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Abstract

Motivation: Metabolite identification is an important task in metabolomics to enhance the know-

ledge of biological systems. There have been a number of machine learning-based methods pro-

posed for this task, which predict a chemical structure of a given spectrum through an intermediate

(chemical structure) representation called molecular fingerprints. They usually have two steps:

(i) predicting fingerprints from spectra; (ii) searching chemical compounds (in database) corre-

sponding to the predicted fingerprints. Fingerprints are feature vectors, which are usually very

large to cover all possible substructures and chemical properties, and therefore heavily redundant,

in the sense of having many molecular (sub)structures irrelevant to the task, causing limited pre-

dictive performance and slow prediction.

Results: We propose ADAPTIVE, which has two parts: learning two mappings (i) from structures to

molecular vectors and (ii) from spectra to molecular vectors. The first part learns molecular vectors

for metabolites from given data, to be consistent with both spectra and chemical structures of

metabolites. In more detail, molecular vectors are generated by a model, being parameterized by a

message passing neural network, and parameters are estimated by maximizing the correlation be-

tween molecular vectors and the corresponding spectra in terms of Hilbert-Schmidt Independence

Criterion. Molecular vectors generated by this model are compact and importantly adaptive (specif-

ic) to both given data and task of metabolite identification. The second part uses input output kernel

regression (IOKR), the current cutting-edge method of metabolite identification. We empirically

confirmed the effectiveness of ADAPTIVE by using a benchmark data, where ADAPTIVE outper-

formed the original IOKR in both predictive performance and computational efficiency.

Availability and implementation: The code will be accessed through http://www.bic.kyoto-u.ac.jp/

pathway/tools/ADAPTIVE after the acceptance of this article.

Contact: hai@kuicr.kyoto-u.ac.jp

1 Introduction

Metabolites are small molecules, having many important functions in

living cells such as energy transport, signaling, building blocks of cells

and so on (Wishart, 2007). Identifying their biochemical characteris-

tics or so-called metabolite identification is an essential task in metab-

olomics to increase the knowledge of biological systems. Yet, it is still

a challenging task due to the size or coverage of spectra libraries.

Mass spectrometry (MS) is one of the most common techniques

in analytical chemistry for dealing with metabolite identification (de

Hoffmann and Stroobant, 2007). In more detail, a chemical

compound is decomposed into fragments, of which mass-to-charge

ratios (m/z) are continuously measured to obtain a mass spectrum.

One MS spectrum can be represented by a list of peaks, each of

which corresponds to a fragment captured by MS. Figure 1 shows a

real example of a MS spectrum. In practice, tandem MS (also known

as MS/MS or MS2) is widely used, in which precursor ions of specif-

ic m/z values from MS spectra are selected and further fragmented

to produce other groups of product ions [see, e.g. Vaniya and Fiehn

(2015) for more details]. The MS/MS spectra provide structural in-

formation about the measured compound, which makes MS/MS

more useful for tackling metabolite identification.
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A number of computational methods have been proposed for

identifying unknown metabolites from MS/MS spectra data. In gen-

eral, they are classified into three main categories: (i) spectral library

search; (ii) in silico fragmentation; and (iii) machine learning

(Nguyen et al., 2018a). Recent advances in metabolite identification

have been led by the machine learning category (e.g. Brouard et al.,

2016; Dührkop et al., 2015; Nguyen et al., 2018b). This category

can be further divided into two key groups: supervised learning for

substructure prediction and unsupervised learning for substructure

annotation. While the former is to find a mapping from inputs (e.g.

spectra) to outputs (e.g. fingerprints), the latter extracts underlying

substructures of metabolites. Our research focuses on supervised

learning, where the common scheme is to learn a mapping from

spectra to structures.

The prediction can be divided into two steps: (i) fingerprint pre-

diction: predicting fingerprints of a given test spectrum with super-

vised learning; (ii) candidate retrieval: retrieving chemical compound

(from database) which is closest to the predicted fingerprints (Nguyen

et al., 2018b).

Kernel methods have been shown to be effective for fingerprint

prediction, such as methods include FingerID (Heinonen et al.,

2012), CSI:FingerID (Dührkop et al., 2015) and input output kernel

regression (IOKR, Brouard et al., 2016). In particular, IOKR is rec-

ognized as the current cutting-edge method for metabolite identifica-

tion due to the following advantages: (i) structures (e.g. feature

interaction in the molecular fingerprint vectors) in the output can be

incorporated into the learning model by the kernel defined in the

output space, leading to accuracy improvement; (ii) fingerprints are

simultaneously predicted by the learned model, rather than being

considered as a set of separate tasks, resulting in faster computation.

One can take structures of the metabolites into account by using

graph kernels (path, shortest-path and graphlet kernels) or kernels

defined on molecular fingerprints. It is also known that kernels

based on fingerprint vectors obtained the best performance (Brouard

et al., 2016). However, a limitation of using molecular fingerprints

as the intermediate representation vectors is that they are general-

purpose and very large in size to encode all possible substructures

and chemical properties related with metabolites. Consequently,

such vectors are neither necessarily specific to any task nor data, and

therefore redundant in the sense that these vectors might contain

information irrelevant to the task, resulting in limited predictive per-

formance. Moreover, the large size of fingerprints causes slow pre-

diction in the first step of the above two steps.

Generally, in machine learning, deep learning has been proven

successful recently in many application domains. Deep learning is

useful for regular data, say a table, in which rows are instances and

columns are features, and vice versa. However, semistructured data,

particularly graphs, for example, chemical (or biological) molecules,

which are irregular types of data, are difficult to be used with deep

learning. A number of research efforts have been devoted to apply-

ing deep learning to semistructured data, proposing models to learn

representations of graphs, such as Duvenaud et al. (2015), Li et al.

(2015) and Nguyen et al. (2017). Importantly, Gilmer et al. (2017)

showed that a lot of research on graphs can be formulated in a uni-

fied model, namely message passing neural network (MPNN), with

the following three components: message passing, update and read-

out functions. In other words, one way of defining such functions

results in a different model for learning graphs. Furthermore,

another attractive property of MPNN is that it allows to learn

meaningful representations specific to each task for graphs in an

end-to-end manner.

We propose a powerful machine learning framework for metabol-

ite identification, named ADAPTIVE, which has two subtasks:

(i) learning a mapping from structures to molecular vectors and

(ii) learning a mapping from spectra to molecular vectors. Figure 2

shows a schematic picture of ADAPTIVE, where the left and right

blue boxes correspond to the first and second subtasks, respectively.

In Subtask 1, ADAPTIVE learns a model to generate molecular vec-

tors for metabolites using their chemical structures, where these vec-

tors are specific to both data and the task of metabolite identification,

and therefore nonredundant. The model in Subtask 1 is parameterized

by MPNN for mapping metabolite structures to the molecular vec-

tors. The main contribution of this article is in the Subtask 1, that is,

to learn the correspondence between given pairs of spectra and struc-

tures for metabolites.

Thus, the parameters of MPNN are trained so that the correl-

ation between the spectra and the vectors mapped from the struc-

tures is maximized. We use Hilbert-Schmidt Independence Criterion

(HSIC, Gretton et al., 2005) for evaluating the correlation, due to its

theoretically nice properties and kernel-based calculation.

Specifically, we formulate an objective function for the maximiza-

tion problem through HSIC and solve this problem to have the best

molecular vectors adapted to given data. For Subtask 2, ADAPTIVE

uses IOKR to learn a mapping from spectra to molecular vectors

generated by the Subtask 1.

We emphasize that the key difference between ADAPTIVE and

the original IOKR is that IOKR uses ‘manually designed’ finger-

prints, which are large in size, possibly redundant and nonspecific to

metabolite identification (and given data), while ADAPTIVE learns

representations for metabolites from given data, as molecular vec-

tors, resulting in that the molecular vectors generated by

ADAPTIVE are data-driven and concise.

In order to validate the performance of ADAPTIVE, we conducted

extensive experiments using a benchmark data. Experimental results

showed the following two main advantages of ADAPTIVE over exist-

ing methods, including the original IOKR:

• Predictive performance

ADAPTIVE achieved the best performance, followed by IOKR,

CSI:FingerID and FingerID. For example, the top-20 accuracy of

ADAPTIVE was 78.52% with the parameters of Gaussian kernel,

Fig. 1. Example MS spectrum from Human Metabolome Database (Wishart

et al. 2013) for 1-Methylhistidine (HMBD00001), with the corresponding chem-

ical structure (top-left) and peak list (top-right)
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ALIGNF and molecular vector size of 300. On the other hand,

IOKR, CSI:FingerID and FingerID achieved 74.79%, 73.07% (or

68.20%) and 58.17%, respectively, using Gaussian kernel (for

IOKR) and ALIGNF. The top-k accuracy was computed by the aver-

age over all trials of 10-fold cross-validation (CV), and so the per-

formance advantage of ADAPTIVE was significant and very clear.

• Computational efficiency for prediction

Under the same experimental setting, ADAPTIVE was four to

seven times faster than IOKR, which was already known as the fast-

est method. We can then say that ADAPTIVE is the current fastest

method while keeping the highest predictive performance for metab-

olite identification.

2 Related work

As mentioned in the Introduction section, fingerprint prediction is

important in supervised learning for metabolite identification, be-

cause we can retrieve metabolite candidates more reliably if finger-

prints are predicted more accurately. For fingerprint prediction,

kernel learning has been shown to be the most powerful approach.

For example, a typical approach, FingerID (Heinonen et al., 2012)

uses probability product kernel (PPK, Jebara et al., 2004), which

can be directly computed from spectra and runs support vector ma-

chine with this kernel for solving fingerprint prediction as a classifi-

cation problem. CSI:FingerID (Dührkop et al., 2015), an extension

of FingerID, uses not only spectra but also fragmentation trees (FTs,

Rasche et al., 2011) as input to generate kernels over spectra and

FTs, which are then combined via multiple kernel learning (MKL,

Gönen and Alpaydin, 2011). FTs may capture structural informa-

tion behind spectra which is missing in the approach of FingerID.

This is the motivation of CSI:FingerID. However, the computational

cost for converting FTs from MS/MS spectra is very expensive, lead-

ing to heavy computational load, which causes a problem particular-

ly in prediction. Thus, we can say that kernel-based supervised

learning, particularly complex kernels, have a computation issue, re-

gardless of high performance in prediction. On the other hand, a

sparse learning model, namely SIMPLE (Nguyen et al., 2018b), con-

siders a simpler function than kernels for fingerprint, while interac-

tions of peaks in spectra can be incorporated into learning models

explicitly. SIMPLE achieved a comparable performance against

kernel-based learning, reducing the computational cost drastically.

A key point of SIMPLE is to take advantage of sparsity of spectra,

which results in faster prediction and interpretability, showing clear

advantages over kernel-based methods.

Among the series of kernel-based approaches, IOKR (Brouard

et al., 2016) has been shown to outperform the previous methods, in

terms of both predictive performance and computational speed.

It learns a mapping from spectra, i.e. input X , to molecular fin-

gerprints (or structures behind fingerprints), i.e. output Y. In order

to do this mapping, IOKR defines kernels to encode similarities in

the input space (e.g. spectra and/or FTs) and the output space (mo-

lecular fingerprints or structures). Then, the advantage of IOKR

comes from the following two points: (i) unlike previous kernel-

based methods, IOKR handles the structured output space by the

kernel defined for the output, which improves the predictive per-

formance; (ii) IOKR simultaneously predicts fingerprints rather than

considering fingerprint prediction as a set of separate tasks, leading

to an efficient computation in prediction. Some part (mapping from

spectra to feature vectors) of IOKR is a part of ADAPTIVE, and so

further technical details of the corresponding part of IOKR is

described more in Section 3.

Conventionally, molecular fingerprints for fingerprint prediction

have been manually designed feature vectors to encode a predefined

set of substructures or chemical properties, which are possibly found

in metabolites. However, recently, machine learning-based (or data-

driven) algorithms for generating fingerprints have been proposed.

A typical approach is neural fingerprint (NFP, Duvenaud et al.,

2015), which takes graphs with arbitrary sizes and shapes as inputs.

NFP uses the idea of graph convolution, an extension of convolution

operation from multidimensional arrays, like images or texts, to

Fig. 2. Overview of ADAPTIVE for metabolite identification. ADAPTIVE has two components: (i) Subtask 1: estimates parameters of a function mapping metabo-

lites from structures to molecular vectors, given a set of spectra-structure pairs; (ii) Subtask 2: learns a function mapping from spectra to molecular vectors (gen-

erated by Subtask 1), given a set of spectrum-vector pairs
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graph structures. NFP is then trained in a supervised manner by

using available labels, such as log mol/L for solubility, EC50 for

drug efficacy. Finally, NFP results in fingerprint vectors (for

molecules) specific to given task and data. An extension of NFP is

for unsupervised (as well as semisupervised) settings to learn repre-

sentations of molecular graph without labels (Nguyen et al., 2017),

since label information can be experimentally obtained and

precious.

More recently, Gilmer et al. (2017) showed that several graph

convolution-based models, including NFP, Gated Graph Neural

Networks (Li et al., 2015), spectral graph convolutional network

(Kipf and Welling, 2016), etc., can be formulated in an unified

model, namely MPNN, with the following three functions: message

passing, update and readout. A key advantage of MPNN is that

defining the above components generates a proper model for learn-

ing graphs, depending on a given task. Also, another advantage of

MPNN as well as other neural network-based methods in this para-

graph is that they adopt differentiable operations, and thus their

parameters can be effectively trained by using a stochastic gradient

descent algorithm.

3 Materials and methods

3.1 ADAPTIVE: overview
We first introduce the framework of ADAPTIVE for metabolite

identification. This is also the general framework of approaches

using machine learning for metabolite identification. It has two sub-

tasks. Subtask 1: learning a function which maps metabolites from

their structures to molecular vectors and Subtask 2: learning a func-

tion which maps metabolites from spectra to the vectors generated

in Subtask 1. Figure 2 shows an illustration of the entire framework

of ADAPTIVE. In this figure, the left and right blue boxes corres-

pond to Subtasks 1 and 2, respectively.

For Subtask 1, given pairs of metabolite structure-spectrum, we

estimate parameters of a function which maps metabolites from

their structures to molecular vectors by maximizing the correlation

between the vectors mapped from the structures and also the corre-

sponding spectra. In more detail, we model the mapping function by

MPNN and evaluate the correlation between the vectors and spectra

by using HSIC due to the computational simplicity and provably

theoretical properties of HSIC. For Subtask 2, we simply borrow the

corresponding part of IOKR to learn a function mapping metabo-

lites from spectra to vectors generated by Subtask 1.

We explain these two subtasks in the following subsections,

being followed by the subsection on kernels we used in ADAPTIVE.

3.2 Subtask 1: learning molecular vectors for

metabolites via HSIC
For this subtask, we need to estimate a function to map metabolites

from structures to molecular vectors, given spectrum-structure pairs.

For this problem, we use MPNN as the mapping function, which

can extract meaningful representation for graphs (molecules for our

problem) by supervised learning from training data. That is, MPNN

requires labeled training data, which are, however, unavailable for

this subtask. Then we manage this problem by taking advantage of

given spectrum-structure pairs. We estimate parameters of MPNN

by using the idea of maximizing the correlation between the given

spectra and vectors (mapped from structures). The correlation is

evaluated by HSIC. We describe the detail of MPNN, HSIC and

related optimization procedures in the following subsections.

3.2.1 Message passing neural network

MPNN is a framework, which takes graphs of arbitrary sizes and

structures as inputs, to learn their representation vectors at different

levels (i.e. nodes, subgraphs and the whole graph) in a supervised

manner (Gilmer et al., 2017). A key advantage is that MPNN allows

to learn features specific to the given task from the given data.

Below, we explain the procedure of MPNN.

First let G be an undirected graph, and v and vw be a node

(atom in molecules) and an edge (bond in molecules), respectively.

Each node v is assigned with state vectors at different levels, where

each level represents a substructure (or subgraph) rooted at the cor-

responding node, denoted by hr
v, where r shows a level. We can com-

pute state vector hr
v as well as message mr

v in a hierarchical manner,

by using the following two functions: message passing (1) and

update (2):

mrþ1
v ¼

X
w2NðvÞ

Hr
eðvwÞh

r
w; (1)

hrþ1
v ¼ gðhr

v þmrþ1
v Þ; (2)

where NðvÞ denotes the set of neighbors of node v in graph G; e(v,

w) indicates the type of edge between two nodes v and w (this edge

type is like a single, double, triple or aromatic bond); Hr
eðvwÞ is a

(square) weight matrix to be learned, specific to the edge type e(vw)

at the rth level; g is a nonlinear activation function (e.g. ReLU or

sigmoid).

Intuitively, the message passing function (1) on node v plays the

role of collecting information from the neighbors of node v and up-

date function (2) on node v is to update the state of node v based on

the collected information and the former state of node v. Thus, by

applying two functions (1) and (2) multiple times, the updated fea-

tures at node v (e.g. hrþ1
v ) can be used to represent a certain number

of substructures with the root of node v. Then, the values for these

series of substructures can be used to generate a vector at node v

with different levels (sizes) of substructures. Figure 3 shows a sche-

matic and illustrative picture of this procedure [Fig. 3 is from

Nguyen et al. (2017)].

After obtaining the state vectors of substructures rooted at node

v, i.e. hr
v, we have the readout phase to combine all vectors at differ-

ent levels into a single representation vector of the whole molecule

(namely, NFPs). Figure 4 shows a schematic picture of summing up

the state vectors at different levels. As in Duvenaud et al. (2015), we

adopt the softmax operation on the states and then perform linear

projections (parameterized by different weight matrices Wr) and fi-

nally sum them up to obtain a single vector over different levels

which represents the whole graph. In short, the molecular vector for

the entire molecule can be written as following:X
r

X
v

softmaxðWrh
r
vÞ: (3)

We note that operations are all differentiable with respect to param-

eters, which makes learning the parameters possible, given an ob-

jective function, by a stochastic or minibatch gradient descent

algorithm. Algorithm 1 shows a pseudocode of the procedure of

repeating the message passing and update functions.

3.2.2 HSIC-based objective function

We estimate parameters of MPNN by maximizing the correlation

(dependency) between given spectra and molecular vectors. A lot of

measures can be used to evaluate and estimate the correlation, while

we use HSIC due to its theoretically sound properties. More
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importantly, estimation of HSIC is based on kernel calculation,

which can effectively deal with the uncertainty of peaks in spectra

caused by measurement errors.

Formally, we are given dataset D ¼ ðX ;YÞ ¼ fðxi; yiÞg
n
i¼1, where

xi; yi are spectrum and molecular structure, respectively, of the ith

metabolite. First, for the spectra, i.e. x, we consider kernels which

combine spectra with FTs, namely kðxi;xjÞ. We describe the detail

of the kernels for spectra in Section 3.4. Then, given the kernel over

X is fixed, the goal is to learn the function / : Y7!F d from D such

that the correlation between the input and output is maximized. The

/ðyÞ is the output of MPNN (or molecular vectors) which belongs

to space F d. The linear kernel function induced by this space can be

written as follows:

lðyi; yjÞ ¼ h/ðyiÞ;/ðyjÞi (4)

To evaluate the correlation between spectra and molecular vec-

tors (output of MPNN), we use an unbiased empirical estimate of

HSIC (Gretton et al., 2005), which can be given as follows:

uHSICðX ;YÞ ¼ 1

nðn� 3Þ ½traceð �Kn
�Ln Þ þ

1>n
�Kn 1n1>n

�Ln 1n

ðn� 1Þðn� 2Þ
� 2

n� 2
1>n

�Kn
�Ln 1n�;

(5)

where �Kn ¼ Kn � diagðKnÞ denotes the kernel matrix for the set of n

spectra X with diagonal elements set to zero; 1n is a vector of 1 s of

n dimensions. Likewise �Ln ¼ Ln � diagðLnÞ, where Ln is the kernel

matrix of n molecular vectors output by MPNN. By arranging terms

in (5), we can rewrite (5) as the objective function to learn parame-

ters as follows:

uHSICðX ;YÞ ¼ traceðSn
�Ln Þ (6)

Fig. 3. Message passing and update functions are used to represent rooted substructures in a hierarchical manner. At the first level (left-most graph), each node

is represented by feature vector, with only information of the node itself. We note that by repeatedly applying message passing and update functions (from left to

right), more neighboring information are incorporated. For example, the updated feature (second level) has information on nodes 3 and 5, and then third level

has that on nodes 2 to 5. Finally, the whole graph is covered

Fig. 4. Representation vectors of substructures, which are rooted at nodes,

are computed from the input graph by the message passing and update func-

tions. These functions contribute to computing the molecular representation

vector of the whole molecule

Algorithm 1. Message Passing Neural Network (MPNN).

1: Inputs:

minibatch of molecular structures Yb ¼ fyig
B
i¼1, radius R

weight matrices of edges: H1
1;H

1
2; . . . ;HR

4 ,

weight matrices of readout function: W1, W2,. . ., WR

2: Outputs:

molecular vectors /ðYbÞ
3: for i 1 to B do

4: for each atom v in yi do

5: hv  initial hidden rep. vector of v " atom feature

6: end for

7: /i  0d " Initialize each molecular vector with a

zero vector

8: for r 1 to R do

9: for each node v in yi do

10: mrþ1
v ¼

P
w2NðvÞH

r
vwhr

w " message function

11: hrþ1
v ¼ gðhr

v þmrþ1
v Þ " update function

12: /i ¼ /i þ softmaxðWrþ1hrþ1
v Þ " readout function

13: end for

14: end for

15: end for

16: /ðYbÞ ¼ ½/1;/2; . . . ;/B�

i168 D.H.Nguyen et al.



where

Sn ¼
1

nðn� 3Þ
�Kn þ

1n1>n
�Kn 1n1>n

ðn� 1Þðn� 2Þ �
2

n� 2
1n1>n

�Kn

" #
(7)

However, directly optimizing (6) is prohibitively expensive in

computation, particularly for large-scale data, since the complexity

reaches O(n2), both in space and time. In order to overcome this

limitation, following Zhang et al. (2018), we disjointly divide sam-

ples ðX ;YÞ into n/B blocks with the size of B, ffðxðbÞi ; y
ðbÞ
i Þg

B
i¼1g

n=B
b¼1

and then apply HSIC on each block independently. An empirical es-

timate of the unbiased block HSIC can be defined by:

ubHSICðX ;YÞ ¼ 1

n=B

Xn=B
b¼1

traceðSb
�LbÞ; (8)

where Sb can be defined by a similar manner to (7), and �Lb is the

kernel matrix for the bth block.

Furthermore, in order to avoid the effect by biased partition of

the dataset, following Yamada et al. (2018), we repeat shuffling

dataset T times, compute ubHSIC on each permutation and take the

average over them. HSIC by this procedure is known as bagging

block HSIC, which can be written as follows:

ubHSICðX ;YÞ ¼ 1

T

XT

t¼1

1

n=B

Xn=B
b¼1

traceðSt;b
�Lt;bÞ; (9)

We use (9) as objective function J to learn parameters.

3.2.3 Optimization algorithm

An advantage of objective function (9) is that we can use the gradient

descent (minibatch gradient descent) for estimating parameters of

MPNN. We here explain details on how to conduct the minibatch gra-

dient descent procedure for the HSIC-based loss, which has three steps.

Step 1: Feed forward and loss calculation.

For samples of size n, at each iteration, we perform random per-

mutation and then split all samples into batches, where the size of

each batch is B. Batches are sequentially fed into MPNN. The out-

put of MPNN for the bth batch at the tth iteration is denoted by

/ðYt;bÞ ¼ ð/ðyt;b
1 Þ;/ðy

t;b
2 Þ; . . . /ðyt;b

B ÞÞ. Then using these outputs, the

objective function on the whole samples can be calculated as in (9).

Step 2: Gradient calculation of the loss layer.

As we can compute the loss directly with the output of MPNN

(i.e. /ðYt;bÞ), we need to compute the gradient of J with respect to

/ðYt;bÞ. Suppose that the output of MPNN is already normalized,

i.e. /ðyÞ>/ðyÞ ¼ 1 for all y 2 Y, the gradient can be obtained by the

following:

@J

@/ðYt;bÞ
¼ B

Tn
St;b/ðYt;bÞ (10)

Step 3: Gradient calculation of the MPN and weight update.

Having calculated the gradient of J, i.e. (10), the next step is to com-

pute the gradient of /ðYt;bÞ with respect to model parameters h, name-

ly
@/ðYt;bÞ
@h , to update the whole parameters for each batch at each step.

Algorithm 2 is a pseudocode of the entire algorithm of learning

parameters of MPNN.

3.3 Subtask 2: learning a mapping from spectra to

molecular vectors by IOKR
For Subtask 2, we use IOKR. That is, we learn a mapping from spectra

to molecular vectors generated in Subtask 1 by using IOKR. Again, we

explain two technical reasons why we use IOKR for this mapping

below: (i) IOKR allows to incorporate the structures behind outputs,

such as feature interactions in molecular vectors, into the learning model,

by which the prediction accuracy can be improved. (ii) Furthermore, all

features in molecular vectors are predicted simultaneously, which is not

like separate tasks in prediction. This leads to faster computation.

We now present the technical detail of IOKR below, which has

two consecutive steps.

3.3.1 Step 1: Learning spectra-vectors mapping

Once parameters, i.e. function /, are learned, we convert the struc-

tures of metabolites into their molecular vectors to obtain a new set

of pairs, fðxi;/ðyiÞÞg
n
i¼1. Now the goal is to find the optimal func-

tion h : X ! F d by minimizing the following objective function:

ĥ ¼ argmin
h2H

Xn

i¼1

jjhðxiÞ � /ðyiÞjj
2
F d
þ kjjhjj2H; (11)

where k (> 0) is a regularization parameter to prevent overfitting

and H is an approximate functional space that contains h; F d is a

space of molecular vectors of dimension d.

By using the representer theorem in Micchelli and Pontil (2005),

optimal solution ĥ of (11) can be represented by a linear combin-

ation of vector-valued kernels on training set X :

ĥðxiÞ ¼
Xn

i¼1

Knðxi;xjÞcj; (12)

where ciði ¼ 1; . . . ; nÞ are vectors in F d; Kn is an operator-valued

kernel, defined on spectra X , satisfying certain constraints (see

Micchelli and Pontil, 2005). As dimensionality d of space F d is fi-

nite, the kernel is a matrix with the size of d�d.

By replacing ĥðxiÞ in (11) with (12), ciði ¼ 1; . . . ;nÞ can be esti-

mated in the following:

vecðCnÞ ¼ ðkInd þKnÞ�1vecð/ðYnÞÞ; (13)

where Cn ¼ ðc1; c2; . . . ; cnÞ and /ðYnÞ ¼ ð/ðy1Þ;/ðy2Þ; . . . ;/ðynÞÞ
are both matrices with the size of d�n, and vec(.) is the

Algorithm 2. Learning molecular representation vectors via

HSIC.

1: Inputs:

set D ¼ fðxi; yiÞg
n
i¼1 of spectra-structure pairs,

T: number of iterations, B: size of minibatch

2: Outputs:

h ¼ fH1
1;H

1
2; . . . ;HR

4 ;W1;W2; . . . ;WRg [ fhvjv 2 set of

atomsg
3: for t 1 to T do

4: Dt ¼ ffðxt;b
i ; yt;b

i Þg
B
i¼1g

n=B
b¼1 " shuffled and split

5: for b 1 to B do

6: Yt;b ¼ fyt;b
i g

B
i¼1; Xt;b ¼ fxt;b

i g
B
i¼1

7: Ft;b ¼ /ðYt;bÞ " Call Algorithm 1

8: St;b is calculated from Xt;b by (7)

9: Jt;b ¼ traceðSt;bF>t;bFt;bÞ
10: gradient of loss layer  St;bFt;b

11: Gradh is calculated by chain rule

12: h h� cGradh " Update the whole parameters

13: end for

14: end for
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vectorization of the input matrix, where the output is a vector

obtained by repeatedly stacking each column of the input matrix on

the top of the next column.

3.3.2 Step 2: Candidate retrieval

Given mapping ĥ learned in Step 1, we now turn to the problem of

finding the output metabolite in the database which corresponds to

the query spectrum x. To this end, we search metabolite y in the list

of given candidates Y�, such that the squared distance between /ðyÞ
and ĥðxÞ can be minimized:

f ðxÞ ¼ argmin
y2Y�

jjĥðxÞ � /ðyÞjj2F d
(14)

Considering that the output kernel is normalized and the

operator-valued kernel keeps Knðx;x0Þ ¼ kðx; x0Þ � Id, the optimal

solution of f ðxÞ can be estimated as the following:

f̂ ðxÞ ¼ argmax
y2Y�

lðY; yÞ>ðkIn þ KnÞ�1kðX; xÞ; (15)

where lðY; yÞ ¼
lðy1; yÞ

..

.

lðyn; yÞ

2
64

3
75 and kðX;xÞ ¼

kðx1;xÞ
..
.

kðxn;xÞ

2
64

3
75 are column

vectors.

Practically, the values given by objective function (15) are used as

scores for ranking candidate metabolites in Step 2: candidate retrieval.

3.4 Kernels
ADAPTIVE uses kernels for the input and output.

3.4.1 Kernels for input

A various types of kernels are already defined and used for the input

from MS/MS spectra. These kernels are typically divided into the fol-

lowing two groups: (i) kernels defined for spectra such as PPK (Jebara

et al., 2004) and (ii) kernels defined for FTs (Rasche et al., 2011).

Details on these kernels can be found in Dührkop et al. (2015).

In fact, Dührkop et al. (2015) suggested 24 different input kernels.

ADAPTIVE combines these input kernels into a single kernel through

MKL (Gönen and Alpaydin, 2011). ADAPTIVE uses two options for

MKL: (i) UNIMKL (uniform MKL): assigns the same weights to all

component kernels, and (ii) ALIGNF: uses weights over kernels to

combine. That is, in ALIGNF, weights over component kernels are

optimized (trained) by maximizing the centered kernel alignment be-

tween the combined kernel and the target kernel defined on the mo-

lecular vectors, which generate trained parameters (model).

3.4.2 Kernels for output

After learning parameters (model) to generate the molecular vectors

for structures, we define kernels for output Y by directly computing

kernels on the corresponding molecular vectors. In our experiments,

we consider the following two typical kernels:

• Linear kernel: lðy; y0Þ ¼ /ðyÞ>/ðy0Þ.
• Gaussian kernel: lðy; y0Þ ¼ expð�cjj/ðyÞ � /ðy0Þjj2Þ,

where y and y0 are molecular structures in Y.

4 Experimental results

4.1 Dataset and evaluation measures
We used a benchmark dataset in Brouard et al. (2016) to evaluate

ADAPTIVE and compare with existing methods. The dataset

consists of 4138 MS/MS spectra extracted from the GNPS (Global

Natural Products Social) public spectra library (https://gnps.ucsd.

edu/ProteoSAFe/libraries.jsp).

To compare ADAPTIVE with existing methods, we used the

same setting for all competing methods. Specifically we used 10-fold

CV, and the results are averaged over all 10-folds. The performance

was checked by the top-k accuracies (where k¼1, 10, 20), which is

the ratio of the number of the cases that the true structures are

ranked at lower than or equal to k to the number of all cases. Also

the speed was checked by computation time for prediction, meas-

ured by milliseconds per example (ms/example).

Hyperparameters, such as regularization parameter k and param-

eter c of the output kernel, were chosen by using leave-one-out CV on

each training fold. For prediction in ADAPTIVE, at the retrieval stage,

given test example x, we computed the molecular vectors of x, ĥðxÞ
[see (11)] and those of all candidates /(y) (see Algorithm 1). These can-

didates including the correct molecular structure of test example x

were ranked, according to their distances to ĥðxÞ (from the smallest to

the highest). These ranked candidates were used for computing the

top-k accuracy. Table 1 shows a set of parameter values, which were

used to train MPNN of generating molecular vectors. State vectors of

identical atoms at the lowest (atomic) level were initialized with the

same random vector sampled from the standard normal distribution

and updated during the training stage.

All experiments were performed on a server with 2.7 GHz Intel

Core i5 CPU and 8GB memory. The code was written in Python and

Matlab with the support of the Chainer framework (Tokui et al.,

2015).

4.2 Performance results
4.2.1 Predictive performance

We compared the predictive performances of ADAPTIVE with three

existing methods: FingerID (Heinonen et al., 2012), CSI:FingerID

(Dührkop et al., 2015) and IOKR (Brouard et al., 2016) in terms of

the top-k accuracy (k¼1, 10 and 20). Table 2 shows the top-k accu-

racies of the competing methods with UNIMKL and ALIGNF for

MKL and linear and Gaussian kernels for the output kernel, chang-

ing k from 1 to 20 and also changing the size of fingerprints from

100 to 300 (for ADAPTIVE only). This table first shows that

ADAPTIVE achieved the best performance, being followed by

IOKR, CSI:FingerID and FingerID. For example, ADAPTIVE with

ALIGNF, Gaussian kernel and the fingerprint size of 300 achieved

31.03% for k¼1, while IOKR with ALIGNF and Gaussian kernel

was 29.59% and CSI:FingerID with ALIGNF was 28.84% or

24.82%. That of Finger: ID was only 17.74%. Interestingly, for

k¼1, the performance advantage of ADAPTIVE against IOKR was

rather slight, while k¼10 and 20, ADAPTIVE outperformed IOKR

much more clearly, with the difference of around 3–5% under the

same condition for the two methods.

Table 1. Parameter values used for experiments

Notations Parameter Values

T #epoch 100

B Batchsize 100

R #updates 6

d #dim of molecular vectors 100,200,300

m #dim of atom feature 50

#atom types 12 (C, O, N, P, S, etc.)

#bond types 4 (single, double, triple, acromatic)
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We used one-sided paired t-test to verify if the differences

between ADAPTIVE and IOKR are statistically significant. For ex-

ample, considering the top 10 accuracy with Gaussian kernel and

ALIGNF, the calculated P-value was P¼0.0012. Since it is less than

the significance level of a ¼ 0.01, we can claim the statistical signifi-

cance of the advantage of ADAPTIVE in terms of the top 10 accur-

acy over IOKR under Gaussian kernel and ALIGNF. We conclude

that the performance advantage of ADAPTIVE was confirmed by

checking a larger number of top candidates. Another finding is the

performance difference between linear and Gaussian kernels was

very slight (almost nothing) for ADAPTIVE under the same other

conditions. This is also true with the settings of UNIMKL and

ALIGNF, the performance for them was rather the same. However,

the size of fingerprints strongly affected the performance in the sense

that a larger size of fingerprints achieved a higher performance. In

summary, ADAPTIVE clearly outperformed competing methods

with, for example, for k¼20, the difference of 3–5%, which is very

sizable.

4.2.2 Computation time for prediction

IOKR was already shown to be faster than previous kernel-based

methods in prediction (Brouard et al., 2016). Thus, we consider

only IOKR as a competing method for examining computational ef-

ficiency. Table 3 shows the computation time of ADAPTIVE and

IOKR with linear and Gaussian kernels for prediction. The compu-

tation time was averaged over the 10-fold CV. This table shows that

ADAPTIVE was significantly faster than IOKR. Specifically, under

both linear and Gaussian kernels, ADAPTIVE with the fingerprint

size of 100 was four to seven times faster than IOKR. This is because

molecular vectors by ADAPTIVE are much more precise and adap-

tive to given data than those used in IOKR.

4.3 Case study
To understand the results obtained by ADAPTIVE more, in the

obtained molecular vectors, we examined substructures rooted at

atoms, which activated several example features most. As shown in

Section 3.2.1, each substructure rooted at an atom is represented by a

state vector and contributes to computing the molecular vector of the

whole molecule. Then, given a feature, we can estimate the contribu-

tion of each substructure by simply computing the softmax value from

the corresponding state vector. We use these values of substructures as

scores to rank substructures to activate the given feature.

Figure 5 shows three example features (#2, #39 and #83). For each

feature, we show three substructures with the highest scores (each score

is shown above the substructure). The first row shows three substruc-

tures which activated feature #2 most. Interestingly, we can see that

these substructures share a further smaller, similar group of atoms: O,

P and S (highlighted in blue). Similarly, the second row shows three

substructures sharing a group of atoms: O and N, where these sub-

structures activated feature #39 most. Also the third row shows sub-

structures which activated feature #83, all having atom: Cl. Thus,

Figure 5 shows that each feature of ADAPTIVE is activated by multiple

different substructures sharing some similar properties, which must be

important in data and probably for prediction. In contrast, each feature

in regular molecular fingerprints is activated by only one predefined

substructure. In summary, from this case study, learned features of

ADAPTIVE are more concise and specific to the task of metabolite

identification than regular molecular fingerprints, leading to the advan-

tage of predictive performance and computation time.

5 Discussion and conclusion

Supervised learning for metabolite identification uses fingerprints as

intermediate representation vectors between spectra and metabolites,

while such fixed vectors are too redundant to cover all possible sub-

structures and chemical properties in metabolites, causing limitations

in predictive performance and high computational costs. To overcome

this problem, we have proposed ADAPTIVE, which generates repre-

sentations of metabolites specific to given spectrum-structure pairs.

ADAPTIVE learns a model to generate molecular vectors for metabo-

lites, which is parameterized by a MPNN over given molecular struc-

tures and trained through optimizing the objective function to

maximize the correlation between molecular vectors and corresponding

spectra. Our empirical validation of ADAPTIVE with the benchmark

dataset showed the advantage of ADAPTIVE over existing methods

including IOKR, the current cutting-edge method, both in predictive

performance and computation time for prediction.

A drawback of ADAPTIVE would be interpretability, because

structural information is implicitly encoded in compact vectors in

ADAPTIVE and cannot be made explicit easily. In metabolite identi-

fication, it would be desirable to connect the set of peaks to the

Table 2. Comparison of the top-k accuracy (k¼ 1, 10 and 20) of

FingerID, CSI:FingerID, IOKR and ADAPTIVE

Method Vec.

size

MKL Accuracies (mean/SD %)

Top 1 Top 10 Top 20

FingerID 2765 None 17.74 49.59 58.17

CSI:FingerID

unit

2765 ALIGNF 24.82 60.47 68.20

CSI:FingerID

mod

2765 ALIGNF 28.84 66.07 73.07

Platt

IOKR linear 2765 UNIMKL 30.58/2.23 65.99/2.46 73.53/2.47

ALIGNF 28.54/2.54 65.77/2.39 73.19/3.11

ADAPTIVE 100 UNIMKL 29.42/2.83 70.01/2.79 77.48/2.98

linear ALIGNF 29.19/3.21 69.52/2.89 77.64/3.23

200 UNIMKL 29.57/3.96 69.38/3.05 76.95/2.98

ALIGNF 29.11/3.45 69.53/2.52 77.56/2.43

300 UNIMKL 30.22/3.47 70.48/2.72 78.18/2.67

ALIGNF 30.61/3.23 70.51/2.52 78.23/2.75

IOKR

Gaussian

2765 UNIMKL 30.66/2.34 66.51/2.87 73.94/2.54

ALIGNF 29.59/2.58 66.13/2.09 73.62/1.85

ADAPTIVE 100 UNIMKL 29.47/3.21 70.01/2.83 77.51/2.11

Gaussian ALIGNF 29.37/3.21 69.91/2.64 77.48/2.33

200 UNIMKL 29.44/3.86 69.84/2.78 77.08/2.95

ALIGNF 28.98/3.32 69.65/2.71 77.15/2.74

300 UNIMKL 30.31/3.48 71.10/2.73 78.51/2.65

ALIGNF 31.03/3.40 70.89/2.74 78.52/2.52

Note: The highest value (indicating the most accurate prediction) are in

boldface for each k.

Table 3. Computation time for prediction by ADAPTIVE and IOKR

Method Mol. vec. size prediction time (ms/example)

Linear Gaussian

IOKR 2765 140.22 3352.4

ADAPTIVE 100 20.32 802.6

200 39.88 844.33

300 54.14 1071.8

Note: The smallest values (indicating the fastest) were in boldface for linear

and Gaussian kernels.
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corresponding substructures/chemical properties of metabolites

(Nguyen et al., 2018b). Developing a model with such interpretabil-

ity would be interesting future work.

Funding

D.H.N. has been supported in part by Otsuka Toshimi scholarship and JSPS

KAKENHI [grant number 19J14714]. C.H.N. has been supported in part by

MEXT Kakenhi 18K11434. H.M. has been supported in part by JST ACCEL

[grant number JPMJAC1503], MEXT Kakenhi [grant numbers 16H02868

and 19H04169], FiDiPro by Tekes (currently Business Finland) and AIPSE

program by Academy of Finland.

Conflict of Interest: none declared.

References

Brouard,C. et al. (2016) Fast metabolite identification with input output ker-

nel regression. Bioinformatics, 32, i28–i36.

de Hoffmann,E. and Stroobant,V. (2007). Mass Spectrometry, Principles and

Applications. 3rd edn. John Wiley & Sons, Hoboken, New York.
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