
ORIGINAL RESEARCH

Space–time codependence of retinal ganglion cells can be
explained by novel and separable components of their
receptive fields
Cameron S. Cowan1,2,*, Jasdeep Sabharwal1,2,3,* & Samuel M. Wu1,2

1 Department of Ophthalmology, Baylor College of Medicine, Houston, Texas

2 Department of Neuroscience, Baylor College of Medicine, Houston, Texas

3 Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas

Keywords

Retinal ganglion cells, space–time

separability, spatiotemporal tuning.

Correspondence

Jasdeep Sabharwal, 1 Baylor Plaza,

Neurosensory Building, Department of

Ophthalmology (NC 304), Houston, TX

77030.

Tel: +1 (713) 798 5966

Fax: +1 (713) 798 6457

E-mail: sabharwa@bcm.edu

Funding information

This study was supported by the NEI RO1

#RO1EY004446 and #RO1EY019908, NEI

T32 #T32EY007001, NEI F30 #F30EY025480,

NEI Core #P30EY002520, Retina Research

Foundation, and Research to Prevent

Blindness.

Received: 9 August 2016; Accepted: 10

August 2016

doi: 10.14814/phy2.12952

Physiol Rep, 4 (17), 2016, e12952,

doi: 10.14814/phy2.12952

*These coauthors contributed equally to the

work

Abstract

Reverse correlation methods such as spike-triggered averaging consistently

identify the spatial center in the linear receptive fields (RFs) of retinal gan-

glion cells (GCs). However, the spatial antagonistic surround observed in clas-

sical experiments has proven more elusive. Tests for the antagonistic surround

have heretofore relied on models that make questionable simplifying assump-

tions such as space–time separability and radial homogeneity/symmetry. We

circumvented these, along with other common assumptions, and observed a

linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the

RF’s space–time structure, we found the overall linear RF’s inseparability

could be accounted for both by tuning differences between the center and sur-

round and differences within the surround. Finally, we applied this approach

to characterize spatial asymmetry in the RF surround. These results shed new

light on the spatiotemporal organization of GC linear RFs and highlight a

major contributor to its inseparability.

Introduction

Because of their genetic tractability, mice are an increas-

ingly popular model to study retinal circuitry and its per-

turbation during disease (Sinclair et al. 2004; Coombs

et al. 2006; Abd-El-Barr et al. 2009). The output neurons

of the mouse retina, ganglion cells (GCs), derive much of

their receptive field (light responsivity) from the connec-

tion pattern and type of upstream retinal neurons and thus

are a readout of retinal function. Understanding how GCs

function in mice therefore provides an important platform

for investigating retinal function (Wassle 2004; Sanes and

Zipursky 2010). A common method for measuring GC

function is spike-triggered averaging (STA) of white noise

stimuli, which isolates the linear receptive field (RF) (Meis-

ter et al. 1994). This estimate provides a first-order approx-

imation of the RF which provides insights into the

upstream neural circuitry (Field et al. 2007, 2010).

ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

the American Physiological Society and The Physiological Society.

This is an open access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

2016 | Vol. 4 | Iss. 17 | e12952
Page 1

Physiological Reports ISSN 2051-817X

info:doi/10.14814/phy2.12952
http://creativecommons.org/licenses/by/4.0/


GC RFs are organized into two spatial regions, a center

that activates to light onset (ON) or offset (OFF) and an

antagonistic polarity surround (Barlow 1953; Kuffler

1953). The center–surround antagonistic RF organization

is the basic building block for spatial information process-

ing in the visual system (Hubel and Wiesel 1962; Rodieck

1965; Wu 2010). In linear RFs, the antagonistic surround

is present in primates (Chichilnisky and Kalmar 2002;

Gauthier et al. 2009) and cats (Reid et al. 1997), and is

modeled by a difference of Gaussians (Rodieck 1965). In

mice, experiments using spots and annuli or moving grat-

ings found significant surrounds in many GCs (Dedek

et al. 2008; Farrow et al. 2013). In contrast, no surround

was observed when white noise was used to map mouse

linear RFs (Kerschensteiner et al. 2008; Koehler et al.

2011; Della Santina et al. 2013) with the exception of one

type of OFF direction-selective GCs which have both lin-

ear receptive fields with achromatic (Kim et al. 2008) and

chromatic spatial antagonism (Joesch and Meister 2016).

A notable simplification applied by many of these linear

RF studies is the difference-of-Gaussians model. Reason

to question this model has been found in recent research,

where local inhomogeneities caused the RF center to dif-

fer from a Gaussian profile at high mapping resolutions

(Brown et al. 2000; Field et al. 2010; Soo et al. 2011;

Schwartz et al. 2012). We therefore hypothesized that

similar inhomogeneity in the spatial surround could

obscure its presence in the linear RF when the difference-

of-Gaussians model is strictly applied.

Another factor that may contribute to difficulties char-

acterizing the surround in the GC linear RFs is the way

spatial filters are combined with temporal filters into

space–time models. GCs of mice and other vertebrates

have temporal filters with at least two phases – one fast

with center polarity and the other slow and antagonistic

(Chichilnisky 2001; Pandarinath et al. 2010; Wang et al.

2011). Such biphasic filters have been successfully com-

bined with spatial Gaussians to describe primate GC

responses by relying on an important simplifying assump-

tion: that the cell’s spatial and temporal filters are inde-

pendent of one another (Chichilnisky and Kalmar 2002).

Although convenient, this assumption conflicts with

observed temporal tuning shifts between the linear RF

center and surround (Derrington and Lennie 1982;

Enroth-Cugell et al. 1983; Dawis et al. 1984; Frishman

et al. 1987). The presence of center–surround inseparabil-

ity in GC RFs is therefore acknowledged (Meister and

Berry 1999), although questions regarding its strength

and form remain.

We recorded a large sample of mouse GCs and con-

firmed previous reports that, under the assumptions out-

lined above, the antagonistic surround was weak or

absent from their linear RFs. However, when these

assumptions were relaxed a strong and pervasive spatial

surround was revealed in the same dataset. We therefore

systematically assessed the assumptions that underlay the

original analysis and discovered significant evidence for

space–time inseparability. Importantly, we find that insep-

arability can be accounted for with a model (termed

SoSS) that minimizes complex space–time codependen-

cies. When the SoSS model was applied to our sample of

GC linear RFs it revealed five subcomponents with highly

distinctive spatiotemporal filtering. Furthermore, the sub-

filter corresponding to the antagonistic surround was fre-

quently asymmetrically organized supporting its

hypothesized non-Gaussian structure. These results clarify

the rules that govern receptive field organization and

demonstrate how improved parameterization can reveal

its core underlying features.

Materials and Methods

Ethical approval

Mice were cared for and handled following approved pro-

tocols from the Animal Care and Use Committee of Bay-

lor College of Medicine and in compliance with the

National Institutes of Health guidelines for the care and

use of experimental animals. All mice were euthanized by

cervical dislocation after anesthetizing with isoflurane.

Electrophysiology

Multielectrode recording

Nineteen male C57Bl/6J mice were kept on a regular

light/dark cycle and experiments were performed diur-

nally at 3–4 months of age. Prior to euthanization, mice

were dark adapted for at least 90 min. Eyes were removed

under infrared illumination using night vision (Nitemare,

BE Meyers, Oregon) and their retinas were dissected in a

dish containing carboxygenated recording solution. Reti-

nas were placed ganglion cell side up onto nitrocellulose

filter paper (0.45 lm HA, Millipore) and transferred onto

an electrode array where the preparation was retained

with a plastic ring.

The retina was kept at 35.6�C and perfused at 2 mL/

min with prewarmed and carboxygenated (95% O2, 5%

CO2) recording medium (in mmol/L: NaCl, 124; KCl,

2.5; CaCl2, 2; MgCl2, 2; NaH2PO4, 1.25; NaHCO3, 26;

and glucose, 22) at pH 7.35 (Tian and Copenhagen

2003). The multielectrode array (MEA-60, Multichannel

Systems, T€ubingen Germany) had 60 electrodes spaced

100 lm apart and with diameters of 10 lm. Ganglion cell

action potentials were recorded at 20 Khz and prefiltered

with a 0.1 Hz high-pass hardware filter.
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Light calibration

The stimulus was presented from a computer monitor

(Dell, SXGA-JF311-5100) optically reduced and presented

from below the MEA onto the ganglion cell side of the

retina. Similar to previous reports (Pandarinath et al.

2010), the ambient light level during an experiment was

measured as wavelength-specific irradiance (E(k), in

microwatts cm�2) in the plane of the preparation (Thor

Labs, S170C and Edmund Optics, SpectraRad). Photon

flux in photoisomerizations/photoreceptor/second (/)
was calculated as / ¼ ac kmaxð ÞPk Np kð Þs kð ÞSr kð Þ where

ac kmaxð Þ is the effective collecting area of a photoreceptor

at its peak wavelength (0.34 lm2 for cones and 0.67 lm2

for rods)(Lyubarsky et al. 2004; Pandarinath et al. 2010),

Np kð Þ is the photon flux per second, and s kð Þ is wave-

length-dependent transmissivity of the neural retinal

(Alpern et al. 1987). Finally, Sr kð Þ is sensitivity relative to

the peak intensity which encompasses the wavelength

dependence of both quantum efficiency and molar absor-

bance coefficients. The ambient light level stimulated rods

at 757.9 R*/sec, M-cones at 384.6 R*/sec, and S-cones at

8.0 R*/sec.

White noise receptive field measurements

Receptive fields were mapped for up to 1.5 h using ran-

dom checkerboards presented at 15 Hz using PsychTool-

box (Brainard 1997; Pelli 1997). Each square in the

checkerboard was 50 lm on a side and either black or

white. Only cells that had a firing rate >0.5 Hz were

included for analysis.

Modeling

Center model

To characterize the location and extent of the relatively

strong receptive field center, we combined a single two-

dimensional Gaussian with a biphasic temporal filter. The

two-dimensional Gaussian describes the sensitivity g at a

position (x,y) as a function of the location of its center

(cx,cy) and three composite variables a, b, and c.

g x; yð Þ ¼ k1e
a x�cxð Þ2þ2b x�cxð Þ y�cyð Þþc y�cyð Þ2

where a, b, and c are dependent on an angle h and stan-

dard deviations in the major rx and minor axes ry.

a ¼ cos2ðhÞ
2r2x

þ sin2ðhÞ
2r2y

b ¼ � sinð2hÞ
4r2x

þ sinð2hÞ
4r2y

c ¼ sin2ðhÞ
2r2x

þ cos2ðhÞ
2r2y

The temporal filter was the difference in three low-pass

filter impulse responses

f tð Þ ¼ p1
t

s1

� �n1

e�n1ð t
s1
�1Þ � p1p2

t

s2

� �n2

e�n2ð t
s2
�1Þ

� p1p3
t

s3

� �n3

e
�n3ð t

s3
�1Þ

where f(t) is the filter strength in time bin t before the

spike, and p, s, and n are all fit parameters that shape the

temporal filter.

These two filters are combined and regressed against

the raw STA x.

x x; y; tð Þ ¼ gðx; yÞf ðtÞ

Spatial pooling and temporal characterization

The spatiotemporal fit of the receptive field center was

used to divide the spatial inputs into up to nine annular

regions, each spanning one standard deviation (SD) of

radial distance. Temporal STAs within these annuli were

pooled by either summing or averaging, which generally

improved signal-to-noise ratios. Initially this temporal fil-

ter was fit on a per-annulus basis using a standard least

squares regression. Appropriate temporal models were

determined by starting with a simple line at zero and iter-

atively adding additional temporal subfilters, statistical

improvement was assessed with an F-test. Each temporal

subfilter was an impulse response of a low-pass filter as

shown in Equation 2. Subfilters were tracked across

annuli by clustering the subfilter population using a

three-dimensional mixture of Gaussians model fit on p, s,
and n where the number of clusters was determined by

an F-test.

Assessing space–time separability

Singular value decomposition (SVD) was applied on the

STAs that had been transformed into two-dimensional

space (radial distance and time). SVD creates a set of sep-

arable subfilters, ordered by decreasing power, and has

therefore found use as a test for space–time separability
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in the visual (Mazer et al. 2002) and auditory systems

(Depireux et al. 2001).

The sum of separable subfilters (SoSS) model

The SoSS model combines up to five subfilters, each with

a unique temporal and spatial component (see eq. 1).

Each subfilter’s temporal properties were described by a

low-pass filter impulse response and its spatial extent was

described by a two-dimensional Gaussian. All subfilters

for a cell had the same spatial center and rotation, and

their temporal properties were constrained to match the

five groups identified by clustering in Figure 3. Excellent

results were achieved in subsequent experiments when

subfilter parameters were initialized to their expected val-

ues and constrained only for sanity.

To perform a regression on the annular-averaged data,

we first evaluated the model at the center of each spatial

input whose center lay within a given annulus, and then

averaged these predictions to achieve an annulus predic-

tion. Second, because the number of spatial inputs varied

between annuli, the error terms used in a standard regres-

sion would be inconsistent across annuli. We corrected

for this by using a weighted least squares regression,

where the weights are the square root of the number of

spatial inputs in each annulus. This factor is derived from

the central limit theorem, and acts to level the effect of

noise across annuli.

Identification and assessment of receptive field
hotspots

For each cell that had one of the two surround-associated

subfilter types (4 and 5), we compared the temporal STA

of each spatial input to the model prediction for that

input (henceforth referred to as the probe) by calculating

their zero-lag cross-correlation (x-corr). These x-corr val-

ues vary in magnitude based on the strength of the signal,

the noise, and probe. To estimate the significance of the

probe-to-signal interaction, we made a reference compar-

ison of the probe to a simulated population of noise

STAs. Our stimulus was binary, so noise STAs were gen-

erated by averaging a number of 1s and -1s equivalent to

the number of spikes averaged in the original STA. The

standard deviation of the x-corrs from the probe to simu-

lated noise comparison was used to normalize the probe

to STA comparison. Any inputs that had a normalized

STA to probe x-corr of greater than 3 SD were classified

as surround hotspots.

The ability of the hotspots to capture the temporal sig-

nal present in surround was estimated by linear regression

of the b between the summed temporal STAs in the hot-

spots h and in the full surround s

s ¼ bh

To determine the strength and orientation of asymme-

try, we rotated each cell so that its major axis aligned

with the x-axis and then normalized the major and minor

axis by their respective sizes. We then calculated a center

of mass for the set of hotspots. This gives a larger weight

to distant inputs, but ignores the relative strength of the

hotspots. A cell was designated as asymmetric if the dis-

tribution of its hotspot distances was significantly differ-

ent from the centered origin as determined by a

Wilcoxon signed-rank test.

Statistical tests

Specific tests used and P-values are indicated in the text

and methods. For model comparisons we used an F-test

to compare a constrained and unconstrained model. For

comparison of populations we used the Student’s t-test

when normally distributed, otherwise we used a Wilcoxon

signed-rank test or Mann–Whitney U test. In all cases we

applied a Bonferroni correction to account for multiple

comparisons.

Results

We used an electrode array to record ganglion cells (GCs)

from flat-mount mouse retinas during visual stimulation,

as illustrated in Figure 1A. Stimuli consisted of white

noise checkerboards displayed in series which were used

to generate spike-triggered averages (STAs) for GCs, as

illustrated in Figure 1B. Checkerboards were 32 9 32

grids of black or white 50 lm squares and were presented

at 15 Hz for a total of 166 sec per trial. The mean light

level activated rods at 757.9 R*/sec, M-cones at 384.6 R*/
sec, and S-cones at 8.0 R*/sec. These parameters were

chosen to maximally drive GCs, thereby improving our

ability to detect weak signals in the receptive field sur-

round. Example results from this process are illustrated in

Figure 1Bii; temporal STAs are shown at two spatial

inputs (next to bottom row) and spatial STAs are shown

at three temporal slices (bottom row).

Linear receptive fields of mouse GCs have
an antagonistic surround

While previous studies in mice have observed antagonistic

surrounds in response to stimuli with strong space–time

correlations (Dedek et al. 2008), no surround was

observed when linear receptive fields were mapped with

white noise checkerboards (Kerschensteiner et al. 2008;

Koehler et al. 2011; Della Santina et al. 2013). Analyses in
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these studies relied on the difference-of-Gaussians model

which may obscure the surround if it is not Gaussian dis-

tributed with radial homogeneity/symmetry. We therefore

launched a systematic reexamination of the linear recep-

tive field by replacing this restrictive assumption with a

more general approach.

The structure of the receptive field center was deter-

mined by fitting the product of a single 2D spatial Gaus-

sian and a triphasic temporal filter to each cell’s

spatiotemporal STA. These parameters were used to

delineate a set of isoclines at 1r intervals (Fig. 2A, left)

which were used to group each spatial input into an

annular region (middle and right). The inputs within the

inner 3r were collectively termed the receptive field center

as they contained the majority of its signal, and the

inputs from 3r to 9r were termed the noncenter recep-

tive field. Figure 2B shows the dependence of the sum-

mated temporal STAs on radial distance, colored to

match the annular distance from Figure 2A. While this

regularization is not lossless, applying it to the checker-

board-derived data allows us to characterize the spa-

tiotemporal dependence of many cells’ noncenter

receptive fields simultaneously without assuming radial

homogeneity or symmetry. The central spatial inputs of

this cell (blue tinted traces, Fig. 2B) have a strong prefer-

ence for light offset (negative deflection), whereas the

noncenter regions have a preference for light onset that is

consistent with an antagonistic surround.

To assess the prevalence of the linear antagonistic sur-

round, we first summated the temporal STAs of the spa-

tial inputs from the noncenter region. Figure 2C shows

this analysis for four GCs (marker shapes), each had a

summed temporal STA in the noncenter region (right)

with a polarity antagonistic to the center (left). We

quantitatively assessed the surround by calculating the

ratio of the center and noncenter signals in the first

333 ms (Scenter and Snon-center in Fig. 2C). The population

data show that the surround polarity index was less than

zero in the majority of cells (88.7%), indicating the linear

antagonistic surround was pervasive (Fig. 2D, n = 805

cells). To show that this result benefits from our more

general approach we applied the difference-of-Gaussians

fit to the spatial profile of the space–time receptive field,

and only observed a linear surround in 29.8% of GCs.

GC linear receptive fields exhibit varying
degrees of space–time inseparability

As a surround was observed in the majority of GCs, we

proceeded to study its spatiotemporal properties. This

analysis was carried out using the nine spatially collapsed

temporal STAs shown in Figure 2B. These spatiotemporal

profiles provide an excellent opportunity to determine

whether the center and surround are space–time separa-

ble. Separable systems can be factored into a product of

spatial and temporal filters, whereas this is not possible in

inseparable systems as the temporal filter can vary with

space or vice versa. Despite the role of space–time insepa-

rability in encoding complex visual stimuli (Meister and

Berry 1999) it is often ignored in linear RF analyses (Chi-

chilnisky and Kalmar 2002). In the leftmost panel of Fig-

ure 2E, the STA from Figure 2B is projected in two

Spike
triggered
average

i. Stimulus

ii. Response

400 μm

Retina

Stimulus

Electrode Array

1.6 mm

32x32

166 sec

1 2 33

.8s
.2s

.1s

Spike
triggered
ensemble

.8s .2s .1s

A

B

.8 .2 .1 Time

S
TA

.4

-.4

.8s
.2s

.1s

Figure 1. Recording and stimulation of ganglion cells. (A) An

explanted mouse retina (cyan) was placed on a multielectrode array

(red) ganglion cell side down and stimulated with an optically

reduced monitor image (green). (B) i: The stimulus was an iterated

sequence of 32 9 32 binary white noise checkerboards (8 9 8

illustrated). ii: Spiking responses of individual cells were identified

and used to calculate the average stimulus that triggered a spiking

response, the spike-triggered average (STA). The resulting receptive

field map had a space–time structure which can be illustrated as a

temporal filter for each spatial point (red and green highlights) or

as a spatial filter at a single temporal slice (bottom).
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dimensions, time and radial distance, with filter strength

and polarity represented by color. The apparent shift in

temporal tuning with space (Fig. 2E, arrows) is suggestive

of inseparability. To quantitatively assess separability in

the time-radial distance domain we used SVD, a standard

technique that breaks down data into separable compo-

nents as shown in equation 1 (Depireux et al. 2001;

Mazer et al. 2002), where M is the data matrix, U is a

spatial filter matrix in the radial distance domain, S is a

diagonal matrix of weights, V is a temporal filter matrix, i

is the index of the singular value, and Ai is the space–
time filter for ith singular value.

xðr;tÞ¼M¼
X

i
Ai¼USV� ¼

X
i
UiSi;iV

�
i ¼

X
i
giðrÞfiðtÞ

(1)

Figure 2E shows the decomposition of an example

cell’s spatiotemporal STA (x or M) into a set of matrices

(A1-9), which contain the outer product of a spatial filter

(Ui, vertical axis) and a temporal filter (Vi, horizontal

axis), scaled by the ith singular value (Si,i). A1–A9 are

ordered by descending power and represent separable

space–time components of the original receptive field

(M). The rightmost segment of the equation is a parame-

terization of the spatiotemporal dependence, which will

be discussed subsequently. Characteristic of inseparability,

the signal-derived variation in M does not appear to be

captured by a single separable space–time filter (A1).

Rather, significant power and structure is present in the

second filter (A2).

Using this approach, we characterized the degree of

space–time inseparability in a population of retinal GCs

(n = 805). Three examples are shown to highlight the

variation in the population in Figure 2F: one highly

inseparable (top row, red asterisk), one borderline insepa-

rable (middle row, green triangle), and one separable

(bottom row, blue star). In the inseparable examples A1 +
A2 (fourth column) faithfully reflects the space–time

structure of M, whereas in the separable cell A1 alone

(second column) is sufficient.

The above represents a qualitative description of insepa-

rability, to quantify it across the population we used the

Akaike information criterion to compare a model including

only the weights from the first singular value (representing

separability) to a model including the first and second sin-

gular values (representing inseparability). The histogram in

Figure 2G shows the distribution of the relative probabili-

ties of inseparability for all reported ganglion cells

(n = 805). A threshold value of 100 (meaning the insepara-

ble model was 100 times more likely to be needed) was used

to identify inseparability. While some mouse retinal GCs

were approximately space–time separable, a substantial

number were inseparable (24.1%). Separable cells (Fig. 2H,

blue points) tended to have a lower percent power in the

second singular value relative to the first, whereas insepara-

ble cells (red points) had a relatively higher percent power

in the second singular value. The three sample cells are

indicated by the matched symbols. We conclude that a gen-

eral model of GC center–surround linear receptive fields

must not assume space–time separability.

Receptive fields can be decomposed into
five space–time separable subfilters

We sought to identify a model that accounts for the

change in temporal filtering with space observed in Fig-

ure 2. Because multiple component phases combine to

give GCs their band-pass characteristic (Chichilnisky and

Kalmar 2002), we quantified the properties of each aver-

age STA by modeling it as a summed set of temporal sub-

filters. This model is shown in equation 2, where each

subfilter is a low-pass filter impulse response f indexed by

Figure 2. Ganglion cells (GC) linear receptive fields have antagonistic surrounds and many are space–time inseparable. (A) A single Gaussian

profile was fit in space–time to localize the receptive field center. Its radial distance isoclines are shown in color for 1r intervals (left). These

annuli are then used to group the spatial inputs into up to nine annular regions (middle and right). (B) Temporal STAs were summated within

the annular regions to help determine their dependence on radial distance. (C) To test for a surround, inputs were further grouped into the

receptive field center (≤3r, cyan) and noncenter regions (>3r, orange) which is illustrated for four example cells. (D) A histogram comparing

the first 0.33 seconds of the center (Scenter) and noncenter (Snon-center) responses from all cells, as shown in (C). The predominance of values

below zero reveals an antagonistic surround was pervasive in the population. (E) A space–time receptive field map (M, left) that replots the

information from (B) into an image using a color map (far right). Singular value decomposition divides the raw STA (M) into nine separable

space (U, traces to left of images) and time filters (V, traces below images) that are combined to create the matrices A1 to A9. This cell’s

space–time inseparability can be seen in the spatiotemporal codependence exhibited by the diagonal drift in its raw STA (red and blue arrows)

and by the significant power/structure of A2. (F) The receptive field map (M), first two singular matrices (A1, A2), and their sum (A1+A2) are

shown for three example cells; the top GC (red star) was strongly inseparable, the middle (green triangle) was still inseparable, and the bottom

(cyan star) was separable. (G) The relative likelihood of space–time inseparability was higher for the majority of GCs (corrected Akaike

information criterion between the A1 and A1+A2 models). (H) Space–time inseparable cells (red, probability of separability < 0.01 from G) had

high power in their second singular value compared to the first. Space–time separable cells (blue) had a lower relative power in their second

singular value.
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i and parameterized by magnitude p, time-to-peak s, and
the number of stages in the filter n (Chichilnisky and Kal-

mar 2002). By tracking the spatial dependence of these

temporal parameters, we can study whether/how each

subfilters’ space–time dependence contributes to insepara-

bility in the overall temporal filter.

fiðtÞ ¼
pi �

t
si

� �ni � e
�ni � ð tsi�1Þ

e�ni�1
(2)

Figure 3A shows an example fit of the average STAs

(black lines) at different annuli (indicated by the seg-

ments in the top color bar). Whereas the model is fit to

the data with the subfilters summed, Figure 3A illustrates

the individual subfilters (RGB colored lines). To estimate

the number of subfilters at each annulus, we initially

assumed a null model and iteratively added subfilters

until no longer statistically justified by an F-test

(P < 0.01). For the illustrated cell, the first subfilter (light

brown line) was observed in all annuli, whereas a second

(dark brown line) and third subfilter (orange line) were

identified more frequently in the receptive field center

(annuli 1–3). A fourth subfilter, observed at only chance

rates across the population, was excluded. Notably, this is

the first evidence for a three-subfilter model in the recep-

tive field center, which confers dual band-pass frequency

filtering (not illustrated). In total, this cell would have 13

subfilters. To determine if 13 distinct subfilters are indeed

needed, as compared to a combination of fewer subfilters

that change their size across space, we look at these sub-

filters across the population.

The subfilters from these fits are shown for a popula-

tion of GCs (n = 778, cells with model fits) in Figure 3B.

Each point in the scatter plots represents one subfilter

from one cell’s STA at one annulus. Subfilters were

divided into center (left column) and antagonistic polar-

ity groups (right column), and each was plotted accord-

ing to its s and n (top row), and s and p (bottom row).

Figures 3A and B are color matched by subfilter index to

illustrate the subfilter identification process, but this

indexing was not used in subsequent analyses. Instead,

groups of subfilters were clustered based on the similarity

of their temporal properties (Fig. 3C). We hypothesized

that these groups contain subfilters of the same type, but

at different annuli. If true, the temporal properties of sub-

filter types could be tracked across space, furthering our

goal of understanding the shifts in the overall temporal

filter. Clustering revealed five subfilter types. The response

polarity of types 1 (magenta) and 5 (gray) matched the

receptive field center, whereas types 2 (orange), 3 (green),

and 4 (purple) were antagonistic.

The same example cell from Figure 3A is recolored in

Figure 3D to indicate the type of each subfilter. Rather

than using 13 distinct subfilters, only 5 subfilters with dis-

tinct properties were needed to explain the cell’s annular

STA. In the receptive field’s spatial center (annuli 1-3),

only subfilter types 1, 2, and 3 were present so they will

henceforth be referred to as center subfilters 1, 2, and 3. On

the other hand, subfilter types 4 and 5 were observed in the

surround and will henceforth be termed surround subfil-

ters 1 and 2. This is just a sample cell, and these five subfil-

ters would work similarly for almost all cells in our

population. The population data in Figure 3E demonstrate

the same enrichment of these subfilters in the center and

surround. Consistent with our hypothesis, each subfilter

type was present over a range of annuli allowing us to track

the properties of each subfilter type over space.

Figure 3F recolors Figure 3C to indicate the radial dis-

tance (dot color) of each subfilter (dots) and encircles the

regions to indicate the subfilter types from Figure 3C (col-

ored borders). If subfilter types (regions) have temporal

properties (position) that are dependent on radial distance

(color), then the color within each cluster will drift with

radial distance. The top two plots do not exhibit color drift

within subtypes indicating that the properties describing

temporal filtering, time-to-peak (s, x-axis), and filter order

(n, y-axis) are not dependent on radial distance.

Figure 3. Ganglion cell temporal STAs are composed of subfilters with five distinct patterns of spatiotemporal tuning. (A) The average

temporal STAs (black traces) within annuli at different radial distances from the receptive field center (see Fig. 2) were each fit by the sum of

up to three subfilters (brown/orange traces). Each subfilter is the impulse response of a low-pass temporal filter. Annular distance is indicated

by the primary-colored bar at the top, with central annuli on the right. (B) Comparison of subfilter properties from all annuli: amplitude (|p|),

delay to peak (s), and filter order (n). Subfilters are divided into center and antagonistic groups based on their polarity relative to the receptive

field center. Colors are carried from (A) to illustrate how the subfilter population is obtained. (C) The same plot, recolored into five subfilter

types (pastel colors) based on a three-dimensional (p, s, n) mixture of Gaussians clustering. Clusters were identified as center or surround based

on D and E. (D) The same cell from (A) is shown with its component subfilters colored by the types from (C). Center subfilter types 1

(magenta), 2 (orange), and 3 (green) are located in the central annuli, whereas surround subfilter types 1 (purple) and 2 (gray) are in more

distant annuli. (E) The dependence of subfilter type on radial distance is illustrated by breaking plot (C) down by radial distance and combining

both polarities. (F) The subfilters from (C) have been recolored by their radial distance from center to demonstrate the dependence of subfilter

properties on radial distance. Bordered regions have been added to approximate the boundaries between the subfilter types shown in (C).

Within each subfilter type, there is a strong dependence of p on radial distance (vertical rainbow effect in the bottom plots), but no obvious

codependence for s or n. This indicates that individual subfilter types vary their scale but maintain their shape over space, suggesting they are

space–time separable.
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Figure 4. A model for ganglion cell receptive fields consisting of multiple separable subfilters. (A) The outer products of two pairs (orange and

magenta) of spatial gi(s) and temporal subfilters fi(t) are summated to generate a space–time inseparable receptive field map. As shown at

right, at a given radial distance (s) from the center, the model’s temporal filter is the spatially weighted sum (black trace) of the first (magenta

trace) and second (orange trace) subfilters. (B) A sequence of F-tests were used to determine the number of subfilters that were statistically

justifiable (P < 0.01 after post hoc correction), the percent of cells reaching each level is visualized. (C) The preferred model explained the

majority of the variance in the space–time receptive field. (D) Center subfilters 1, 2, and 3 were present in the majority of cells, whereas

surround subfilters 1 and 2 were observed less frequently. (E) i: Models fits (traces) to annular-averaged STAs (dots) for an example OFF (left)

cell. The paired temporal (ii) and spatial (iii) components of the individual subfilters. The space–time codependence in the receptive field map

(iv) is accounted for by the model (v). (F) The spatiotemporal properties of the observed subfilters fell into five distinct clusters. Filter time

constants are compared to filter order for center polarity (i) and opposite polarity subfilters (ii). Spatial extents are compared to filter magnitude

for center polarity (iii) and opposite polarity subfilters (iv). (G) Population average temporal filters from each subfilter type. (H) The same

temporal filters averaged in the frequency domain. (I) The average spatial filters for each subtype showed no difference between center

subfilters 1, 2, and 3, but surround subfilters 1 and 2 were each significantly different. The first subtype was constrained to a unit normal

distribution, and is therefore illustrated in black. Shaded regions in all plots are �3 SE.
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Conversely, subtypes in the bottom two plots showed verti-

cal color progression (darker blue above lighter blue) signi-

fying decreasing response magnitude (p, y-axis) with

increasing radial distance. In summary, the shape of the

subfilters’ temporal profiles, as determined by s and n, does

not vary meaningfully with radial distance but their scale

(magnitude) does. We therefore conclude that space–time

separability can be applied to individual subfilters which

are then combined to form an inseparable overall filter.

Mixing space–time separable subfilters
accounts for GC center–surround responses

Based on the finding that the receptive field can be

described by combining subfilters that are individually

space–time separable, we employed a model similar to the

result of the SVD, but where the separable spatial and

temporal components were replaced by temporal f(t) and

spatial g(s) functions (eq. 1). In contrast to the model

applied in Figure 3, this constrains each subfilter’s tempo-

ral properties to retain their shape across annuli and be

scaled according to a Gaussian spatial profile. This model

is illustrated in Figure 4A, where the overall linear filter x
is composed of i subfilters, each with a dependence on

radial distance r that is represented by a peak-normalized

Gaussian distribution g(s) and its dependence on time t is

expressed by its temporal profile f(t) (Equation 2). The

interactions between two artificial spatial and temporal

profiles are illustrated in Figure 4A. As a consequence of

their different spatial profiles, the relative weights of the

subfilters vary with space causing the temporal tuning to

drift (diagonal white arrow). This illustrates how separa-

ble subfilters can be combined within the model to gener-

ate an inseparable overall filter.

We used this model to examine 805 mouse GCs across

19 retinas. Up to five subfilters were included, each con-

strained to match the temporal profiles and spatial extents

of the corresponding subfilter types from Figure 3 (see

methods). As it remains uncertain whether all cells contain

the five subfilter types, we adopted an iterative procedure,

similar to that in Figure 3B, to estimate the distribution of

subfilter combinations in mouse GCs (Fig. 4B). We first

compared a model containing only subfilter type 1 to a

null model, and found significant evidence for its inclusion

in 100% of GCs (F-test at P < 0.01, post hoc corrected).

We added subfilter type 2 to the preferred model from the

first step and found its inclusion was justified in 96% of

GCs. In subsequent steps, center 3, surround 1, and sur-

round 2 were iteratively added to the preferred model to

generate the distribution of subfilter combinations shown

in Figure 4B. For example, the bottom right node shows

that 15% GCs had all five subfilter types, whereas the bot-

tom left node shows that 6% had only centers 1 and 2.

To determine if the model accurately describes the sig-

nal in the STA, we evaluated the goodness of fit of the

preferred model from Figure 4B for each cell. Figure 4C

shows that more than 95% of the variance in the data

was explained by the model in 634 of 805 GCs. The per-

centage of cells observed with each subfilter type, derived

from Figure 4B, is shown in the bar graph in Figure 4D.

There was a progressive decline in observation frequency

with increasing subfilter type, bottoming at 24% (3 +
2 + 4 + 15%) for surround 2. Based on the results from

Figure 4B–D, the uniform application of the full five sub-

filter model may not be necessary. On the contrary, at

least three subfilters were present in 91% of GCs.

The model fits from two example cells are shown in

Figure 4E–F. For both cells the top left panel (i) shows

the annulus-averaged STA (dots) and its corresponding

model fit (lines). Below, the temporal (panel ii) and spa-

tial (panel iii) profiles are shown for each subfilter type

(pastel colors). To highlight any drift in their spatiotem-

poral dependence, the data and model from panel (i) are

replotted as spatiotemporal maps in panels (iv) and (v).

The OFF-dominated cell in Figure 4E preferred the inclu-

sion of all five subfilter types in the model, whereas the

ON-dominated cell included only four. The space–time

inseparability of these cells manifests as the progressive

shift of the slow antagonistic component in the center

(panel iv, red region in the bottom middle) to earlier

times in the surround (toward the top right). The model

appeared to faithfully capture this inseparability (panel v).

Figure 4G shows the population average temporal pro-

files (lines, shaded regions are 3 SE) for the five subfilter

types (colors). Positive/negative values on this Y-axis rep-

resent center/surround polarity rather than the ON/OFF

polarity used in Figures Eii and Fii. Figure 4H shows the

same information as Figure 4G in the frequency domain,

generated by averaging the normalized power spectral

density functions of individual GCs for each subfilter

type. Lastly, the average spatial profile of each subfilter

type is shown in Figure 4I. These results indicate center 3

and surround 2 have lower temporal frequency tuning

(3 dB attenuation near 0.8 Hz), whereas centers 1 and 2

and surround 1 are tuned to higher frequencies (3 dB

attenuation near 5 Hz). In addition, the three subfilters

located in the spatial center had indistinguishable spatial

extents, whereas surround subfilter 1 extended further

into the surround than surround subfilter 2.

ON- and OFF-dominated GCs have subfilters
with different spatial and temporal
properties

As GC populations recorded on the MEA contain sub-

types with different morphological and physiological
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properties (Wassle and Boycott 1991; Masland 2001), we

tested whether subfilter properties varied between sub-

populations consisting of different subtypes. In particular,

we asked whether ON- and OFF-dominated GCs varied

in their spatiotemporal tuning, as has been observed pre-

viously (Zaghloul et al. 2003; Murphy and Rieke 2006;

Pandarinath et al. 2010), and whether these shifts differed

across subfilters. GC subtypes were discriminated by

PC1
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Figure 5. Subfilter properties differ significantly between ON- and OFF-dominated cells. (A) Cells are plotted relative to the first (PC1) and

second principal components (PC2) of the temporal STAs at their spatial peak. Two clusters were apparent, the blue group corresponded to

OFF-dominated cells and the red to ON-dominated cells. (B) Comparison of subfilter observation rates between OFF- (blue) and ON-dominated

cells (red). (C) For each subfilter type (columns) we compare the temporal impulse responses (top row), frequency tuning (middle row), and

spatial profiles (bottom row) of ON- and OFF-dominated cells. As the first subfilter was constrained to match the original temporal fit, its spatial

profile (bottom left) is substituted with the distribution of radial space constants. The asterisk next to p, s, and n indicates those properties

differed significantly between ON- and OFF-dominated cells (P < 0.01, t-test with post hoc correction).
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performing principal component (PC) analysis on nor-

malized temporal STAs (see methods) from a population

of GCs (Field et al. 2007). The scatter plot in Figure 5A

compares PC1 and PC2 from this analysis, and shows

two distinct clusters. These clusters had temporal STAs

that corresponded to OFF- (blue) and ON-dominated

(red) GCs. We did not further classify cells based on

response to full field light or directional gratings.

As GCs of the same subtype have receptive fields that

tile the receptive field with minimal overlap (Devries and

Baylor 1997), we probed the subtype composition of the

clusters by measuring their GCs’ overlap. The internal

overlap in the ON- and OFF-dominated GCs was 8.1%

and 6.8%, respectively (not shown), consistent with the

expectation that each cluster is composed of multiple

subtypes.

Figure 5B shows the relative frequency of the five sub-

filter types in ON- and OFF-dominated GCs. In the

receptive field center, centers 1 and 2 were always present

in both ON- and OFF-dominated GCs but center 3 was

more frequently observed in ON-dominated cells

(P < 0.01). Among the surround-associated subfilters,

surround 1 was observed in 52.6% of ON-dominated and

56.6% of OFF-dominated GCs (n.s.), but surround 2 was

observed in 38.8% of OFF-dominated GCs but only

13.3% of ON GCs (P < 0.01).

Figure 5C compares the average spatial and temporal

properties of each subfilter type in ON- (red) and

OFF-dominated GCs (blue). The first row compares the

temporal impulse responses, the second their normalized

frequency filtering, and the third their normalized spatial

profiles. Each column contains one subfilter type, ordered

from center 1 (leftmost) to surround 2 (rightmost). The

temporal profiles of all five subfilters types differed statis-

tically between ON- and OFF-dominated GCs (P < 0.01)

based on a post hoc corrected rank sum test on the

parameters underlying the temporal model (Fig. 5C, sig-

nificance of each parameter – p, s, and n – indicated by

an asterisk). The temporal filters of ON-dominated cells

were stronger than OFF-dominated cells in centers 1 and

2, but weaker in center 3 and surround 1. Center 1/2 and

surround 1/2 were tuned to higher frequencies in ON-

dominated cells, but center 3 had significantly higher

tuning in OFF-dominated cells. The normalized spatial

profiles (third row) were statistically indistinguishable for

all but surround 1, which was significantly wider in ON-

than in OFF-dominated GCs. If these subfilters were all

driven by the same source we would not expect to see

differences between ON- and OFF-dominated groups

(center subfilters 1–3 should all shift in the same direc-

tion). The differential shifts in specific subfilter types pro-

vide evidence that subfilter types are driven by distinct

underlying processes.

Identification of hotspots in the GC
antagonistic surround

Because inhomogeneity has been observed in the receptive

field center at high mapping resolutions (Soo et al. 2011),

we next evaluated whether the spatial surround’s

microstructure exhibits a similar departure from a Gaus-

sian profile. We approached this question by applying the

model derived in the previous sections to predict the STA

signal for checkerboard inputs at different radial distances

in the surround (see methods). For every checkerboard

input this gave us a model prediction (probe) and raw

STA (data). We used zero-lag cross-correlation (x-corr) to

compare the probe to the data within each spatial input

(derived from one checkerboard square). Figure 6 Ai

shows data (dots, D) and probes (lines, P) from three dif-

ferent spatial inputs (colors) and Figure 6 Aii shows their

corresponding data/probe x-corr values (arrowheads). The

data and probe of input 2 (purple) match closely, resulting

in a large x-corr value, whereas the data of inputs 1

(green) and 3 (blue) appeared to be larger and smaller,

respectively, than their corresponding probes. To provide

a frame of reference for each x-corr value, we generated a

control population (Figure 6 Aii, dots) by calculating the

x-corr between each probe and a population of simulated

STAs containing no signal (N, or noise). Each control

population had a normal distribution with an expected

mean of zero and a characteristic variance (Fig. 6 Aii,

lines). We normalized all data/probe x-corr values (arrow-

heads) by dividing by the standard deviation of the con-

trol noise population. As outlined in subsequent sections,

cross-validation was employed at each step to provide an

unbiased evaluation of this approach.

Hotspots efficiently account for surround
signal and have a non-Gaussian distribution

Figure 6Aiii shows the result of this normalization for the

full population of surround inputs which have been

binned into a probability histogram (gray bars), and high-

lights the same three example inputs (arrowheads). If only

noise was present in the surround, the histogram in Fig-

ure 6Aiii should follow the unit normal distribution indi-

cated by the black line. Instead, we found the histogram

was positively skewed indicating the widespread presence

of signal matching the probe. To determine the spatial

organization of this signal in the surround, we defined all

spatial inputs with an x-corr greater than 3r (red line) as

“hotspots”. The left side of Figure 6Aiv shows that the

spatial distribution of hotspots in this cell was asymmetri-

cal and the colored boxes highlight the locations of hot-

spot inputs 1 (green) and 2 (purple) and nonhotspot

input 3 (blue). The right side of Figure 6Aiv shows the
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summed temporal STA from all inputs in the center

region (black), the hotspots (red), and the surround

region including hotspots (gray). The similarity between

the gray and red traces qualitatively indicates that this

cell’s hotspots contained the majority of the signal in the

STA’s surround.
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each probe (dots and traced distribution) which is used to assess the significance of the probe’s correlation with the STA data (arrowheads).

Aiii: The data–probe comparisons from (ii) were normalized by the variance of the noise–probe comparisons and the normalized correlations for

one cell are binned into this histogram. The observed correlations are positively skewed relative to the unit normal distribution (black trace) that

would be expected in the absence of surround signal. Inputs were defined as surround “hotspots” if their normalized cross-correlation

exceeded 3 SD (red vertical line). Aiv: The spatial distribution of surround hotspots (left) and the summed temporal STA in the center (black

trace), hotspots (red trace), and surround including hotspots (gray). (B) Example cells with hotspots that were diffusely (top) or densely

distributed (middle and bottom) and symmetrical (top and middle) or asymmetrical (bottom). The amount of signal in the surround’s summed

temporal STA (middle) was estimated by calculating the b between the hotspots and the overall surround strength (right). (C) As a function of

the percent inputs in the surround, b between hotspots and the surround was high across the GC population (red dots). The hotspot approach

(red trace) outperforms both a random control method (black) and was comparable to selecting the innermost surround inputs first (blue

trace). (D) Inputs selected by the hotspot method (red dots) were significantly more distant than when choosing the innermost surround inputs

first (blue). (E) Surround asymmetry relative to the major and minor axes of the elliptical receptive field center (top left) was assessed by

rotating and normalizing the spatial field of hotspots (top right). The center of mass (black dot and line) of the hotspot inputs (red) is illustrated

for an example cell. The bottom polar plot shows that the cell population (n = 256 cells with >=15 hotspot inputs) often had strongly

asymmetrical hotspots (red points, sign-rank test). There was no significant statistical bias in the major or minor axis distribution of the

asymmetry. (v2 test).
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To quantify the amount of surround signal carried by

the hotspots, we applied a linear regression between the

average STA in the hotspots and the surround (including

hotspots). We illustrate this process for three GCs with

diverse spatial organization in Figure 6B. The left column

shows the spatial distribution of their hotspots, the mid-

dle column shows their summed temporal STAs, and the

right column compares the signal in the hotspots and

overall surround. The right column of Figure 6B shows

the linear regression (black line) of the hotspot (y-axis)

and overall surround (x-axis) STAs from the middle col-

umn. Each red dot in the scatter plot represents the rela-

tionship at a different time point and the slope of the

black line (b, black number) is an estimate of the percent

signal in the overall surround contained in the hotspots.

For example, the b of the bottom cell is 0.712, implying

that hotspots contained 71.2% of the signal strength in

the overall surround. As this process involves a circular

relationship (the data are used to fit the model, the model

is used to determine hotspots, and the b compares the

hotspots to the data) we utilized cross-validation to sepa-

rate the hotspot identification and b calculation steps.

Specifically, hotspots were identified using a subset of the

data and determination of hotspot efficacy was deter-

mined using a different subset of the data.

The red dots in Figure 6C show the relationship between

the percent of hotspot inputs in the surround (x-axis) and

b (y-axis) for a population of GCs that had a model fit with

an antagonistic surround (cells with surround subfilter 1,

N = 345). Hotspots were on average 11.5% of the inputs in

the surround, and had an average beta of 24%. The order-

ing method used to identify hotspots (red trace) was vali-

dated by comparing to an alternative method: ordering the

surround inputs by ascending distance from the center

(blue trace). The two methods were comparable, with the

hotspots outperforming by up to 5% initially. However, the

hotspots achieved their performance while selecting inputs

that were, on average, quite distant from the center

(Fig. 6D, red trace) compared to the distance ordering

method (blue trace). The hotspot approach is therefore a

reasonable alternative to identifying the spatial structure of

the surround which does not rely on the assumption of

Gaussian symmetry. Furthermore, because the cross-valida-

tion technique applied to choose and evaluate the hotspots

required splitting the data the actual performance of the

hotspots is likely underestimated. All hotspots presented

henceforth were identified using the full body of data rather

than the subset for cross-validation.

Hotspots are asymmetrically distributed

GCs can receive asymmetrical synaptic inputs which con-

fer specific functionality (Fried et al. 2002; Briggman

et al. 2011), but this asymmetry has not been described

in the surround region of linear receptive field maps. We

therefore studied the spatial arrangement of hotspots in

256 cells (cells whose RF went off-screen were manually

removed) to determine whether they have symmetrical

surrounds. We aligned GCs relative to their major and

minor axes from the model fit in order to provide an

internal frame of reference for the distribution of inputs.

The top left part of Figure 6E shows how the cell’s inputs

were rotated (white curved arrow) around the center so

that the major and minor axes were aligned with the

x and y axes, respectively, and then normalized into stan-

dard deviation space (Fig. 6E, top right). The hotspots

for the example cell were asymmetrically organized and

their center of mass (black line and dot) was nearly 4 SD

from the receptive field center.

We performed a similar analysis for the full GC popu-

lation and found a diverse distribution of symmetries

(Fig. 6E, bottom). Each colored dot represents the center

of mass for one cell, as exemplified by the black dot and

line which is carried from the top right part of Figure 6E.

Because GCs from multiple retinas were combined we

could not distinguish a center of mass in the top (0–180
degrees) from the bottom (180–360 degrees) for each cell.

Data points in the lower half of the polar plot were

rotated 180 degrees. A total of 127 of 256 GCs were clas-

sified as asymmetrical (red dots) because their receptive

field surround had a center of mass which differed statis-

tically from the origin (Wilcoxon signed-rank test,

P < 0.01). The hotspots of the remaining 129 GCs were

not statistically asymmetrical (green dots) and had an

average center of mass that was closer to the origin.

Surround asymmetry did not show a significant prefer-

ence for the major or minor axis of the receptive field

center (v2 test, P >= 0.05). We conclude that the sur-

round is frequently non-Gaussian due to both local

(heterogeneity) and global (asymmetry) irregularities in

its microstructure.

Discussion

In this report we demonstrate that mouse GCs have an

antagonistic surround which has not been previously

described in isolated linear receptive fields maps (Ker-

schensteiner et al. 2008; Koehler et al. 2011; Della Santina

et al. 2013). Based on our systematic study of GC STAs,

we show that this center–surround receptive field exhibits

space–time inseparability suggesting that previously pro-

posed separable models (Chichilnisky and Kalmar 2002)

may mischaracterize receptive field components. Most

interestingly, we demonstrate that space–time inseparabil-

ity in the center–surround receptive field can be

accounted for by a model consisting of a summed set of

ª 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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separable subfilters (the SoSS model). The spatial

and temporal properties of these subfilters differ between

ON- and OFF-dominated GCs, suggesting they reflect

distinguishing underlying features of different GC types.

Moreover, contrary to the common assumption of a radi-

ally homogeneous receptive field surround around the

center, we find that GC surrounds contain hotspot inputs

that are nonuniformly distributed. These findings

improve the connection between spatial and temporal fil-

tering of mammalian GCs and shed new light on the rules

that govern their linear receptive field organization.

The temporal tuning of most GCs is more
complicated than a single band-pass filter

Consistent with previously reported temporal frequencies

from mouse behavior (0.04–12 Hz) (Umino et al. 2008)

and GCs (0.15–10 Hz) (Pandarinath et al. 2010; Wang

et al. 2011), the average tuning of our subfilter types ran-

ged from 0.8 to 5 Hz. The temporal filtering of individual

GCs was found to have a single band-pass characteristic

(Chichilnisky 2001; Pandarinath et al. 2010; Wang et al.

2011). In contrast, we observed three subfilters (types 1,

2, and 3) in the receptive field center of the majority of

GCs (83%) which would function as a dual band-pass fil-

ter. We did observe a single band-pass filter in the sur-

round of some GCs, where only subfilter types 4 and 5

interact. In the absence of spatial nonlinearities, these

results predict temporal tuning to spatially uniform stim-

uli should have up to six band-pass peaks due to the pos-

sible pair-wise interactions between the two centers and

three antagonistic polarity subfilter types.

GC linear center–surround receptive fields
are space–time inseparable

Past studies using a difference-of-Gaussians (DoG) model

concluded that an antagonistic surround was weak or not

detectable in the linear receptive field maps of mouse

GCs. To the contrary, when we applied more general

approaches we identified an antagonistic surround in a

majority of cells. This success implies that some of the

assumptions underlying the DoG model are not valid. For

example, the comparisons of a single Gaussian to a DoG

spatial profile would be skewed away from the DoG when

the surround’s signal is focused in a small number of hot-

spots (although it would be preferred at sufficiently low

signal-to-noise ratios). These assumptions continue to be

adopted in the context of white noise checkerboard map-

ping because of the lack of direct contradictory evidence

and an absence of good alternatives.

In light of this, the work presented here makes two

contributions to our understanding of inseparability in

the RF. First, we utilized spatial averaging to smooth

non-Gaussian imperfections and identified space–time

inseparability in linear receptive fields mapped by white

noise checkerboards. This corroborates past observations

of space–time inseparability made using classical stimuli

(e.g., spots and annuli), and confirms separability cannot

be generally assumed (Derrington and Lennie 1982;

Enroth-Cugell et al. 1983; Dawis et al. 1984; Frishman

et al. 1987). Second, we identified that mixing space–time

separable subfilters with distinct spatiotemporal tuning

(the SoSS model) accounts for a significant portion of

this inseparability. Of the many ways that inseparability

could have manifested (i.e., nonlinear dependence of tem-

poral filter parameters on space), this is arguably the sim-

plest. The SoSS model therefore maintains the analytical

tractability of past approaches while improving on their

accuracy and general applicability.

Spatial distribution of the surround

Our observation that the antagonistic surround preferen-

tially localizes in hotspots that are organized inhomoge-

nously extends recent work in the receptive field center.

Specifically, GCs’ center was found to deviate from a Gaus-

sian profile in high-resolution receptive field maps due to

the microstructure of its dendritic tree and inhomogeneity

of bipolar cell inputs (Schwartz et al. 2012). Because the

surround extends far beyond the GC’s dendritic field (Vol-

gyi et al. 2009; Pang and Wu 2011), its inhomogeneity likely

reflects the connectivity patterns and dendritic microstruc-

ture of upstream amacrine and horizontal cells. Identifying

such local irregularities will likely play an important role in

explaining the spatial information processing of the sur-

round, as has been found in the RF center (Soo et al. 2011).

In addition, the asymmetrical organization of hotspots may

be the functional manifestation of asymmetric inputs onto

GCs that may underlie their direction selectivity (Fried et al.

2002; Briggman et al. 2011). Further experiments are

needed to evaluate these contributions.

Potential synaptic origins of subfilter types

Subtypes within the ganglion cell population are believed

to encode different features in ~30 parallel channels

(Roska and Werblin 2001; Baden et al. 2016). The nature

of these feature channels is an area of active study, but it

is clear that the linear receptive fields we measure are

incomplete representations of these feature channels.

Given that distinct synaptic circuits likely underlie all ~30
subtypes’ feature processing, it is interesting that we

observe five subfilters with such distinct responses. We

found little evidence to suggest that the subfilters had

noteworthy subtyping potential, and therefore surmise
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that they reflect the contributions of upstream synaptic

circuits common to many subtypes.

The distinct spatiotemporal properties and polarities of

the subfilter types suggest their possible synaptic origins.

For example, our center subfilter 1 is consistent with ON

and OFF bipolar cell inputs driven directly by photore-

ceptors because of its high strength and spatial profile/po-

larity that match the receptive field center (Famiglietti

and Kolb 1976). The narrow spatial profiles and antago-

nistic polarity of centers 2 and 3 are consistent with

polysynaptic pathways comprised of narrow-field horizon-

tal or amacrine cells (Werblin et al. 1988). Surround 1

had the broad antagonistic spatial profile associated with

the classic surround, consistent with the involvement of

polysynaptic pathways involving wide-field horizontal or

amacrine cells (Cook and McReynolds 1998). Despite its

spatial breadth and additional synapses, surround 1 had

fast temporal tuning indicating the involvement of active

signal shaping (Bloomfield 1996; Sivyer and Williams

2013). In contrast, surround 2 had a smaller profile and

center polarity, suggesting that the two surround compo-

nents are driven by different polysynaptic pathways. Both

center 3 and surround 2 were temporally slow, possibly

because they had some synaptic mechanisms in common.

Comparison to previous measures and
models of center–surround receptive fields

Although recent investigations have identified nonlinear

interactions in the center and surround, here we charac-

terized only the linear interactions, which are a major

component of the receptive field at the target resolution

(Bolinger and Gollisch 2012; Takeshita and Gollisch

2014). Models were compared based on adjusted mea-

sures of squared errors similar to those applied in past

studies (Park and Pillow 2011), but no claims are made

regarding firing rate prediction. Some features of our

model were presaged by the modified difference-of-Gaus-

sians model which was proposed to account for the

spatiotemporal dependence of cat X-cell responses

(Enroth-Cugell et al. 1983; Dawis et al. 1984). Like our

SoSS model, it allows each spatial Gaussian to be associ-

ated with different temporal properties. However, where

we define a full spatiotemporal filter, their model does

not integrate a specific temporal filter.

Our findings also validate other evidence from these stud-

ies. First, the finding of space–time inseparability within GC

surrounds but not centers (Dawis et al. 1984) is supported

by the common spatial profiles of our center subfilter types

(1–3) but different profiles in the surround (types 4–5). Sec-
ond, the receptive field surround of cat X GCs was observed

to have higher frequency tuning than the center (Frishman

et al. 1987), consistent with the high tuning of our

antagonistic surround (surround 1) compared to the classi-

cal center (center 1). Finally, the hotspot asymmetry we

observe in Figure 6 supports evidence for asymmetry in the

surround of retinal X GCs (Dawis et al. 1984).
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