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ABSTRACT
A recent wave of pharmacologic and technologic innovations has revolutionized our manage-
ment of retinal diseases. Many of these advancements have demonstrated efficacy and can
increase the quality of life while potentially reducing complications and decreasing the burden
of care for patients. Some advances, such as longer-acting anti-vascular endothelial growth fac-
tor agents, port delivery systems, gene therapy, and retinal prosthetics have been approved by
the US Food and Drug Administration, and are available for clinical use. Countless other thera-
peutics are in various stages of development, promising a bright future for further improve-
ments in the management of the retinal disease. Herein, we have highlighted several important
novel therapies and therapeutic approaches and examine the opportunities and limitations
offered by these innovations at the new frontier.

KEY MESSAGES

� Numerous pharmacologic and technologic advancements have been emerging, providing a
higher treatment efficacy while decreasing the burden and associated side effects.

� Anti-vascular endothelial growth factor (anti-VEGF) and its longer-acting agents have dramatically
improved visual outcomes and have become a mainstay treatment in various retinal diseases.

� Gene therapy and retinal prosthesis implantation in the treatment of congenital retinal dys-
trophy can accomplish the partial restoration of vision and improved daily function in
patients with blindness, an unprecedented success in the field of retina.
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Introduction

Robust commitment and investment in novel research
have allowed the development of novel therapeutics
which offer the potential to dramatically improve visual
outcomes for patients and reduce blindness worldwide.
Many of these recent innovations offer better treatment
efficacy and higher quality of life for patients. They
restore lost vision while minimizing the side effects and
burden related to the treatment. Herein, we introduce
and highlight some of the newest retinal therapeutics
and discuss their advantages and limitations as they
usher in a new frontier of novel retinal therapeutics.

Methods

To compile this review article, English language
articles were retrieved using a keyword search in

PubMed in August 2021 and then supplemented by
manual searching of references of articles published
online through November 2021. In addition, recent
clinical trials for a retinal disease listed on clinical-
trials.gov from 2015 to 2021 as well as press releases
of clinical trials results were reviewed in cases
where published articles for a therapeutic were
not available.

Results

Over 100 English articles regarding novel therapeutics
in retinal diseases were reviewed and summarized into
six major topics: single-target therapy, dual-target
therapeutics, technology-based approaches for increas-
ing drug durability and delivery, gene therapy, stem
cell therapy, and artificial vision.
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Single-target therapy

Anti-vascular endothelial growth factor and its lon-
ger durability agents
Since 2004 when anti-vascular endothelial growth fac-
tor (anti-VEGF) was introduced to treat eye diseases,
anti-VEGF has become the mainstay of treatment for
many retinal diseases including neovascular (wet) age-
related macular degeneration (nAMD), diabetic macu-
lar edoema (DME) and macular edoema due to retinal
vein occlusion (RVO) [1–7]. Intravitreal anti-VEGF ther-
apy inhibits the growth of neovascularization, reduces
fluid leakage, and is superior to previously-available
treatments, such as corticosteroids, laser photocoagu-
lation, or photodynamic therapy [8–12]. Anti-VEGF
therapy not only prevents vision loss but also restores
or improves vision in many cases. Pegaptanib, an RNA
aptamer, was the first anti-VEGF agent approved for
ophthalmic use by the US Food and Drug
Administration (FDA) in 2004, but only blocks the 165-
isoform of VEGF. While it was shown to reduce moder-
ate vision loss associated with nAMD, on average,
patients did not improve vision, and thus its use was
limited compared to other later-approved anti-VEGF
therapies [13]. Other agents that are currently avail-
able within the United States include ranibizumab
(Lucentis; Novartis, East Hanover, NJ, USA/Genentech,
South San Francisco, CA, USA), bevacizumab (Avastin;
Genentech; off-label use), aflibercept (Eylea;
Regeneron Pharmaceuticals, Tarrytown, NY, USA) and
most recently brolucizumab (Beovu; Novartis).

Ranibizumab is an antibody fragment that binds to
all isoforms of VEGF-A and received FDA approval in
2006. Bevacizumab is a full antibody against VEGF-A
and has been extensively used off-label because of its
cheaper availability. Aflibercept is a recombinant frag-
ment crystallizable (Fc) fusion protein against VEGF-A,
VEGF-B, and placental growth factor (PIGF) and
received FDA approval in 2011. Brolucizumab is a sin-
gle-chain variable fragment antibody against VEGF-A
and received FDA approval in 2019. Although ranibizu-
mab and bevacizumab have demonstrated good effi-
cacy with visual gains of at least 5–10 letters in the
treatment of various retinal diseases, monthly injec-
tions or frequent monitoring may be required to
achieve that effectiveness [2,4,5,7]. Aflibercept and
especially brolucizumab offer longer drug durability,
and an injection interval of every 2–3months after ser-
ial loading doses is possible in many eyes [3,14,15].
During year 2 of the intravitreal aflibercept study in
nAMD (VIEW 1 and 2; NCT00509795 and
NCT00637377), participants were allowed to defer the
injection interval (not longer than 12weeks) using an

as-needed (pro re nata; PRN), or “capped-PRN” regi-
men. The study showed that �92% of participants
maintained vision at year 2 with an average of 7.6 let-
ters gain with this aflibercept capped-PRN regimen.
Approximately, one letter was lost compared to year 1
when transitioning from fixed-dosing to the capped-
PRN regimen, while the number of injections was
reduced from 7–12 injections in year 1 to 4 injections
during the capped-PRN in year 2 [3]. The intravitreal
brolucizumab arm demonstrated six letters gained
with an 8- or up to 12-week dosing regimen in nAMD
(HAWK and HARRIER; NCT02307682 and NCT02434328)
after 2 years, with the superior resolution of exudation
compared with the aflibercept arm [15]. However,
cases of intraocular inflammation and occlusive retinal
vasculitis following intravitreal brolucizumab injection
have been reported which led to significant visual loss
in a few eyes. A careful examination for inflammation
after brolucizumab injection and discussion with the
patient regarding these risks is recommended [16].

Other anti-VEGFs that have been used include ziv-
aflibercept (Regeneron/Sanofi, Bridgewater Township,
NJ, USA) and conbercept (Chengdu KangHong
Biotech, Sichuan, China). However, as of yet, these two
agents have not been approved by the FDA in the
United States but are available in other countries [14].
Abicipar pegol (Allergan; Dublin, Ireland) is another
longer durability agent comprised of ankyrin repeat
proteins (DARPins) against VEGF-A. The Phase III study
of abicipar pegol showed visual improvement and
non-inferiority to monthly ranibizumab, with fewer
injections as the frequency of intravitreal abicipar
injection could be extended up to every 12weeks [17].
The drug however has not received FDA approval, due
to the significant risk of severe intraocular inflamma-
tion [18].

Biosimilars, unlike generics, are biological products
that require a more complex manufacturing process
and therefore require a more robust FDA-approval
process to ensure safety and equivalency vs. the
“reference product”. Biosimilars provide safe, lower-
cost options for the treatment of retinal diseases while
providing equal efficacy. Ranibizumab biosimilars
include SB11 (Samsung Bioepis, Incheon, Republic of
Korea) and FYB201 (Bioeq GmbH, Holzkirchen, Bayern,
Germany), and Phase III trials have shown efficacy and
safety equivalent to the reference biologic in the treat-
ment of nAMD [19,20]. Aflibercept biosimilars include
ABP938 (Amgen, Thousand Oaks, CA, USA;
NCT04270747), FYB203 (Bioeq GmbH; NCT04522167),
and SB15 (Samsung Bioepis; NCT04450329) and are
also being investigated in Phase III trials for nAMD.
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Recently, the ranibizumab biosimilar SB11 (Byooviz;
Samsung Bioepis) was approved by the FDA (2021) for
the treatment of nAMD, macular edoema following
RVO, and myopic choroidal neovascularization [21].

Complement cascade targeted therapy
The role of the immune system and inflammation has
been studied in age-related macular degeneration
(AMD) and diabetic retinopathy (DR) and evidence
suggest that the complement system is active in dis-
eases with chronic inflammation and contributes to
the pathology of these disorders [22]. There are three
main pathways of activation of the complement cas-
cade: the classical pathway, mannose-binding lectin
pathway, and alternative pathway. All three pathways
converge at the point of cleavage of C3 and then C5,
leading to the formation of other fragments e.g. C3a,
C3b, C5a, C5b-9, which then induce inflammation,
vasodilation, permeability of small vessels, and
immune regulation. Evidence of activity of the com-
plement system has been observed at the level of the
retina, retinal pigment epithelium (RPE), and choroid
[22]. Various complement components have been
identified in drusen in AMD and in the vitreous of pro-
liferative diabetic retinopathy (PDR) eyes [23,24].

Agents targeting complement have been investi-
gated over the last decade. Preliminary results of these
agents have generally demonstrated a good safety
profile in humans. However, the true efficacy in the
treatment of retinal diseases is still under investigation
and varies among agents. For example, the pivotal
clinical trials of lampalizumab (Hoffmann-la Roche,
Basel, Switzerland), an anti-factor D antibody, failed to
meet the primary end point as the lampalizumab arm
did not slow the progression of geographic atrophy
(GA) from baseline vs. the control arm (NCT02247479
and NCT02247531). A Phase II/III study of avacincaptad
pegol (Zimura; IVERIC bio Inc., New York, NY, USA), a
C5 inhibitor, showed a 27.4% reduction in the mean
rate of GA growth over 12months (p ¼ .007) in the 2-
mg avacincaptad pegol arm and a reduction of 27.8%
(p ¼ .005) in the 4-mg avacincaptad pegol arm, com-
pared to sham [25]. Pegcetacoplan (APL2-103; Apellis
Pharmaceuticals Inc., Waltham, MA, USA), a C3 inhibi-
tor, also showed a reduction in GA growth rate by
22% (p ¼ .0003) in monthly treated subjects and 16%
(p ¼ .005) in the every-other-month treated group,
compared with sham at month 12 in one of the Phase
III trials (OAKS; NCT03525600). However, the parallel
Phase III trial (DERBY; NCT03525613) did not demon-
strate a statistically significant reduction in GA growth
with reduced rates of 12% (p ¼ .05) and 11% (p ¼

.07) in the monthly and every-other-month groups,
respectively, compared to control. In a prespecified
analysis of combined OAKS and DERBY, monthly and
every-other-month treatment with pegcetacoplan
groups reduced GA lesion growth by 17% (p<.0001)
and 14% (p ¼ .0012), respectively, compared to
pooled sham at 12months. Thirteen cases of intraocu-
lar inflammation (0.21% per injection) and three cases
of infectious endophthalmitis (0.05% per injection)
were reported. The pooled rate of new-onset exud-
ation, including those detected by the reading centre,
was 6.4% of patients in the monthly pegcetacoplan
group, 5.0% in the every-other-month pegcetacoplan
group, and 3.8% in the sham group [26,27]. Some
complement inhibitors, while unsuccessful for retinal
disease, have demonstrated systemic efficacy. For
example, systemic eculizumab (Alexion
Pharmaceuticals [Cheshire, CT]), an anti-C5 antibody,
did not significantly decrease the growth rate of
GA secondary to AMD, but significantly lowered the
risk of relapse in aquaporin-4 antibody (AQP4-IgG)
positive neuromyelitis optica spectrum disorder
(NMOSD) [28,29].

With the promise of previous results, clinical trials
investigating avacincaptad pegol are fully enrolled in
the second Phase III study in AMD with anticipated
results due to be released in the near future, and
Phase II trials are underway to study hereditary retinal
diseases (NCT03364153). LFG316 (Novartis) is a C5
antibody and is being investigated in a recently com-
pleted Phase II study (NCT01527500). The efficacy of
complement cascade therapy combined with other
agents, e.g. anti-VEGF drugs, is also being conducted.
The study of avacincaptad pegol combined with rani-
bizumab in nAMD is completed and the results are
anticipated to be released soon (NCT03362190).

Dual-target therapeutics

Faricimab (RG7716; Genentech) is a first-in-class bi-spe-
cific monoclonal antibody that targets both VEGF-A
and angiopoiten-2 (Ang-2). Ang-2 is a context-depend-
ent agonist and antagonist of TIE2 receptor tyrosine
kinase that is associated with vascular remodelling.
During inflammation, Ang-2 acts as an antagonist. It
promotes endothelial cell permeability, increases
VEGF-A dependent NV, and stimulates pericyte apop-
tosis [30,31]. Ang-2 levels have been found to be ele-
vated in common retinal vascular diseases including
nAMD, DR, and RVO [32–34]. The Fc region of farici-
mab was also designed for faster systemic clearance,
reducing the risk for potential inflammatory adverse
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events [35]. Phase I/II clinical trials of faricimab investi-
gated the safety and efficacy of this agent in these
retinal diseases [36–38]. In Phase III clinical trials of far-
icimab in nAMD (TENAYA and LUCERNE; NCT03823287
and NCT03823300), the average vision gains compared
with baseline in the faricimab arms (fixed-dosing inter-
vals of every 2, 3, or 4months) were 5.8 and 6.6 let-
ters, respectively, compared to 5.1 and 6.6 letters in
the fixed-dosing aflibercept every 2months (8weeks)
arms. In addition, 46% of patients in TENAYA and 45%
in LUCERNE receiving faricimab were treated every
16weeks in the first year [39].

For DME, the YOSEMITE (NCT03622580) and RHINE
(NCT03622593) trials showed average vision gains of
10.7 and 11.8 letters in the every 8-week faricimab
group, and 11.6 and 10.8 letters in the faricimab per-
sonalized treatment interval (PTI) group, compared
with 10.9 and 10.3 letters in the every 8-week afliber-
cept group, respectively. Moreover, 53% of patients in
YOSEMITE and 51% of patients in RHINE achieved
every 16week dosing per 1-year [39]. Clinical trials are
in progress, evaluating the efficacy and durability of
faricimab in the treatment of RVO (COMINO and
BALATON; NCT04740931 and NCT04740905) compared
with aflibercept.

Overall, faricimab appears to be non-inferior to
existing anti-VEGF-based treatments, such as afliber-
cept, but is also associated with a longer injection-free
interval as approximately half of the patients that
received faricimab were able to defer injection to
every 16weeks.

Pegpleranib (Fovista; Ophthotech, New York, NY,
USA), a DNA aptamer that binds to platelet-derived
growth factor (PDGF) receptors on pericytes, was
believed to offer the potential to strip neovascular
pericytes from the underlying endothelial cells,
increasing their vulnerability and sensitivity to VEGF
blockage [40]. However, the Phase III trial of pegplera-
nib in combination with anti-VEGF therapy (aflibercept
or bevacizumab) compared to anti-VEGF monotherapy
(NCT01940887) showed no statistically significant vis-
ual gain at 12months (9.42 letters in the combination
therapy group vs. 9.04 letter in the anti-VEGF mono-
therapy group; difference, 0.38 letters; p ¼ .74) [41].

Technology-based approaches for increasing drug
durability and delivery

Port delivery system
The port delivery system with ranibizumab (PDS;
Genentech/Roche) is a small refillable eye implant that
continuously delivers ranibizumab into the eye

(Figures 1, 2). This is in contrast to a single intravitreal
injection of ranibizumab 0.5mg which is delivered
into the eye in a bolus fashion. With most retinal dis-
eases, intravitreal injections may need to be repeated
monthly, especially in the first year of treatment
[2,5,42]. With the 2mg-reservoir of PDS, ranibizumab is
slowly released into the eye and the ranibizumab level
remains within the therapeutic range after 6months
of implantation. The Phase III trial of PDS with ranibi-
zumab in nAMD patients (Archway Study;
NCT03677934) showed that 242 of 246 patients
(98.4%) in the PDS cohort did not receive any supple-
mental treatment or injection before the first refill or
exchange (fixed at every 6months), indicating PDS
with ranibizumab could reach the target duration.
Small visual gains were noted in each arm and were
not significantly different (0.2 letters in the PDS-
treated arm vs. 0.5 letters in the monthly ranibizumab
arm; adjusted mean difference, �0.3 letters; 95% CI,
�1.7–1.1) as the study eyes were treated with at least
3 anti-VEGF intravitreal injections and demonstrated
evidence of anatomical and visual response to anti-
VEGF treatment before enrolment. The PDS group also
maintained visual acuity at a level comparable to the
monthly ranibizumab injection group, and �80% of
both groups demonstrated visual acuity of 20/40 or

Figure 1. Figure of the port delivery system (PDS) implant
with dimensions of various components as shown. Copyright
2021 F. Hoffmann-La Roche Ltd., all rights reserved. Used
with permission.
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better over 36 to 40weeks after treatment. Forty-
seven (19.0%) PDS-treated patients developed ocular
adverse events including 4 patients (1.6%) with
endophthalmitis, 2 patients (0.8%) with rhegmatoge-
nous retinal detachment, and 13 patients (5.2%) with
vitreous haemorrhage which spontaneously resolved
[43–45]. Of the total of 450 implants that were per-
formed in the PDS trials, 6 implant dislocations
occurred but these were all encountered before the
updated implant procedure and with a scleral incision
>3.7mm [44]. Recently, PDS has received FDA
approval for the treatment of nAMD (October 2021).
Studies of PDS in DME (PAGODA; NCT04108156) and
DR (PAVILION; NCT04503551) are currently ongoing.

Genetically engineered cell line with encapsulated
cell technology
NT-501 (Neurotech Pharmaceuticals, Cumberland, RI,
USA) is a genetically modified human RPE cell line
that produces ciliary neurotrophic factor (CNTF). CNTF
can slow vision loss and retard photoreceptor death
and degeneration of cone outer segments in animal
models [46,47]. The modified RPE cells are encapsu-
lated in a semipermeable membrane designed for
long-term drug delivery that allows for diffusion of
CNTF into the eye while masking the cells from the
host immune system. A Phase II trial of the NT-501
implant was conducted in macular telangiectasia type
2 patients. The primary end point was a change in the
area of photoreceptor ellipsoid zone (EZ) loss as
assessed with cross-sectional spectral-domain optical
coherence tomography. Eyes in the sham group dis-
played a larger area of EZ loss at 24months (differ-
ence, 0.05 ± 0.03mm2; p ¼ .04) with 31% greater
progression of neurodegeneration than in the implant
group [48]. A Phase III study of NT-501 in macular tel-
angiectasia type 2 patients (NCT03316300) is currently

ongoing and the studies are expanding to other dis-
eases, such as glaucoma (NCT04577300).

Gene therapy

Adeno-associated virus-based gene therapy
One of the major achievements in the modern era of
medicine is the sequencing of the human genome
[49]. Since its completion, the field of genetics has rev-
olutionized our collective understanding of genes and
their impact on human disease and has made major
breakthroughs in the development of gene-based
treatments. This is best illustrated with the first adeno-
associated virus (AAV)-based gene therapy in the
treatment of mutated retinoid isomerohydrolase 65
(RPE65) in Leber congenital amaurosis-2 (LCA-2) [50].
RPE65 is the critical enzyme expressed in photorecep-
tors that helps convert all-trans-retinal to 11-cis-retinal,
an important step in the visual cycle [51]. LCA patients
usually present with reduced vision and nyctalopia as
a consequence of retinal degeneration between birth
and five years of age [52]. Preclinical animal studies in
mice and canines harbouring the RPE65 mutant
showed visual rescue by subretinal injections of AAV-
RPE65 [53,54].

In the pivotal Phase III randomized controlled clin-
ical trial, bilateral subretinal voretigene neparvovec-
rzyl (Luxturna; AAV2-hRPE65v2; Spark Therapeutics
[Philadelphia, PA]/Roche) administration was evaluated
for safety and efficacy in patients with RPE65-medi-
ated inherited retinal dystrophy [50]. To determine
whether patients improved, a novel standardized
multi-luminance mobility test (MLMT) was created to
overcome the limitations of traditional cone-based
central visual acuity testing for evaluating the treat-
ment of a rod-based disease. The results of the study
demonstrated an improvement of 1.8 ± 1.1 MLMT

Figure 2. Clinical images from PDS-implanted patients. (A) In the primary position, the PDS implant is not visible through the
dilated pupil. (B) In superotemporal gaze, the lower portion of the body of the implant and the release control element are visible
through the dilated pupil. (C) When eye looking inferonasally, the septum of the implant is visible through the conjunctiva.
Images courtesy of Dr. Arshad Khanani, Sierra Eye Associates, Reno, NV, USA.
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scores in the intention-to-treat group vs. 0.2 ± 1.0 in
the control group (difference, 1.6; 95% CI, 0.72–2.41; p
¼ .0013) at one year follow-up [50]. Thirteen of twenty
patients (65%) passed the lower luminance level
tested (1 lux) while no control participants passed the
MLMT at 1 lux at 1 year. There was a non-statistically
significant visual improvement from baseline between
treated (�0.16 LogMAR) vs. control (�0.01 LogMAR)
groups (adjusted for modelled mean changes of both
groups; difference, �0.16 LogMAR; 95% CI, �041–0.08;
p ¼ .17). Durability was later confirmed at 4 years at
which point treated patients retained an MLMT score
of 1.7 and 71% of patients were able to pass at the
lowest light level [55]. No serious adverse events
related to the therapy or deleterious immune
responses were noted at 1 year but one patient devel-
oped a retinal detachment at year 4. These findings
allowed voretigene neparvovec-rzyl to become the
first genetic therapy approved by the FDA for the
treatment of patients with confirmed RPE65 mutation-
associated retinal dystrophy in 2017.

Another viral-based gene therapy under consider-
ation targets choroideremia, an X-linked recessive
choroidal dystrophy caused by a mutation in the CHM
gene. The CHM gene encodes a Rab escort protein 1
(REP1) which helps facilitate intracellular protein traf-
ficking via prenylation and membrane expression of
the Rab protein [56]. Although ubiquitously expressed,
patients with choroideremia can develop rapid atro-
phy of the choroid, RPE, and outer retina causing nyc-
talopia generally by the third decade but with
retained central vision as the macula may be spared
[57]. Pre-clinical trials in animal and cell cultures dem-
onstrated a rescued phenotype when ectopically
expressing CHM [58–61]. In humans, the first clinical
trial conducted by the University of Oxford
(NCT01461213) enrolled 14 patients and showed a
median visual gain of 5.5 ± 6.8 letters after subretinal
injection of AAV.REP1 vector at 2 years [62,63].
However, one patient developed iatrogenic stretching
of the retina, and another developed intraocular
inflammation. Subsequent clinical trials from Tubingen
(NCT02671539), Alberta (NCT02077361), Miami
(NCT02553135), and Philadelphia (NCT02341807)
enrolled 40 patients. The aggregated 2-year visual out-
come in 34 patients revealed a median gain of
1.5 ± 7.2 Snellen letters (�14min, 18 max) across all
trials [64–67]. The major complications were related to
the subretinal injection procedure including one
patient with a retained residual air bubble in the sub-
retinal space and another with foveal thinning after
the injection. Other common side effects, such as mild

post-op inflammation resolved with systemic or topical
steroids. Despite the marginal improvement of vision
and the variability of outcomes between trials, the
promising results of the early clinical trials in the man-
agement of choroideremia highlight the prospects for
genetic therapy in diseases beyond RPE65 mutation-
mediated LCA. Results of 4 other ongoing Phase II or
Phase III clinical trials (NCT02407678, NCT03507686,
NCT03496012, and NCT04483440) are pending.

Gene therapy in nAMD has also been studied as an
approach to reduce the burden of anti-VEGF injec-
tions. Two leading investigational therapeutic strat-
egies are focussed on achieving an anti-VEGF effect by
expressing currently used monoclonal antibodies: rani-
bizumab (RGX-314; REGENXBIO Inc., Rockville, MD,
USA) or aflibercept (ADVM-022; Adverum
Biotechnologies, Redwood City, CA, USA). In Phase I/II
trials of subretinal injection RGX-314 that utilized the
AAV8 vector encoding a fragment of a monoclonal
antibody targeting VEGF showed strong efficacy in
patients using the third highest evaluated dose with a
14-letter gain and a mean of 2.8 annualized injections
(compared to baseline 9.6 annualized injections) at
2 years in nAMD patients. The efficacy was maintained
at year 3 with a 2.4 annualized rate of supplemental
anti-VEGF injections and 50% (3/6) of patients did not
need an additional anti-VEGF injection [68]. With
suprachoroidal delivery, preliminary analysis showed
that patients received a mean of 1.2 supplemental
injections over 6months following administration of
RGX-314, which represents a 75.9% reduction in the
anti-VEGF treatment burden. Moreover, 4 of 14 RGX-
314 treated patients received no anti-VEGF injections
over 6months [69]. Phase II clinical trials to evaluate
the subretinal delivery of RGX-314 in nAMD
(NCT04832724), the suprachoroidal delivery in nAMD
(AAVIATE; NCT04514653) and the suprachoroidal deliv-
ery in DR (ALTITUDE; NCT04567550) is cur-
rently underway.

A second nAMD-based gene therapy, ADVM-022, is
comprised of an AAV.7m8 vector that produces afli-
bercept protein and can be delivered as a single intra-
vitreal injection. In Phase I/II clinical trial (OPTIC;
NCT03748784), a single dose of intravitreal ADVM-022
was administered to 30 nAMD patients who were pre-
viously treated with anti-VEGF therapy. The results
showed that 60% of patients had an injection-free
interval beyond 1 year. Patients demonstrated an 85%
reduction in annualized injection frequency following
a single low dose and a 100% reduction with the high
dose. In the OPTIC trial, no evidence of significant
intraocular inflammation or hypotony was reported
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but one patient developed a retinal detachment
[70,71]. However, a clinical trial of high-dose AVDM-
022 in DME (INFINITY; NCT04418427) was halted due
to a case of recalcitrant hypotony.

A Phase I/II gene therapy trial for macular atrophy
secondary to AMD (NCT03846193) is also ongoing
using GT005 (Gyroscope Therapeutics Limited,
London, UK), a recombinant non-replicating AAV
encoding human complement factor I (CFI).

Non-viral vector gene therapy
Gene therapy is not limited to a viral vector-based
approach. In a subset of LCA patients, a deep intronic
mutation (c.2991þ 1655A>G) in centrosome protein
290 (CEP290) causes a classic splicing defect and pre-
mature truncation codon that clinically presents as
early rod degeneration with retention of poorly func-
tional central cones [72,73]. To correct the splicing
mutation, a 17-mer antisense RNA-based oligonucleo-
tide named sepofarsen was designed to normalize the
mutated messenger RNA and produce a wild-type or
normal CEP290 [74]. A Phase I/II clinical trial
(NCT03140969) that remains currently under active
enrolment reported data from the first 10 patients
who received a single intravitreal dose of sepofarsen
[74]. Preliminary results at the 3-month follow-up were
remarkable for one patient with a large improvement
in visual acuity from light perception to 20/400 and
four other patients with improvements >15 letters.
Patients were noted to have less oculomotor instabil-
ity and better full-field stimulus testing (FST) thresh-
olds in the treated eyes [75]. Thus far, no severe
adverse events have been reported requiring prema-
ture termination of the trial. Intraocular inflammation
was noted with most adverse events rated to be mild
to none.

Stem cell therapy

Due to the ability to differentiate into various cell line-
ages with a virtually unlimited number of renewals,
stem cells have gained interest as a potential treat-
ment for retinal disease and several studies have been
conducted over the past decade. The therapeutic
action of stem cells is by replacement or repair of a
diseased cell, tissue, or organ [76]. Human embryonic
stem cells (hESCs), induced pluripotent stem cells
(iPSCs; e.g. from skin fibroblast), and somatic stem
cells (e.g. from bone marrow, adipose tissue, and cen-
tral nervous system cell) have been studied and used
for these purposes.

At present, no stem cell therapy for retinal diseases
has been approved by FDA. Most human trials are still
at an early phase (Phase I or II). The RPE is the major
target for current stem cell studies, particularly for GA
secondary to AMD and hereditary retinal diseases,
such as Stargardt’s macular dystrophy and retinitis pig-
mentosa (RP). RPE transplantation was first reported in
2012 by using hESC-derived RPE implanted into the
subretinal space of nine patients with Stargardt’s
macular dystrophy and 9 patients with GA from AMD
[77,78]. Among these 18 patients (18 eyes), 8 eyes
showed visual improvement of at least 15 letters dur-
ing the first year after surgery while only one eye had
decreased vision of more than 10 letters. One eye
developed endophthalmitis [78]. At 4 years, more than
half of the patients sustained visual improvements
with evidence of possible cellular engraftment. No ser-
ious adverse events, such as hyperproliferation,
tumorigenicity, or rejection-related inflammation were
noted in this study [79]. A report of RPE differentiated
from iPSC transplanted into the subretinal space of
two nAMD patients showed an intact transplanted
sheet, but no visual improvement [80]. Another study
using iPSC found mutations in the second patient’s
cultured iPSCs and the study was suspended before
cell implantation [81]. Some studies are now expand-
ing to central retinal vein occlusion (NCT03981549;
using intravitreal autologous bone marrow CD34þ

stem cell), disciform scar secondary to nAMD
(NCT02903576; injecting hESC-RPE into the subretinal
space) or other diseases, such as glaucoma and optic
atrophy (Stem Cell Ophthalmology Treatment Study;
SCOTS; NCT01920867 and NCT03011541). The SCOTS
trial also demonstrated improvement in vision follow-
ing injection of autologous bone marrow-derived stem
cells via combination routes (e.g. retrobulbar, sub-
tenon, intravitreal, subretinal, or intra-optic nerve
injections), followed by intravenous injection, in 83%
of optic nerve atrophy patients, 63% of AMD patients
and 62% of Stargardt’s macular dystrophy patients
[82–84]. In the AMD cohort, 32 eyes were treated per
protocols (11 eyes in arm 1 [retrobulbar, sub-tenon,
and intravenous injection], 19 eyes in arm 2 [retro-
bulbar, sub-tenon, intravitreal, and intravenous injec-
tion], and 2 eyes in arm 3 [subretinal and intravenous
injection]). The average visual acuity improvement was
1.68 lines for arm 1, 1.29 lines for arm 2, and 3.5 lines
for arm 3. Overall, 20 of 32 eyes (63%) experienced an
improvement in LogMAR visual acuity, averaging
27.6% (range, 2.5% to 44.6%; mean, 0.96 LogMAR with
standard deviation [SD] of 0.42).
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The use of autologous adipose tissue-derived stem
cells in the treatment of non-neovascular AMD was
also reported in three cases. However, severe vision
loss after intravitreal injection of adipose tissue-
derived stem cells was observed. The visual acuity
ranged from 20/200 to no light perception one year
after injection and was associated with ocular hyper-
tension, haemorrhagic retinopathy, vitreous haemor-
rhage, combined tractional and rhegmatogenous
retinal detachment, and/or lens dislocation [85].

Artificial vision

Optogenetics gene therapy
Optogenetics is a biological technique where an
ectopically expressed light-sensitive ion channel is
genetically engineered into a living cell. As the retina
is a light-sensitive organ, the use of optogenetics in
the treatment of retinal diseases, particularly those of
photoreceptors, is a practical approach. The general
strategy is to create light-sensitive cells downstream
of photoreceptors in either the middle or inner retina.
By genetically modifying the middle or inner retina to
be photosensitive, light can activate the visual cortex
bypassing the principal level of pathology.

The possibility of optogenetics was initially demon-
strated by a seminal paper in 2005 [86]. The infected
neurons with channelrhodopsin-2, a light-sensitive cat-
ion channel, through lentiviral gene delivery. This
allowed for temporally precise, non-invasive activation
of targeted neurons. Just like its human homolog
rhodopsin, algae-based channelrhodopsin is a photo-
sensitive G-coupled protein receptor that is activated
by a specific wavelength of light. In contrast to normal
human rhodopsin proteins, channelrhodopsin directly
forms an ion channel and allows for depolarization of
a neuron [87]. In the retina, this translates into a bipo-
lar cell-activating in response to a photon of light and
then signalling to its coupled ganglion cell, creating
the potential for meaningful vision. Multi-characteristic
opsin (MCO; vMCO-010; Nanoscope Therapeutics Inc.,
Bedford, TX, USA) therapy is based on an intravitreal
injection of virus encoding a light-sensitive ion chan-
nel that targets bipolar cells. In the Phase I/IIa study,
11 patients with advanced RP with no light perception
were injected with vMCO-010 and the therapy
appeared to be well-tolerated. Six of seven patients
(86%) with high dose viral titre showed visual acuity
improvements of 15 letters or more. The study also
reported long-lasting improvements in outdoor light
sensitivities and daily activities [88].

Combined with goggles engineered to deliver
appropriate light stimulation, a single intraocular injec-
tion of an optogenetic vector GS030-Drug Product
(PIONEER; NCT03326336; GenSight Biologics, Paris,
France) is now currently being investigated in an
ongoing trial in RP patients. The goggles detect local
changes in light intensity and project corresponding
light pulses onto the retina in real-time to activate
optogenetically transduced retinal ganglion cells. The
preliminary results demonstrated that the patients per-
ceived, located, counted, and touched different
objects while at baseline the patient could not visually
detect any objects before injection with or without
the goggles, or after injection without the goggles.
During visual perception, multichannel electroence-
phalographic recordings revealed object-related activ-
ity above the visual cortex. No intraocular
inflammation or adverse events were reported. The
results from these studies have potentially demon-
strated a partial functional recovery in eyes with ret-
inal dystrophy after optogenetic therapy [89].

Retinal prostheses
In 1755, Le Roy observed that electrical stimulation of
the ocular surface could stimulate the perception of
light or phosphenes and in 1929 Foerster found that
external stimulation of the occipital lobe could also
elicit phosphene perception [90,91]. Since these land-
mark studies, there has been interest in the possibility
of visual prosthetics which have now been extensively
studied and developed [90,91]. These prostheses typic-
ally consist of a video camera, an image converter
transforming light from images to an electrical signal,
a small electronic device processing the signal and
generating an electrical pulse, and an array of micro-
electrodes stimulating the retina or other tissue
[90,92]. The quality of the perceived image depends
on the number of electrodes/photodiodes in the
implant, the stimulation strategy implemented and
the level of greyscale perception of the patients.
Advanced image processing algorithms can also assist
some tasks, such as edge detection, and thus highlight
the border of objects [91]. Utilizing an intact optic
nerve and visual cortex, retinal prosthetic devices are
implanted in the eye, above or below the retina, and
stimulate the sensation of vision in patients with
severe visual impairment, such as those with advanced
RP or severely advanced AMD. Retinal prosthetic devi-
ces can be primarily classified according to the loca-
tion of the implant: epiretinal, subretinal, or
suprachoroidal.
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The epiretinal prosthesis is placed on the inner sur-
face of the retinal nerve fibre layer and offers advan-
tages in that the surgeon may be more familiar with
the surgical techniques and explantation, if necessary,
is less complex [90,93]. The subretinal prosthesis is
placed at the level of degenerated photoreceptors or
the outer retina which constitutes a more challenging
surgical approach. However, the subretinal location of
the arrays provides some benefits, such as lower
stimulation thresholds and more stable fixation
[93,94]. The suprachoroidal prosthesis is placed
between the choroid and the sclera, or in a scleral
pocket. This approach offers the advantage of less ret-
inal injury given the absence of direct contact. As it is
further from the retina, the suprachoroidal prosthesis
requires a higher stimulation threshold which also sim-
ultaneously carries a higher risk of damage [93,95].

Many retinal prosthetic devices have been studied
over the last few decades in humans. Examples of
these prostheses include:

� The Argus II (Second Sight Medical Products Inc.,
Sylmar, CA, USA), Intelligent Retinal Implant System
II (IRIS V2; Pixium Vision S.A., Paris, France), and
EPI-RET3 (EPI-RET Project, Aachen, Germany), all of
which use an epiretinal approach.

To date, the Argus II is the most widely used device
with many peer-reviewed publications. Although an
acceptable rate of the adverse event has been
reported in IRIS V2 or EPI-RET 3, the studies of long-
term safety or effectiveness are limited or underpow-
ered [91,96,97].

� The Alpha IMS and AMS (Retina Implant AG,
Reutlingen, Germany), and the Photovoltaic Retinal
Implant (PRIMA) bionic vision system (Pixium Vision
S.A.), all of which use a subretinal approach.

The Alpha IMS (first generation) was reported to
have an acceptable safety profile and was noted to
restore daily visual function in 45% of the participants
while the Alpha AMS (second generation) was
reported to have significant challenges during the sur-
gical implantation [98–100]. The French feasibility
study of the PRIMA implant reported that the implant
was well-tolerated and provided visual acuity improve-
ment up to 0.9 LogMAR in patients with GA secondary
to AMD [101].

� Bionic Vision Australia (BVA; Melbourne, Australia)
uses a suprachoroidal approach.

The Phase I (NCT01603576) and Phase II
(NCT03406416; the second generation of the device)
trials of the suprachoroidal retinal prosthesis in end-
stage RP were completed and showed a safety profile
with improvement in visual function, daily activities
(e.g., motion discrimination, spatial discrimination,
localizing object, etc.) and quality of life [102–104].
The Japanese group (Osaka University) also used the
suprachoroidal approach by inserting the electrode
array in the scleral pocket in 3 advanced RP patients.
The group reported no major complications and sig-
nificant improvement in visual tasks (localization task
and table task) in one patient [105].

However, to our knowledge, Argus II is the only
prosthesis that has received both Conformit�e
Europ€eenne (CE) approval in Europe (2011) and FDA
approval (2013) in the US for the treatment of RP
[90,106]. Initially, Argus I was comprised of an array of
16 electrodes while Argus II is comprised of a dense
60-electrode array with increased spatial resolution
and a larger visual angle [107]. Improvement in orien-
tation and mobility, target localization, shape and
object recognition, and reading of letters and short
unrehearsed words have been demonstrated in
patients implanted with Argus II [106]. Twenty-four of
30 patients (80%) remained implanted with a function-
ing Argus II at 5 years and performed significantly bet-
ter with the Argus II vs. those without implants (on
compared with off) for all tests [108]. The second gen-
eration of external hardware (glasses and processing
unit; Argus2s) was recently approved by the FDA
(2021) to use with Argus II implants although Second
Sight has discontinued Argus II implants since 2019
and focussed on cortical implants instead [91,109]. For
AMD, the Argus II trial (NCT02227498) has also been
completed and the final results are pending. A study
of PRIMA for AMD is currently ongoing
(NCT03392324).

Prosthetic devices targeting other segments of the
visual pathway, such as the optic nerve, lateral genicu-
late nucleus (LGB), and visual cortex have also been
developed and may be of particular benefit in cases
where the retina is severely damaged. Orion Cortical
Visual Prosthesis System (Second Sight; NCT03344848)
and Intracortical Visual Prosthesis (NCT04634383) have
ongoing studies with the cortical prostheses.

Other sensory substitution devices
Other sensory substitutes or devices (e.g. vOICe,
Sound of Vision, or BrainPort) could potentially trans-
late visual information into auditory or tactile informa-
tion. With some training, these devices have been
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reported to help vision-impaired patients expand their
perception, especially with elevated and dynamic
objects [110–112].

Discussion

Based on the explosion of pharmacotherapeutics and
devices over the past two decades, it is clear we are
in the midst of a significant era of novel retinal thera-
pies. These innovations have shown remarkable suc-
cesses in the management of various retinal diseases
[113,114] and have partially restored vision in even
severely visually-impaired or blind patients. Next-gen-
eration anti-VEGF therapies, such as brolucizumab are
now FDA-approved and we anticipate several add-
itional agents and approaches to be introduced into
the clinical arena in the next few years which will offer
more efficacious and durable treatments for our
patients, thereby reducing the burden associated with
therapy. Other novel therapeutics will offer options
and hope to patients with diseases that previously
had no treatment, such as inherited retinal
dystrophies.

These novel therapeutics, however, are not without
challenges and concerns. The availability and access to
these treatments are still limited in many countries
outside North America. The cost of treatment may
also present a significant barrier, for example, in the
US, Argus II treatment costs �$150,000, and voreti-
gene neparvovec-rzyl treatment costs $450,000 per
eye [115,116]. These are important barriers that pre-
clude the integration of these highly innovative thera-
pies into mainstream clinical use, even if they are in
existence. Strategies to target these real-world barriers
will be critical to maximize the benefits to all of our
patients in this golden era of novel retinal
therapeutics.
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