 Paganini M, de Oliveira L, Nachman B (2018) CaloGAN: simu-
lating 3D high energy particle showers in multilayer electro-
magnetic calorimeters with generative adversarial networks.
Phys Rev D 97(1):014021. https://​doi.​org/​10.​1103/​PhysR​evD.​
97.​014021

	10.	 Erdmann M, Glombitza J, Quast T (2019) Precise simulation of
electromagnetic calorimeter showers using a Wasserstein Genera-
tive Adversarial Network. Comput Softw Big Sci 3(1):4. https://​
doi.​org/​10.​1007/​s41781-​018-​0019-7

	11.	 Salamani D, Gadatsch S, Golling T, Stewart GA, Ghosh A, Rous-
seau D, Hasib A, Schaarschmidt J (2018) Deep generative mod-
els for fast shower simulation in ATLAS. In: 14th international
conference on e-science, p 348. https://​doi.​org/​10.​1109/​eScie​nce.​
2018.​00091

	12.	 Belayneh D et al (2020) Calorimetry with deep learning: particle
simulation and reconstruction for collider physics. Eur Phys J C
80(7):688. https://​doi.​org/​10.​1140/​epjc/​s10052-​020-​8251-9

	13.	 Buhmann E, Diefenbacher S, Eren E, Gaede F, Kasieczka G,
Korol A, Krüger K (2020) Getting high: high fidelity simulation
of high granularity calorimeters with high speed

	14.	 de Oliveira L, Paganini M, Nachman B (2017) Learning Particle
physics by example: location-aware generative adversarial net-
works for physics synthesis. Comput Softw Big Sci 1(1):4. https://​
doi.​org/​10.​1007/​s41781-​017-​0004-6

	15.	 Musella P, Pandolfi F (2018) Fast and accurate simulation of
particle detectors using generative adversarial networks. Comput
Softw Big Sci 2(1):8. https://​doi.​org/​10.​1007/​s41781-​018-​0015-y

	16.	 Carrazza S, Dreyer FA (2019) Lund jet images from genera-
tive and cycle-consistent adversarial networks. Eur Phys J C
79(11):979. https://​doi.​org/​10.​1140/​epjc/​s10052-​019-​7501-1

	17.	 Erdmann M, Geiger L, Glombitza J, Schmidt D (2018) Generating
and refining particle detector simulations using the Wasserstein
distance in adversarial networks. Comput Softw Big Sci 2(1):4.
https://​doi.​org/​10.​1007/​s41781-​018-​0008-x

	18.	 Bishara F, Montull M (2019) (Machine) Learning amplitudes for
faster event generation

	19.	 Di Sipio R, Faucci Giannelli M, Ketabchi Haghighat S, Palazzo
S (2020) DijetGAN: a generative-adversarial network approach
for the simulation of QCD Dijet events at the LHC. JHEP 08:110.
https://​doi.​org/​10.​1007/​JHEP0​8(2019)​110

	20.	 Butter A, Plehn T, Winterhalder R (2019) How to GAN LHC
events. Sci Post Phys 7:075. https://​doi.​org/​10.​21468/​SciPo​stPhys.​
7.6.​075

	21.	 Arjona Martínez J, Nguyen T.Q, Pierini M, Spiropulu M, Vlimant
JR (2019) Particle Generative Adversarial Networks for full-event
simulation at the LHC and their application to pileup descrip-
tion. In: 19th International workshop on advanced computing and
analysis techniques in physics research: empowering the revolu-
tion: bringing machine learning to high performance computing
(ACAT 2019) Saas-Fee, Switzerland, March 11–15, 2019

	22.	 Otten S, Caron S, de Swart W, van Beekveld M, Hendriks L, van
Leeuwen C, Podareanu D, Ruiz de Austri R, Verheyen R (2019)
Event generation and statistical sampling for physics with deep
generative models and a density information buffer

	23.	 Hashemi B, Amin N, Datta K, Olivito D, Pierini M (2019) LHC
analysis-specific datasets with Generative Adversarial Networks

	24.	 Bellagente M, Butter A, Kasieczka G, Plehn T, Rousselot A, Win-
terhalder R, Ardizzone L, Köthe U (2020) Invertible networks or
partons to detector and back again. Sci Post Phys 9:074. https://​
doi.​org/​10.​21468/​SciPo​stPhys.​9.5.​074

	25.	 Matchev KT, Shyamsundar P (2020) Uncertainties associated with
GAN-generated datasets in high energy physics

	26.	 Butter A, Diefenbacher S, Kasieczka G, Nachman B, Plehn T
(2020) GANplifying event samples

	27.	 Cranmer KS (2001) Kernel estimation in high-energy physics.
Comput Phys Commun 136:198. https://​doi.​org/​10.​1016/​S0010-​
4655(00)​00243-5

	28.	 de Favereau J, Delaere C, Demin P, Giammanco A, Lemaître V,
Mertens A, Selvaggi M (2014) DELPHES 3, a modular frame-
work for fast simulation of a generic collider experiment. JHEP
02:057. https://​doi.​org/​10.​1007/​JHEP0​2(2014)​057

	29.	 Sjöstrand T et al (2015) An introduction to PYTHIA 8.2. Comput
Phys Commun 191:159. https://​doi.​org/​10.​1016/j.​cpc.​2015.​01.​024

	30.	 Cacciari M, Salam GP, Soyez G (2008) JHEP 04:063. https://​
doi.​org/​10.​1088/​1126-​6708/​2008/​04/​063

	31.	 Pierini M, Chen C (2020) Data augmentation at the LHC through
analysis-specific fast simulation with deep learning: W + jet train-
ing/test dataset, data augmentation at the LHC through analysis-
specific fast simulation with deep learning: W + jet training/test
dataset . https://​doi.​org/​10.​5281/​zenodo.​40809​43

	32.	 Pierini M, Chen C (2020) Data augmentation at the LHC through
analysis-specific fast simulation with deep learning: W + jet large
test dataset, data augmentation at the LHC through analysis-spe-
cific fast simulation with deep learning: W+jet large test dataset.
https://​doi.​org/​10.​5281/​zenodo.​40809​68

	33.	 Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities
improve neural network acoustic models. In: ICML Workshop on
deep learning for audio, speech and language processing https://​
ai.​stanf​ord.​edu/​~amaas/​papers/​relu_​hybrid_​icml2​013_​final.​pdf

	34.	 Chollet F (2015) keras. https://​github.​com/​fchol​let/​keras
	35.	 Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-

tion. CoRR abs/1412.6980. http://​arxiv.​org/​abs/​1412.​6980
	36.	 Hagiwara K, Kanzaki J, Li Q, Okamura N, Stelzer T (2013) Fast

computation of MadGraph amplitudes on graphics processing
unit (GPU). Eur Phys J C 73:2608. https://​doi.​org/​10.​1140/​epjc/​
s10052-​013-​2608-2

	37.	 Klimek MD, Perelstein M (2020) Neural network-based approach
to phase space integration. Sci. Post Phys. 9:053. https://​doi.​org/​
10.​21468/​SciPo​stPhys.​9.4.​053

	38.	 Gao C, Isaacson J, Krause C (2020) i-flow: high-dimensional inte-
gration and sampling with normalizing flows. Mach Learn Sci
Technol 1(4):045023. https://​doi.​org/​10.​1088/​2632-​2153/​abab62

	39.	 Gao C, Höche S, Isaacson J, Krause C, Schulz H (2020) Event
generation with normalizing flows. Phys Rev D 101(7):076002.
https://​doi.​org/​10.​1103/​PhysR​evD.​101.​076002

	40.	 Carrazza S, Cruz-Martinez JM (2020) VegasFlow: accelerating
Monte Carlo simulation across multiple hardware platforms.
Comput Phys Commun 254:107376. https://​doi.​org/​10.​1016/j.​
cpc.​2020.​107376

	41.	 Cmssw framework. https://​github.​com/​cms-​sw/​cmssw
	42.	 Cms open data (2015) http://​opend​ata.​cern.​ch/​search?​exper​

iment=​CMS
	43.	 S i m u l a t e d d a t a s e t Q C D \ _ P t \ _ 4 7 0 t o 6 0 0 \ _

TuneCUETP8M1_13TeV_pythia8. In: MINIAODSIM format
for 2016 collision data. https://​doi.​org/​10.​7483/​OPEND​ATA.​
CMS.​HBBW.​LTT4. CERN Open Data Portal http://​opend​ata.​
cern.​ch/​record/​12013,

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://proceedings.mlr.press/v32/rezende14.html
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1109/eScience.2018.00091
https://doi.org/10.1109/eScience.2018.00091
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/JHEP08(2019)110
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.9.5.074
https://doi.org/10.21468/SciPostPhys.9.5.074
https://doi.org/10.1016/S0010-4655(00)00243-5
https://doi.org/10.1016/S0010-4655(00)00243-5
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.5281/zenodo.4080943
https://doi.org/10.5281/zenodo.4080968
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1016/j.cpc.2020.107376
https://doi.org/10.1016/j.cpc.2020.107376
https://github.com/cms-sw/cmssw
http://opendata.cern.ch/search?experiment=CMS
http://opendata.cern.ch/search?experiment=CMS
https://doi.org/10.7483/OPENDATA.CMS.HBBW.LTT4
https://doi.org/10.7483/OPENDATA.CMS.HBBW.LTT4
http://opendata.cern.ch/record/12013
http://opendata.cern.ch/record/12013

	Analysis-Specific Fast Simulation at the LHC with Deep Learning
	Abstract
	Introduction
	Benchmark Dataset
	Model Description and Training
	Results
	Computing Resources
	Conclusions
	Acknowledgements
	References

