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ABSTRACT
The diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) can only be confirmed by abnormal
protease-resistant prion protein accumulation in post-mortem brain tissue. The relationships
between sCJD and cerebrospinal fluid (CSF) proteins such as 14–3-3, tau, and α-synuclein
(a-syn) have been investigated for their potential value in pre-mortem diagnosis. Recently, deep-
learning (DL) methods have attracted attention in neurodegenerative disease research. We
established DL-aided pre-mortem diagnostic methods for CJD using multiple CSF biomarkers to
improve their discriminatory sensitivity and specificity. Enzyme-linked immunosorbent assays
were performed on phospho-tau (p-tau), total-tau (t-tau), a-syn, and β-amyloid (1–42), and
western blot analysis was performed for 14–3-3 protein from CSF samples of 49 sCJD and 256
non-CJD Korean patients, respectively. The deep neural network structure comprised one input,
five hidden, and one output layers, with 20, 40, 30, 20 and 12 hidden unit numbers per hidden
layer, respectively. The best performing DL model demonstrated 90.38% accuracy, 83.33% sensi-
tivity, and 92.5% specificity for the three-protein combination of t-tau, p-tau, and a-syn, and all
other patients in a separate CSF set (n = 15) with other neuronal diseases were correctly predicted
to not have CJD. Thus, DL-aided pre-mortem diagnosis may provide a suitable tool for discrimi-
nating CJD patients from non-CJD patients.
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Introduction

Creutzfeldt-Jakob disease (CJD) is the most common
human prion disease, which is characterized by the
abnormal accumulation of misfolded prion protein
(PrPSc), thus affecting the central nervous system [1,2].
The global incidence of CJD diagnosis is approximately
1 per million individuals per year. The most common
form is sporadic CJD (sCJD), which accounts for about
85–95% of all known cases.

A definitive diagnosis of sCJD requires histological
analysis of brain tissues obtained during autopsy [3],
but it cannot always clinically distinguish CJD from
other rapidly progressive neurodegenerative disorders
in living patients, since these diseases share several
clinical characteristics [4–6]. Therefore, there has been
extensive research effort devoted to identifying cere-
brospinal fluid (CSF) protein biomarkers for the pre-
mortem diagnosis of sCJD [7–10]. Indeed, diagnosis
using CSF biomarkers has shown several benefits of
reducing the diagnostic turn-around time with

reproducible data without any risk of damage to the
patient’s brain. One of these candidate biomarkers for
sCJD is the 14–3-3 protein, showing diagnostic sensi-
tivities ranging from 61% to 96% and specificities ran-
ging from 67% to 95% [11–16]. Moreover,
quantification of the CSF protein α-synuclein (a-syn)
using an in-house enhanced chemiluminesence-based
enzyme-linked immunosorbent assay (ELISA) was
recently reported to be an excellent approach for
sCJD diagnosis [10,17]. The total tau (t-tau) and phos-
pho-tau (p-tau) levels, along with the p/t-tau ratio have
also been suggested as clinically useful diagnostic mar-
kers [18,19]; however, these CSF biomarkers have not
shown significantly high sensitivity or specificity in our
experience with Korean patients with CJD, which is
a major limitation of these biomarkers for this
population.

An alternative diagnosis method is a real-time quak-
ing-induced conversion (RT-QuIC) assay, which is
a prion protein conversion assay that allows for the
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detection of the abnormal amyloid form of PrP, and
has been reported to exhibit high sensitivity and speci-
ficity for sCJD in the range of 76.5–97% and 99–100%,
respectively [20–23].

Machine learning (ML) and deep learning (DL),
which are subfields of AI, are powerful tools for
extracting patterns and characteristics from big data
using neural networks [24–26]. In contrast to
traditional ML, DL uses multiple neural networks
with many hidden layers. For the past decade, DL had
remarkable successes in various fields such as computer
vision [27,28], natural language processing [29,30], and
audio signal processing [31]. Recently, it has gained
attention for disease diagnosis owing to their good
representational power [32], including research on
CJD [33–35]. Specifically, Morabito et al. [35] reported
that a DL-based analysis, which used electroencephalo-
graphy signals, showed 89% accuracy in discriminating
between CJD patients and patients with other forms of
rapid progressive dementia, with 92% sensitivity and
89% specificity.

The aims of the present study were to establish
a pre-mortem diagnostic method using a DL approach,
which would (1) facilitate diagnostic decision making
for CJD, (2) improve accuracy compared to conven-
tional pre-mortem diagnostic methods using CSF pro-
tein markers, and (3) help to identify more CJD-related
CSF biomarkers as landmarks. We then tested the
ability of the established DL technique to discriminate
CJD patients from non-CJD patients based on detec-
tion levels of the key CSF biomarkers 14–3-3, a-syn,
amyloid beta (Aβ), t-tau, and p-tau.

Materials and methods

Subjects

We collected CSF samples from 49 patients with sCJD (5
definite and 44 probable) and 11 with possible sCJD, and
256 non-CJD patients (these cases were referred to as
‘‘suspected CJD” to the KNIH, but were not confirmed
as CJD) ascertained through routine surveillance by the
Korea National Institute of Health (KNIH) according to
diagnostic criteria (Table 1). Sequencing of all patient
samples revealed a methionine residue at codon 129 of
the prion protein-coding gene PRNP (129M/M homo-
zygotes). These samples, except for those of 11 patients
with possible sCJD, were used as the training, validation,
and test sets (test set_A) for ML and DL analysis. In
total, 15 CSF samples from patients who were diagnosed

with other types of neuronal diseases were also collected
and used as a separate test set (test set_B).

This study was approved by the Institutional Review
Board (IRB) of the Korea Centers for Disease Control
and Prevention (IRB No. 2017–03-09-C-A), and all the
experiments were performed in accordance with rele-
vant guidelines of the IRB. Written informed consent
was obtained from the patients or their legal guardians.

Biochemical analysis

The 14–3-3 protein levels in the CSF samples from the
patients were determined by western blot analysis as pre-
viously described [8]. Quantitative determination of CSF
p-tau, t-tau, Aβ, and a-syn proteins was conducted with the
INNOTEST® hTAU Ag (Fujirebio, Gent, Belgium),
INNOTEST® PHOSPHO-TAU(181P) (Fujirebio, Gent,
Belgium), INNOTEST® β-AMYLOID(1–42) (Fujire-
bio, Gent, Belgium), and SensoLyte Anti-α-Synuclein
(Human, Mouse, Rat) ELISA Kit (AnaSpec, Inc.,
Fremont, CA), respectively, according to the manufac-
turers’ instructions. The p-tau to t-tau ratio (p/t-tau ratio)
was also calculated based on these results.

Table 1. Patients’ classification and clinical features of the
definite, probable, possible CJD cases and other neuronal dis-
eases patients used in this study.

Groups
No. of
patients Diagnostic criteria/Symptoms

Definite CJD 5 Diagnosed by neuropathological
techniques, immunohistochemcal
detection of PrPSc of autopsied or biopsied
brain tissues from patients with probable
or possible sCJD

Probable CJD 44 Rapid progressive dementia of less than
2 years’ duration and at least two of the
following features such as myoclonus,
visual or cerebellar disturbance, pyramidal,
extrapyramidal dysfunction, akinetic
mutism, with a EEG data, and/or a positive
result of 14–3-3 assay

Possible CJD 11 Progressive dementia and at least two of
the following features such as myoclonus,
visual or cerebellar disturbance, pyramidal,
extrapyramidal dysfunction, akinetic
mutism, without a EEG data, and/or
a positive result of 14–3-3 assay

Non-CJD 256 Cases referred to as ‘‘suspected CJD” to the
KNIH, but were not fulfilling the criteria of
probable or possible CJD

Neuronal
diseases (test
set_B)

3 Hydrocephalus, unspecified
4 Normal Pressure Hydrocephalus
1 Multi-system degeneration
1 Alzheimer’s Disease
1 Mild cognitive disorder
1 Dementia
1 Spinal muscular atrophy, and related

syndromes
1 Cerebral palsy
2 Other disorders of brain
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Data handling and scoring

To standardize the quantitative data of protein levels
for the different candidate biomarkers, a positive band
of 14–3-3 protein in the western blot was given a score
of 2, whereas a negative or weakly positive finding was
given a score of 1. When the a-syn or Aβ concentration
was below the detection limit of the ELISA kits
(7.813 ng/μl or 63 ng/μl, respectively), the case was
given a score of 1.

To resolve the detrimental effect of imbalanced data
on the performance of DL algorithms, we adopted an
‘oversampling’ approach [36–38]. Oversampling was
performed after splitting the original dataset into the
‘training with validation set’ and ‘test set_A.’ This
resulting dataset was then further split into ‘training
with validation set (n = 253)’ and ‘test set_A (n = 52)’.
In the training with validation set, the results of the
minor group (i.e. CJD patients; n = 37) were replicated
five times (500%) to achieve a 1:1 ratio between the
CJD and non-CJD groups (n = 216). Subsequently, the
training with the validation set was split into separate
training and validation sets with a 9:1 ratio,
respectively.

ML and DL analysis

ML analysis was performed using Waikato
Environment for Knowledge Analysis 3.8.2 (WEKA)
[39]. Evaluation of the J48 decision tree (confidence
factor = 0.25, minimal number of objects = 2), naïve
Bayes (the number of decimal places = 2), and the
random forest classifier (the number of trees = 100)
were performed using a default setting. Support vector
machine (SVM) with sequential minimal optimization
(SMO) evaluation was performed using default settings
(C value = 1) with radial basis function kernel
(gamma = 10). The Keras (http://keras.io) neural net-
work library and the TensorFlow (https://www.tensor
flow.org) software library were used for deep neural
network (DNN) construction. Specifically, we used
a multi-layer feed-forward artificial neural network
with the standard back-propagation algorithm to per-
form binary classification [40,41]. For each DNN in the
resulting ensemble, multiple hyper-parameters were
adjusted, including the number of hidden layers, num-
ber of neurons in each layer, choice of activation func-
tion, choice of optimization method, and regularization
techniques.

The best DNN structure consisted of one input,
five hidden, and one output layers, with 20, 40, 30, 20
and 12 hidden unit numbers of each hidden layer,
respectively. Ultimately, two DNNs were used to

discriminate between CJD and non-CJD patients. All
of the layers were subjected to a kernel initializer with
the ‘random_normal’ option for normalization of
each layer. ReLu [42,43] was used as the activation
function in each hidden layer, and softmax was used
in the last layer. The loss function was binary cross-
entrophy [44], and Nesterov Adam (NAdam) [45]
with default values (learning rate = 0.002, beta_1 = 0.9,
and beta_2 = 0.999) was used as the optimizer of the
loss function. Dropout [46] was used to overcome
overfitting with a probability of 0.1 after each layer.
Neural networks were constructed using the NN-SVG
tool (alexlenail.me/NN-SVG/index.html). The best
DNN structure was also used for two- or three-
variable combination analysis from 6 variables.
Therefore, 35 combinations were tested to find the
best combination set for improving the discrimina-
tion accuracy and identifying potential ‘landmark CSF
markers’.

Statistical analysis

The performance of the ML and DL was evaluated
according to the quantitative parameters of the true
positive (TP), true negative (TN), false positive (FP),
and false negative (FN) rates, which were then used to
calculate the accuracy, sensitivity, and specificity
according to the following equations:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

The area under the receiver operating characteristic
curve (AUC) was calculated to determine the best
model.

10-fold cross-validation classification performance

Cross-validation estimation was performed using the over-
sampled dataset which used in ML and DL analysis to
determine the predictive performance of the model and
for tuning hyper-parameters as described previously
[47,48]. In brief, the oversampled dataset excluding test
set_A (n = 52) was split into 10 subsets. A repetition
consisted of 10 iterations, and one fold was used as valida-
tion data for each iteration, while the other folds were used
during training performance. After the initial training per-
iod, the performance of the network was analysed based on
the validation data for tuning hyper-parameters. The train-
ing process was repeated 50 times to obtain a stable result.
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Each iteration was performed independently, so that each
iteration had no prior knowledge about the chosen learning
models in the other iterations.

Results

The concentrations of six CSF markers (14–3-3, t-tau,
p-tau, p/t-tau ratio, Aβ, and a-syn) in 5 definite, 44 prob-
able, 11 possible CJD patients, and 256 non-CJD patients,
which were determined using ELISA and western blot-
ting, are summarized in Supplementary Table 1.
A correlation heat map among the six biomarkers and
sCJD patients, except for patients with possible CJD and
non-CJD patients, is presented in Figure 1. None of the
biomarkers showed a particularly strong correlation.
Figure 2 shows the discrimination plots of the patients
in the dataset according to the six biomarkers, in which
each pixel represents a given CSF protein level or 14–3-3
western blot result (positive or negative): orange pixels

depict CJD patients and blue pixels represent non-CJD
patients. No bivariate combination was found to effec-
tively separate the two groups. The diagnostic perfor-
mances of 14–3-3, t-tau, the p/t-tau ratio, and a-syn
were assessed according to the reported diagnostic criteria
(Table 2). The sensitivity and specificity of the 14–3-3
protein analysis were 67.35% and 67.58%, respectively,
and the age in definite and probable CJD cases with
14–3-3 positivity (mean age 69.94 ± 10.73 years) was
higher than those of cases with 14–3-3 negativity (mean
age 61 ± 11.6 years, supplementary Table 2).

The highest diagnostic specificity in non-CJD patients
was 81.6% using t-tau, and in neuronal diseases patients
was 93.33% using a-syn level or t-tau combination test with
p/t-tau ratio. The diagnostic sensitivity in possible CJD
patients using the a-syn protein was lower than that of
other proteins in these patients. The concentration of
t-tau, p-tau and a-syn of the test set_B are described in
Supplementary Table 1.

Figure 1. Heat map of the correlation of t-tau, p-tau, p/t-tau ratio, Aβ, a-syn and 14–3-3 levels with patients. The colour of each
square depicts the correlation level, ranging from black (negative correlation) to red (intermediate correlation value) to white
(positive correlation value).

144 S. M. LEE ET AL.



The performance of each classifier is described in
Table 3. In the machine learning analysis using training
with a validation set, the highest accuracy was observed in
the analysis using J48 and the random forest classifier
(78.85%). However, the machine analysis sensitivity was
41.67% or 33.33%. Although the highest specificity was
observed in the analysis using the random forest classifier
(92.5%), the related sensitivity was the lowest compared
with analysis using the other classifiers. The best perform-
ing classifier was the DNN model, and it showed 86.54%
discrimination accuracy and an AUC value of 0.90
(Figure 3).

To improve the discrimination and identify potential
‘landmark CSF markers’ for discriminating between
CJD and non-CJD patients, the structure of the best-
performing model described above was used for analy-
sis with two- or three-variable combinations. As shown

in Table 4, AUC is not necessarily equivalent to the
accuracy measured at a threshold because an AUC
score considers the sensitivity and specificity of the
various threshold changes in each classification model.
The best accuracy and AUC values were obtained for
the three-marker combination of t-tau, p-tau, and
a-syn. The scores for the test set_A were 90.38% (47/
52) accuracy, 83.33% (10/12) sensitivity, and 92.5% (37/
40) specificity. Using the established discrimination
model, 10-fold cross-validation was performed. The
validation was repeated 50 times, and the AUC and
accuracy scores were calculated to obtain a stable result
(Supplementary Table 3). The model was then re-
evaluated using test set_B, which only consisted of
CSF samples from patients with neuronal diseases,
and all the samples were predicted correctly to not
have CJD.

Figure 2. Discrimination plot for discrimination between CJD (orange) and non-CJD (blue) patients based on values of six CSF
biomarkers.
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Table 2. Diagnostic performance of various cerebrospinal fluid markers for Creutzfeldt-Jakob disease according to defined criteria.
Sensitivity % (TP/all) Specificity % (TN/all)

Markers Criteria Definite and probable Possible Non-CJD Neuronal diseases References

14–3-3 14–3-3 positivea 67.35
(33/49)

54.54
(6/11)

67.58
(173/256)

N/A [52]

t-tau > 1,000 pg/mL 59.18
(29/49)

72.73
(8/11)

77.34
(198/256)

86.67
(13/15)

[49]

t-tau > 1,300 pg/mL 53.06
(26/49)

72.73
(8/11)

80.86
(207/256)

86.67
(13/15)

[50]

t-tau with p/t-tau ratio t-tau > 1,000 pg/ml with
p/t tau ratio < 0.04

55.1
(27/49)

72.73
(8/11)

79.3
(203/256)

93.33
(14/15)

[49]

Aβ < 445 pg/mL 69.39
(34/49)

81.82
(9/11)

28.91
(74/256)

N/A [51]

a-syn > 820 pg/mL 55.1
(27/49)

27.27
(3/11)

78.91
(202/256)

93.33
(14/15)

[10]

a-syn > 680 pg/mL 55.1
(27/49)

27.27
(3/11)

74.61
(191/256)

86.67
(13/15)

[17]

aWeak positive result considered as negative
N/A: not analysed

Table 3. Evaluation of classifier performances (test set_A, 12 of CJD cases and 40 of non-CJD patients).
Classifier Accuracy Sensitivity Specificity AUC

SVM 76.92% (40/52) 66.67% (8/12) 80% (32/40) 0.73
Decision tree (J48) 78.85% (41/52) 41.67% (5/12) 90% (36/40) 0.8
Naïve Bayes 76.92% (40/52) 66.67% (8/12) 80% (32/40) 0.72
Random Forest 78.85% (41/52) 33.33% (4/12) 92.5% (37/40) 0.82
DNN 86.54%(45/52) 83.33%(10/12) 87.5% (35/40) 0.90

Accuracy: TP+TN/No. of cases in test set_A
Sensitivity: TP/No. of CJD cases in test set_A
Specificity: TN/No. of non-CJD cases in test set_A

Figure 3. Deep neural network showing the best performance for CJD discrimination. Our network structure consisted of one input,
five hidden, and one output layer. The five hidden layers consisted of 20, 40, 30, 20, and 12 hidden unit numbers of each layer,
respectively. The last two output units were used to distinguish between CJD and non-CJD patients.
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Discussion

At present, sCJD can only be diagnosed with certainty
after a patient is deceased, based on histological examina-
tion of the brain tissue. Analysis of protein biomarkers
related to CJD has proven to be a potentially useful alter-
native pre-mortem diagnosis method. The 14–3-3 protein
has been reported to be a biomarker for rapid progressive
neurodegenerative disorders, including CJD. In our data,
analysis for CSF 14–3-3 revealed a dependency on age; the
sensitivity was higher in definite and probable sCJD cases
than in possible sCJD cases. However, the sensitivity and
specificity of CSF 14–3-3 in sCJD cases were found to be
lower than those reported previously [17,52] but were
similar to those indicated in some studies in Japan [22],
China [53] and USA [54,55]. The lower sensitivity and
specificity in our results compared to those of other
studies described above is assumed to be due to the
following reasons. First, the 129 MM2 type, for which
the 14–3-3 protein is reported to have relatively low
sensitivity, was not excluded while calculating the sensi-
tivity and specificity of 14–3-3 protein analysis. Second,
experimental differences and/or laboratory errors could

have been the contributing factors. Furthermore, 14–3-3
protein concentration could have changed in patients
from the date of collection of the CSF sample to date of
discrimination analysis.

The specificities of tau and a-syn analysis in neuronal
disease patients, which were used as test set_B, were
higher (86.67%–93.33%) than these values in the non-
CJD group (74.61%–80.86%). The possibility of misdiag-
nosis due to similarities of symptoms could not be
excluded in some cases in the non-CJD group. However,
the protein concentration patterns of the non-CJD group
significantly differed from those of the sCJD cases.

Here, we performed ML and DL-based analysis
using combination of CSF markers as a pre-mortem
diagnostic method. Our initial ML and DL model had
an imbalanced learning problem owing to the lower
number of CSF samples from CJD patients than that
from non-CJD patients, which would result in
a dominant influence of the major group on the analy-
sis. We chose to use an oversampling method rather
than an under-sampling method to resolve this imbal-
ance and avoid losing information on the larger group

Table 4. Analysis of two- and three-protein combinations for discrimination between CJD and non-CJD patients. All values were
calculated using the oversampled validation set and test set_A.
Combinations Accuracy in validation set AUC in validation set Accuracy in test set_A AUC in test set_A

t-tau and p-tau 70.73% 0.83 69.23% 0.71
t-tau and p/t-tau ratio 65.85% 0.77 73.08% 0.76
t-tau and Aβ 80.49% 0.91 75% 0.76
t-tau and a-syn 80.49% 0.91 82.69% 0.86
t-tau and 14–3-3 63.41% 0.80 69.23% 0.79
p-tau and p/t-tau ratio 65.85% 0.83 61.54% 0.58
p-tau and Aβ 51.22% 0.51 46.15% 0.55
p-tau and a-syn 58.54% 0.72 65.38% 0.84
p-tau and 14–3-3 65.85% 0.71 65.38% 0.60
p/t-tau ratio and Aβ 48.78% 0.46 48.08% 0.52
p/t-tau ratio and a-syn 53.66% 0.62 59.62% 0.84
p/t-tau ratio and 14–3-3 68.29% 0.77 69.23% 0.75
Aβ and a-syn 65.85% 0.76 69.23% 0.74
Aβ and 14–3-3 56.1% 0.76 38.46% 0.42
a-syn and 14–3-3 60.98% 0.69 75% 0.90
t-tau, p-tau and p/t-tau ratio 85.21% 0.85 78.85% 0.85
t-tau, p-tau and Aβ 78.05% 0.88 75% 0.74
t-tau, p-tau and a-syn 87.8% 0.95 90.38% 0.88
t-tau, p-tau and 14–3-3 78.05% 0.91 71.15% 0.71
t-tau, p/t-tau ratio and Aβ 75.61% 0.85 80.77% 0.77
t-tau, p/t-tau ratio and a-syn 75.61% 0.90 75% 0.84
t-tau, p/t-tau ratio and 14–3-3 70.73% 0.82 76.92% 0.78
t-tau, Aβ and a-syn 78.05% 0.85 86.54% 0.86
t-tau, Aβ and 14–3-3 87.8% 0.95 78.85% 0.75
t-tau, a-syn and 14–3-3 87.8% 0.98 78.85% 0.86
p-tau, p/t-tau ratio and Aβ 46.34% 0.54 51.92% 0.60
p-tau, p/t-tau ratio and a-syn 68.29% 0.72 71.15% 0.77
p-tau, p/t-tau ratio and 14–3-3 70.73% 0.84 71.15% 0.65
p-tau, Aβ and a-syn 73.17% 0.88 84.62% 0.91
p-tau, Aβ and 14–3-3 58.54% 0.75 40.38% 0.44
p-tau, a-syn and 14–3-3 65.85% 0.70 71.15% 0.74
p/t-tau ratio, Aβ and a-syn 65.85% 0.83 69.23% 0.72
p/t-tau ratio, Aβ and 14–3-3 56.1% 0.55 26.92% 0.40
p/t-tau ratio, a-syn and 14–3-3 60.98% 0.62 71.15% 0.82
Aβ, a-syn and 14–3-3 63.41% 0.76 67.31% 0.75

Accuracy: TP+TN/No. of cases in test set_A
Sensitivity: TP/No. of CJD cases in test set_A
Specificity: TN/No. of non-CJD cases in test set_A

PRION 147



(non-CJD) after drastic reduction to balance the ratio
between the numbers of sCJD and non-CJD cases. In
particular, an ensemble of DNNs using ELISA data of
t-tau, p-tau, and a-syn outperformed (90.38% accuracy,
83.33% sensitivity and 92.5% specificity) the diagnostic
performance of diagnostic performance of any single
CSF marker described in Table 2 and other combina-
tion with DL analysis.

RT-QuIC analysis has been used to detect PrPSc in
CSF samples directly, showing high diagnostic specificity
[20,21,56]. However, the sensitivity of this method might
rely on the specific PrPSc concentration in each CSF
sample. Thus, cases in which the PrPSc concentration in
a CSF sample is below the detection limit of the RT-QuIC
assay, the DL-aided discrimination method could be an
alternative pre-mortem CJD diagnosis method.

Despite the good performances of the models devel-
oped in this study, the discrimination between CJD and
non-CJD patients was not completely accurate. We con-
sider the following limitations of the proposed method
that may have contributed to this result. First, noise
among samples might have been derived from misdiag-
nosis for cases in which the symptoms of CJD are mis-
interpreted, since they are similar to those of other
neurodegenerative disorders [57,58]. Second, additional
combinations with other proteins associated with neuro-
degenerative disorders such as S-100 should be tested.
Third, the hyper-parameters combination might not have
been optimized since there is currently no established
optimization method. In addition, the relatively small
sample size might have limited the ability to construct
a robust algorithm to effectively discriminate between
CJD and non-CJD patients. Typically, deep learning ana-
lyses require an extremely large dataset; therefore, per-
forming deep learning analysis with a relatively small
dataset is a significant challenge. However, there are
several methods to overcome the limitation of small
sample size; we used the oversampling method [36,38]
and 10-fold cross validation [47,48].

Although the DL-aided discrimination model war-
rants further improvement in performance and clas-
sification accuracy using stacked sample sizes via
further ELISA data collection and/or extended analy-
sis with other biomarkers for use as a pre-mortem
diagnostic method, the DL-based model has several
advantages for clinical application. First, it can easily
handle large amounts of medical data. Second, CJD
and non-CJD patients can be discriminated rapidly
(within one or two days). Third, the results can be
obtained consistently and reproducibly without
requiring a specialist to conduct the laboratory tests.
Overall, our findings could help to facilitate clinical
decision-making.
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