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Introduction: Prognostic scores are important tools in oncology to facilitate clinical
decision-making based on patient characteristics. To date, classic survival analysis
using Cox proportional hazards regression has been employed in the development of
these prognostic scores. With the advance of analytical models, this study aimed to
determine if more complex machine-learning algorithms could outperform classical
survival analysis methods.

Methods: In this benchmarking study, two datasets were used to develop and compare
different prognostic models for overall survival in pan-cancer populations: a nationwide EHR-
derived de-identified database for training and in-sample testing and the OAK (phase III
clinical trial) dataset for out-of-sample testing. A real-world database comprised 136K first-
line treated cancer patients across multiple cancer types and was split into a 90% training
and 10% testing dataset, respectively. The OAK dataset comprised 1,187 patients
diagnosed with non-small cell lung cancer. To assess the effect of the covariate number
on prognostic performance, we formed three feature sets with 27, 44 and 88 covariates. In
terms of methods, we benchmarked ROPRO, a prognostic score based on the Cox model,
against eight complex machine-learning models: regularized Cox, Random Survival Forests
(RSF), Gradient Boosting (GB), DeepSurv (DS), Autoencoder (AE) and Super Learner (SL).
The C-index was used as the performance metric to compare different models.

Results: For in-sample testing on the real-world database the resulting C-index [95% CI]
values for RSF 0.720 [0.716, 0.725], GB 0.722 [0.718, 0.727], DS 0.721 [0.717, 0.726]
and lastly, SL 0.723 [0.718, 0.728] showed significantly better performance as compared
to ROPRO 0.701 [0.696, 0.706]. Similar results were derived across all feature sets.
However, for the out-of-sample validation on OAK, the stronger performance of the more
complex models was not apparent anymore. Consistently, the increase in the number of
prognostic covariates did not lead to an increase in model performance.

Discussion: The stronger performance of the more complex models did not generalize
when applied to an out-of-sample dataset. We hypothesize that future research may
benefit by adding multimodal data to exploit advantages of more complex models.
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INTRODUCTION

With an estimated incidence of 18.1 million new cases and 9.6
million deaths worldwide in 2018, cancer is still one of the
biggest healthcare challenges today (Ferlay et al., 2019). New
paradigms such as cancer immunotherapy have led to an
increase in survival for several hematological (Sant et al.,
2014) and solid tumors (Pulte et al., 2019). Still, drug
development in general, including in oncology, suffers from
a high attrition rate. Most drugs (97%) fail during early
development phases, a process that is both time-consuming
(median duration of phase one clinical is 1.6 years) and costly
(as much as $42,000 per patient) (Fogel, 2018; Wong et al.,
2019). One of the reasons for such failures may be rooted in a
suboptimal enrollment of patients in clinical trials. As a
consequence, patients may dropout early due to adverse
events, lack of tolerability and/or lack of efficacy which
might lead to an early failure of potentially effective drugs
(Fogel, 2018). In this context, an accurate characterization of
the patients’ recovery (or response to medications) given their
prognostic factors is key. Currently, the patients’ prognostic
factors are used to determine 1) clinical trial eligibility, 2)
toxicity monitoring and 3) treatment decisions. Furthermore,
prognostic factors allow us to gain a deeper understanding of
disease biology and thus may contribute to the development of
more effective treatments (Bhimani et al., 2019).

To date, several prognostic scores in oncology have been
published, such as the Royal Marsden Hospital Score
(Arkenau et al., 2009), the international prognostic index
(International Non-Hodgkin’s Lymphoma Prognostic Factors
Project, 1993), the IMDC risk model (Ko et al., 2015) or the
Glasgow prognostic score (Kinoshita et al., 2013). Due to prior
lack of access to large-scale patient data, the previous prognostic
scores were significantly limited on the modeling approaches.
Additionally, previous databases also usually contained a small
number of covariates, which typically were cast into a simple
counting scheme (number of covariates above a threshold).

As a major enhancement, the ROPRO was introduced
recently (Becker et al., 2020). The ROPRO is a new pan-
cancer prognostic score developed from more than 125k
patients in the EHR-derived de-identified database which
consists of 27 highly prognostic covariates for overall
survival. This prognostic score is based on the Cox
proportional hazards model (in the following referred to as
Cox model) (Becker et al., 2020), a widely used survival
analysis model. In (Becker et al., 2020), ROPRO showed an
increased prognostic power when compared to the
aforementioned scores and was validated in independent
clinical data. In general, the Cox model cannot model
nonlinearities or interaction effects, unless all of these
effects are explicitly specified (Harrell et al., 1996). While
the ROPRO is a multivariate model it does not include
covariate interactions and possibly could have missed
nonlinearities in the covariates.

To overcome the Cox model’s limitations, recent models such
as the regularized Cox model (Tibshirani 1997; Simon et al.,
2011), random survival forests (Ishwaran et al., 2008), gradient

boosting (Ridgeway 1999) and DeepSurv (Katzman et al., 2018) a
deep neural network-modified version of the Cox model have
been introduced.

Several studies (Chen et al., 2019; Christodoulou et al., 2019;
Desai et al., 2020; Kim et al., 2019; Steele et al., 2018) have been
published that compare the prognostic/predictive performance of
some of these new survival models. Still, there remains the need
for a more systematic and direct comparison. Hence, the objective
of this study is to compare the prediction performance of a set of
models with respect to model complexity and automated
covariate selection. We aimed to address model complexity by
implementing more complex survival models (regularized Cox
(Tibshirani 1997; Simon et al., 2011), Random Survival Forests
(Ishwaran et al., 2008), Gradient Boosting (Ridgeway 1999),
DeepSurv (Katzman et al., 2018), a new autoencoder based
model (Goodfellow et al., 2016) and Super Learner (van der
Laan et al., 2007)) and compared them against the classical model
(ROPRO (Becker et al., 2020)). To address the automated
covariate selection, we investigated whether an increase in the
covariate number, even though not present for all patients, led to
an increase in model performance.

MATERIALS AND METHODS

Datasets
In this study we used two databases: 1) the nationwide Flatiron
Health (FH) electronic health record (EHR)-derived de-identified
database and 2) OAK clinical trial database. During the study
period, the FH database included de-identified patient-level
structured and unstructured data, curated via technology-
enabled abstraction (Birnbaum et al., 2020; Ma et al., 2020)
and includes data from over 280 cancer clinics (∼800 sites of
care); Institutional Review Board approval of the FH study
protocol was obtained prior to study conduct, and included a
waiver of informed consent. The OAK dataset was derived from a

TABLE 1 | Number of patients per cohort in the FH dataset. Includes both train
and test datasets.

Cohort Patient number

Advanced endometrial 1,641
Advanced melanoma 4,332
Advanced non-small-cell lung cancer 38,201
Acute myeloid leukemia 2,232
Bladder cancer 5,363
Chronic lymphocytic leukemia 9,544
Diffuse large B-cell lymphoma 3,969
Breast cancer 655
Follicular cancer 1,958
Gastric cancer 6,212
Head and neck cancer 4,917
Metastatic breast cancer 14,429
Metastatic colorectal cancer 16,788
Metastatic renal cell carcinoma 5,116
Multiple myeloma 7,293
Ovarian cancer 4,407
Pancreatic cancer 6,212
Small-cell lung cancer 4,918
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phase III clinical trial (Rittmeyer et al., 2017) that evaluated the
efficacy and safety of Atezolizumab monotherapy against a
Docetaxel monotherapy in 1,187 patients with locally
advanced or metastatic non-small cell lung cancer (NSCLC)
after the failure of platinum based chemotherapy.

From FH we derived a cohort with 136,719 patients across 18
different primary cancers (Table 1). Themajority of patients were
diagnosed with advanced non-small cell lung cancer
(38,201–26.7%), followed by metastatic colorectal cancer
(16,788–12.1%) and metastatic breast cancer (14,429–10.4%).
We randomly split the samples in the FH dataset into train
(90% - 121,644) and in-sample test (10% - 15,075) sets. In case the
model required a validation dataset (e.g., neural network based
models), the training set was further divided into subsets of 90%
for training and 10% for validation. The OAK study (1,187
patients) was used exclusively for out-of-sample testing.

In terms of covariates used per sample, we created three
feature sets with differing numbers of covariates that could be
used for modeling by the respective method. The first feature set
contained 27 covariates of FH inspired from (Becker et al., 2020)
(Table 2). The second feature set consisted of 44 covariates that
were present in at least 30% of patients in FH, and the third
feature set comprised almost all covariates (88 covariates present
for at least 1% of the FH patients). The 88 and 44 feature sets
included all the covariates of the 44 and 27 feature sets,
respectively (a complete list of the covariates in each set is

available in Supplementary Table S1). The OAK dataset
contained all the covariates used in the 27 covariates feature
set except oxygen saturation in blood. In the 44 and 88 feature sets
it was in addition lacking information on some covariates as
compared to the FH dataset (for a complete list see
Supplementary Table S2).

To prepare the data for methods that require a full data matrix,
all datasets were imputed with random forests by using the R
package missForest (Stekhoven and Bühlmann, 2011). To prevent
leakage of information between train and test sets, the imputation
(random forest) was trained only on the train sets, and then
applied to the FH test set and OAK test set.

Models
One of our objectives in this paper was to determine if more
complex survival models, that capture nonlinearities and feature
dependence, are capable of predicting the patient’s risk better
than the state of the art prognostic scores that are based on the
classical Cox model. We selected the ROPRO (a Cox based
model) as our baseline model and compared it against the
regularized Cox model (Tibshirani 1997), random survival
forest (Ishwaran et al., 2008), gradient boosting (Ridgeway,
1999), DeepSurv (Katzman et al., 2018) and a (to our
knowledge) new autoencoder-based survival model
(Goodfellow et al., 2016). In addition, we extended the super
learner (van der Laan et al., 2007) framework to survival analysis

TABLE 2 | Summary statistics of the datasets.

FH train FH test OAK

Number of patients 121,644 15,075 1,187
Time [months] (median (95% CI)) 19.33 (19.10–19.57) 19.83 (19.33–20.57) 11.43 (10.40–12.67)
Event � death (%) 72,068 (59.2) 8,875 (58.8) 854 (71.9)
Age at baseline [years] (mean (SD)) 66.47 (10.98) 66.47 (11.05) 62.79 (9.57)
History of smoking [yes/no] (mean (SD)) 0.84 (0.37) 0.84 (0.37) 0.83 (0.37)
Group stage (mean (SD)) 3.31 (0.85) 3.31 (0.85) 3.43 (0.89)
ECOG value (mean (SD)) 0.81 (0.80) 0.81 (0.80) 0.64 (0.49)
Neutrophils-lymphocytes ratio (NLR) [%] (mean (SD)) 4.90 (4.86) 4.82 (4.66) 6.59 (6.31)
Body Mass index (BMI) [kg/m2] (mean (SD)) 27.05 (5.96) 27.06 (5.92) 25.17 (4.80)
Number of metastasis sites (mean (SD)) 0.37 (0.79) 0.36 (0.76) 1.46 (0.94)
Gender � male (%) 60,674 (49.9) 7,467 (49.5) 737 (62.1)
Alanine aminotransferase [enzymatic activity/volume] in serum or plasma [U/L] (mean (SD)) 26.44 (29.47) 26.36 (29.24) 21.05 (13.80)
Calcium [mass/volume] in serum or plasma [mg/dL] (mean (SD)) 9.33 (0.63) 9.33 (0.63) 9.40 (0.57)
Bilirubin total [mass/volume] in serum or plasma [mg/dL] (mean (SD)) 0.57 (0.69) 0.56 (0.63) 0.47 (0.51)
Glucose [mass/volume] in serum or plasma [mg/dL] (mean (SD)) 117.58 (34.19) 117.61 (34.35) 114.87 (33.02)
Protein [mass/volume] in serum or plasma [g/L] (mean (SD)) 68.72 (7.16) 68.70 (7.18) 71.66 (6.61)
Urea nitrogen [mass/volume] in serum or plasma [mg/dL] (mean (SD)) 17.87 (9.16) 17.81 (8.99) 26.37 (22.34)
Alkaline phosphatase [enzymatic activity/volume] in serum or plasma [U/L] (mean (SD)) 114.71 (96.77) 114.57 (97.61) 118.84 (81.31)
Hemoglobin [mass/volume] in blood [g/dL] (mean (SD)) 12.06 (1.97) 12.06 (1.96) 12.25 (1.67)
Chloride [moles/volume] in serum or plasma [mmol/L] (mean (SD)) 101.17 (4.39) 101.14 (4.32) 101.18 (3.99)
Eosinophils/100 leukocytes in blood [%] (mean (SD)) 2.54 (2.24) 2.55 (2.20) 2.59 (2.45)
Platelets [#/volume] in blood by automated count [10*9/L] (mean (SD)) 264.80 (108.88) 265.96 (108.73) 281.13 (95.46)
Albumin [mass/volume] in serum or plasma [g/L] (mean (SD)) 37.86 (5.39) 37.88 (5.38) 38.61 (5.70)
Lactate dehydrogenase [enzymatic activity/volume] in serum or plasma [U/L] (mean (SD)) 278.18 (187.27) 276.51 (188.68) 295.28 (181.16)
Lymphocytes/100 leukocytes in blood by automated count [%] (mean (SD)) 21.35 (13.11) 21.37 (13.14) 19.43 (9.43)
Monocytes [#/volume] in blood by automated count [10*9/L] (mean (SD)) 0.68 (0.45) 0.68 (0.43) 0.65 (0.34)
Systolic blood pressure (mean (SD)) 128.58 (19.36) 129.00 (19.19) 123.94 (16.92)
Heart rate (mean (SD)) 83.18 (15.98) 83.25 (16.08) 84.38 (13.86)
Oxygen saturation in arterial blood by pulse oximetry [%] (mean (SD)) 96.32 (2.39) 96.35 (2.35) a

AST/ALT ratio [%] (mean (SD)) 1.25 (0.63) 1.25 (0.63) 1.31 (0.61)

aThis covariate was not available in OAK.
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problems and used it to aggregate the previous models into an
ensemble that combined the predictions of all models, yielding a
new weighted prediction.

Generally speaking, in survival analysis, the response variable
is the time until an event occurs, such as death (Kalbfleisch and
Prentice, 2002). If T represents a non-negative random variable
that represents the time until the event, then the cumulative
distribution function of T is called the survival function S. This
function measures the probability of the event occurring after
time t and is defined as

S(t) � P(T ≥ t), t ≥ 0.
The hazard function h is an alternative representation of the

distribution of T . It represents the instantaneous rate of
occurrence of the event at time t and is defined as

h(t) � lim
dt→ 0

P(t ≤T < t|T ≥ t)
dt

.

The selected models in this paper all follow the underlying
structure, but estimate the hazard function using different
techniques.

Multivariate Cox Model on Main Effects
(ROPRO)
The ROPRO, introduced in (Becker et al., 2020), is a prognostic
score based on the Cox model. The Cox model (Cox, 1972) is a
widely used model in survival analysis that estimates the hazard
function based on a set of given covariates of the population. It
assumes that the hazard function h(t) is composed of two terms: a
baseline hazard h0(t) that does not depend on the covariates and
an exponential risk term er(X) � eβX :

h(t|X) � h0(t) · eβX ,
where X is the covariate vector and β are the model weights. The
risk term integrates the interaction between the covariates and the
hazard of each patient. In the case of the Cox model, the fitting
focuses on the risk r(X) � βX, which is a linear function, using
the following partial likelihood cost function:

log PL(β) � ∑n
i�1

δi⎡⎢⎢⎣r(Xi) − log⎛⎝ ∑
l∈R(Ti)

er(xl)⎞⎠⎤⎥⎥⎦
� ∑n

i�1
δi⎡⎢⎢⎣βXi − log⎛⎝ ∑

l∈R(Ti)
eβXl⎞⎠⎤⎥⎥⎦,

where δi is the censoring indicator. It is 1 if the patient has faced
the event by the end of data collection and 0 otherwise. Naturally,
being a linear function, it cannot implicitly deal with
nonlinearities or interaction effects between the covariates
(Harrell et al., 1996). This is one of the pitfalls of the Cox
model and one of the reasons that motivated the creation of
other more complex models (Ridgeway 1999; Katzman et al.,
2018).

The authors of ROPRO started with a Cox model with 44
covariates and applied backward selection, removing the least

significant covariates, until a total of 27 covariates remained in the
model. The 27 selected covariates are represented in Table 2. In
this work, we used the ROPRO formula as published in (Becker
et al., 2020).

Regularized Cox Model
The regularized Cox is a modification of the Cox proportional
hazards algorithm where a regularization term is added to the
cost function (Tibshirani 1997; Simon et al., 2011). The new
regularized cost function has the form

log PL(β)RC � ∑n
i�1

δi⎡⎢⎢⎣βXi − log⎛⎝ ∑
l∈R(Ti)

eβXl⎞⎠⎤⎥⎥⎦
+λ⎛⎝α∑p

j�1

∣∣∣∣∣βj∣∣∣∣∣ + 1
2
(1 − α)∑p

j�1
β2j⎞⎠.

The regularization term forces a penalization to the model
weights β. The penalization depends on the type of
regularization. The L1 regularization (Lasso) performs
covariate selection by setting some of the β values to 0,
effectively removing them from the model (Tibshirani,
1997). L2 regularization (ridge regression) scales the β
values toward 0 but does not perform covariate selection,
i.e. does not set the β to exactly 0. The elastic net combines
L1 and L2. The parameter α determines which type of
regularization is used, α � 0 is the ridge regression, α � 1 is
Lasso, and values in between are the elastic net. Naturally, for
values of α closer to 0 and 1, elastic net behaves more similar to
ridge regression and Lasso, respectively.

Gradient Boosting
Gradient boosting (GB) is a machine learning algorithm used in
classification and regression problems (Friedman 2001). It builds
the predictive model in an iterative fashion, in each iteration
adding a weak learner that reflects the current residuals. By doing
so, in each iteration the model should fit better to the data and
consequently, reduce the prediction error.

GB can be applied to survival analysis by using the Cox partial
likelihood (Cox 1972) as the cost function to determine the
residuals (Ridgeway 1999). The new GB partial likelihood has
the form

logPL(θ)GB � ∑n
i�1

δi⎡⎢⎢⎣r̂GB(Xi) − log⎛⎝ ∑
l∈R(Ti)

ê
rGB(Xl)⎞⎠⎤⎥⎥⎦.

Notice that the Cox model risk r(X) was substituted by
r̂GB(X), the predicting function fitted by GB. This predicting
function is composed of multiple regression trees. Each of them
fit on the residuals of the model of the previous iteration:

r̂GB(X) � ∑K
k�1

ρk fk(X),

where fk(x) corresponds to the model added in iteration k. As
moremodels are added to the predictive model r̂GB(x), the hazard
function is estimated better (Ridgeway 1999).
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Random Survival Forest
Random survival forests (RSF) is a machine learning method that
fits an ensemble of regression trees, a “forest”, that estimates the
cumulative hazard function (Ishwaran et al., 2008). At each tree
node, a covariate is used to separate the patients into groups. The
RSF selects the split condition that maximizes the difference
between the survival curves of the groups. Each tree is grown until
it is not possible to create a new split that has more than a pre-
specified number of unique events in each node.

DeepSurv
DeepSurv uses a feed-forward neural network to predict the
patient’s hazard h(t|X) (Katzman et al., 2018). It is composed
of multiple fully connected layers that combine the covariates in a
nonlinear way. In the final layer the predicted nonlinear risk
function r̂DS(t|x) is yielded. The loss function used to fit the
model is based on the Cox partial hazard:

log PL(θ)DS � ∑n
i�1

δi⎡⎢⎢⎣r̂DS(t|Xi) − log⎛⎝ ∑
l∈R(Ti)

ê
rDS(t|Xl)⎞⎠⎤⎥⎥⎦ + λ‖ β ‖22.

Autoencoder
Autoencoders (AE) are unsupervized neural networks composed
of two components: 1) an encoder function that transforms the
input X into an latent representation Z and 2) a decoder that
transforms Z to Xreconstructed (Goodfellow et al., 2016). The
autoencoder is trained to minimize the difference between
Xreconstructed and X.

Here we exploit the autoencoder to perform dimensionality
reduction. By setting Z to a lower dimensionality than X the
autoencoder learns a representation that can best reconstruct X.

The autoencoder does not model the hazard function directly.
Therefore, we use a Cox model to estimate the hazard from the
intermediate representation. The new hazard is given by

h(t|Z) � h0(t) · eZβ.

Super Learner
Above we introduced multiple models that are capable of
predicting the hazard function. All these algorithms have
distinct structures, leading to different strengths and
weaknesses in their estimation capability. The Super Learner
(SL) (van der Laan et al., 2007) offers a framework to combine
these models into a single model with the aim of combining the
strengths and mitigating the weaknesses.

The SL was originally proposed to handle classification and
regression problems. In this work we extend it to address time-to-
event data and to use all the models described above.

Consider the dataset Oi � (Xi,Ti, δi) ∼ P0, i � 1, ..., n and
the parameter of interest ψ0(X) which minimizes the cost
function L(O,ψ) such that

ψ0 � arg minψ∈ΨE0L(O,ψ)
In this particular problem, ψ0(X) is a function that estimates

the risk of a patient given its covariates. The SL framework uses

V-fold cross-validation to split the datasetO into V distinct train-
validation sets denoted by P(v) and V(v), respectively.

We learn a hazard function ĥk,v from a given model k (e.g.
DeepSurv) and a given training set P(v), and further test that
model on the validation set V(v) to acquire predictions for
each patient in V(v). Repeating this process for all v-s, the
predicted hazards of model k are concatenated to form ĥk.
This process is repeated for all k � {1, ..., 11} models in our
study. See Table 3 for the list of 11 models used to inform the
SL model.

The next step in SL is to combine the predicted hazards of all k
models to learn a new hazard function. This is done by using a
linear model of the form

ĥSL(t|x) � ∑K
k�1

αk · ĥk(t|X),

where ĥSL is the predicted SL hazard and αk are the weights of the
linear model. In the original SL, the weights αk can be modeled in
a variety of ways, e.g. Least Squares (van der Laan et al., 2007) or
area under the curve (AUC) (LeDell et al., 2016). Our approach is
based on (LeDell et al., 2016) but instead of using the AUC, we use
the C-index (Harrell et al., 1982) as the objective function and
maximize it using the L-BFGS-B algorithm (Byrd et al., 1995).

Hyperparameter Tuning
As listed in Table 3, the more complex models require
hyperparameters that adjust their complexity. Depending on
the model, these hyperparameters were tuned by either cross-
validation (for the regularized Cox models) or grid-search (for
GB, RSF, DS and AE) on the FH training set.

Model Testing
All models were fit using the training set and tested using the
two distinct testing sets: FH in-sample test and OAK out-of-
sample test set. The ROPROmodel was taken pre-trained from
the formula published in (Becker et al., 2020) and was not
trained again, however it was tested equally against our
test sets.

To assess the discrimination performance of the models, we
used Harrell’s C-index (C-index) (Harrell et al., 1982). The
C-index is a generalization of the AUC. It is a goodness of fit
measure for survival models and measures the concordance
between the risk/hazard values given by the model and the
time-to-event. More specifically, it measures if patients that
died earlier in time have a higher risk score than patients that
died later. The statistic is defined from 0 to 1. Where 1 means
perfect concordance, 0.5 means that the model is equivalent to
a random guess and 0 represents perfect discordance. The
C-index 95% confidence intervals (CI) were determined by
bootstrapping. We use the confidence intervals to determine if
one model has a significantly higher C-index than the other. In
essence, this process is a comparison of two means, where the
null hypothesis is H0 : Cindex1 − Cindex2 � 0.

To further evaluate the discrimination of the models we
used Uno’s C-index (Uno et al., 2011). Uno’s C-index is an
extension of Harrell’s C-index that incorporates the censoring
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distribution into the score. This modification should make the
C-index independent on the study’s censoring distribution (Uno
et al., 2011).

Sensitivity Analyses
Given the differences between the FH test set and OAK, we
performed additional analyses to validate our results. The

additional analyses include: 1) PCA analysis (Hastie et al.,
2009) between FH test and OAK to verify differences
between the datasets; 2) create an additional FH test set
without the covariates not available in OAK and impute
them to check the effect of these covariates. Further, 3)
stratify the FH test set by cancer entity to check if C-index
varies with cancer entity, and 4) permute FH train and test sets.

TABLE 3 | Models used in the SL and their hyperparameters.

Model Hyperparameters Observations

ROPRO —

RSF N � 500
Regularized cox α � 0 Lasso

α � 0.25 Elastic net
α � 0.5
α � 0.75
α � 1 Ridge regression

GB N � 100; L � 1
N � 100; L � 2
N � 500; L � 1
N � 500; L � 2
N � 1,000; L � 1
N � 1,000; L � 2

DS Activation � tanh All DS models had 1 hidden layer and 90 neurons in that hidden layer
Activation � SELU

AE N � 1; p � 8 All AE models had RELU and sigmoid activation functions in the encoder and decoder parts
N � 1; p � 14
N � 3; p � 8
N � 3; p � 14

In the GB models, “N” and “L” correspond to the number of trees and their length, respectively. The “Activation” in the DS models corresponds to activation function used in the
perceptrons, “N” corresponds to the number of hidden layers and “L” to the number of hidden neurons per layer. In the AEmodels, “N” corresponds to the number of layers of the encoder.
“p” corresponds to the encoded variable size.

FIGURE 1 | Diagram of the analysis.
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Implementation
All the analyses were done using R 3.5.1 (R Core Team 2018) and
Python 3.6. The Cox model and C-index were used as
implemented in the survival library (Therneau, 2015). The GB,
RSF, and SL were used as implemented in the R libraries, gbm
(Greenwell et al., 2019), RandomForestSRC (Ishwaran et al.,
2008) and SuperLearner (Polley et al., 2019), respectively.
DeepSurv was implemented in the Python DeepSurv package
(Katzman et al., 2018). The random forest imputation was
implemented in the missForest R library (Stekhoven and
Bühlmann, 2011). The full analysis diagram is illustrated in
Figure 1.

We modified the SuperLearner, DeepSurv and missForest
packages to add new features used in this work. In the
SuperLearner package, we added the functionality to process
survival analysis problems. More specifically, we added new
models (ROPRO, regularized Cox, RSF, GB, RF and AE) and
a new fitting algorithm based on the C-index. In DeepSurv we
added some functions to assess the quality of fit of the models.
Finally, in the missForest package we added the functionality to
save the fitted model and use it to impute new data, e.g. test sets
that have to remain independent to the training. The modified
packages and analysis files are available in the Supplementary
materials.

RESULTS

A total of three datasets were used in this analysis, FH train, FH
test and OAK (see Methods) including cancer cohorts with a
median follow-up time of 19.33 months (95% confidence interval
(CI) 19.10–19.57), 19.83 (95% CI 19.33–20.57) and 11.43 (95% CI
10.40–12.67), respectively (Table 2; Figure 2).

Table 2 illustrates the summary statistics for the covariates in
the 27 covariate feature set. The summary statistics for the 44 and
88 covariate feature sets are available Supplementary Table S2.

Individual Model Development
We benchmarked the ROPRO against a set of eight more complex
models - regularized cox with lasso, ridge regression and elastic
net, GB, RSF, AE, DS and SL - across a total of three different

feature sets, each with 27, 44 and 88 covariates yielding a total of
27 models.

After hyperparameter tuning (see Supplementary Table S3
for a list of tested hyperparameters), the optimal shrinkage in the
regularized cox resulted in the selection by lasso and elastic net of
23, 27 and 49 covariates in the 27, 44 and 88 covariate models,
respectively. With grid search, we determined that the optimal α
value for the elastic net model was close to 1. To avoid having two
lasso models, we fixed α � 0.5. The optimal number of weak
learners in GB and trees in RSF was 1,000. In DS, the optimal
number of hidden layers and number of neurons in the hidden
layer was (1 and 120), (1 and 150) and (1 and 180) for the 27, 44
and 88 covariate feature sets, respectively. An increase in hidden
layer size did not lead to an improvement in DS performance,
resulting in shallow models. The optimal activation function was
the SELU for all feature sets. Lastly, in AE the C-index values for
all the hyperparameter combinations are depicted in Figure 3.
Overall, a higher bottleneck size resulted in a higher C-index
value. The optimal bottleneck sizes were 20, 36 and 84 for the 27,
44 and 88 covariate sets. In terms of total number of layers, the
optimal values were five layers for the 27 and 44 covariate sets and
three for the 88 covariate set). We used RELU and sigmoid
activation functions in the encoder and decoder parts,
respectively.

K-fold cross-validation was used in the SL to calculate the
contribution of each model (listed in Table 3) to the final score.
Results show that independent from the feature set (27, 44 or 88
covariates) the only models that contributed to the SL score were
the ROPRO, RSF and two versions of DS, one with tanh and
another with SELU activation functions. Each model contributed
to the SL distinctively (see Figure 4 for the models’ risk
distributions). The models’ hazard value distributions varied
for example, in center RSF (median 0.40–0.64) vs. ROPRO
(median ‒0.161 to ‒0.0678), and in spread ROPRO (IQR
0.05–0.13) vs. DS with tanh (IQR 0.399–0.573). Additionally,
the predicted risk values were stratified by the time-to-event of
the patients (see Figure 5). In the 27 and 44 covariate models, RSF
had the most sizable contribution for lower time-to-event (TTE).
As the TTE increased, the contribution of RSF subsided while the
contribution of both DS models increased. As a result, for later
TTE, the model with the highest contribution changed from RSF

FIGURE 2 | Kaplan Meier curves of the datasets. (A) - Kaplan Meier curves for the FH train and test datasets. (B) - Kaplan Meier curve for the OAK test set.
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to DS with tanh. Conversely, in the 88 covariate feature set, there
was not a clear separation of the most contributive models.

Model Performance
The C-index and corresponding 95% confidence intervals (CI) for
the FH test dataset and the OAK test dataset are displayed in
Figure 6 and Table 4, and Table 5. Figure 6 contains the C-index
distributions for all models, datasets (FH test and OAK test) and
feature sets (27, 44 and 88 covariates). Table 4 offers a more
granular view of the C-index distributions from Figure 6, with
information on each models’ C-index and 95% CI. Furthermore,
Table 5 includes the Uno C-index and corresponding 95% CI.

FH Test Set
As we observed similar patterns across all feature sets, we report
here only results corresponding to the 44 covariate feature set. In
the FH test dataset, the ROPRO achieved C-index values [95%
CI] of 0.701 [0.696, 0.706]. In comparison, more complex models
obtained slightly higher C-index values than ROPRO. Across all

ML-derived models, the AE consistently yielded the lowest
C-index values (0.708 [0.703, 0.713]), followed by lasso and
elastic net (C-index 0.708 [0.704, 0.714]) and ridge regression
(C-index 0.709 [0.704, 0.714]). The model performances
improved using RSF (c-index 0.720 [0.716, 0.725]), GB
(C-index 0.722 [0.718, 0.727]), DS (C-index 0.721 [0.717,
0.726]) and lastly, SL (C-index 0.723 [0.718, 0.728]). However,
given their 95% CI only GB, RSF, DS and SL obtained significant
increases in C-index for all feature sets when compared to
ROPRO. As an exception, in the 88 covariates feature set, the
regularized Cox models (C-index [95%CI] lasso and elastic net
0.711 [0.706, 0.716]; ridge regression 0.711 [0.706, 0.715]) also
had significant increases in C-index when compared with
ROPRO (C-index [95% CI] 0.698 [0.693, 0.702]). The
increases in C-index for the remaining models were not
significantly different.

All Uno C-index values were lower than the respective
(Harrell) C-index. Regardless, the models that obtained
significant (Harrell) C-index increases also had significant Uno

FIGURE 3 | AEmodel C-index values for different bottleneck layer sizes and total layer sizes. All C-index values are referent to the validation set derived from FH train
(see Datasets section for more details). Figures A, B and C refer to the 27, 44 and 88 covariate models, respectively.
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C-index increases. For the 44 covariate feature set, the GB (Uno
C-index [95% CI] 0.697 [0.691, 0.701]), RSF (Uno C-index [95%
CI] 0.693 [0.688, 0.698]), DS (Uno C-index [95% CI] 0.693
[0.688, 0.699]) and SL (Uno C-index [95% CI] 0.695 [0.690,
0.701]) obtained significantly higher Uno C-index values than
ROPRO (Uno C-index [95% CI] 0.672 [0.667, 0.676]).
Additionally, in the 88 covariates feature set, the regularized
Cox models also had significantly higher Uno C-index than
ROPRO.

OAK Test
In OAKwe observed similar patterns for the different feature sets.
For easier reporting the following results similarly correspond to
the 44 covariate feature set. The ROPRO resulted in a C-index
value [95% CI] of 0.670 [0.657, 0.685]. In comparison, the model
that yielded the highest C-index was SL 0.677 [0.662, 0.695].
Nevertheless, we observed that, contrary to the results in the FH
test set, the confidence intervals between ROPRO and SL (and all

the remaining models) overlapped, hence no statistically
significant difference was found. Likewise, in the OAK dataset
no model obtained a significantly higher Uno C-index than the
ROPRO.

FH Test Set–Sensitivity Analyses
The PCA analysis with the first two principal components is
shown in the Supplementary Figure S1. The C-index and 95%CI
are displayed in Supplementary Tables S4–7 for FH test set
without the covariates unavailable in OAK, FH test stratified by
cancer entity, and FH train and test permutations, respectively.

The PCA analysis illustrated that the FH test distribution
exhibited a higher variance than OAK, with the FH test set having
a variance of (3.704, 2.137) while the OAK population exhibited a
variance of (2.690, 1.421).

There were only minor changes in the C-index values between
the original FH test set and the FH test set without the covariates
not present in OAK. Ultimately, the same models, GB, RSF, DS,

FIGURE 4 |Histogram of the risk predictions for eachmodel in the SL in the FH training dataset. The risk values correspond to the risk yielded by the original model,
i.e., by ROPRO or DS. The risk was multiplied by the αk value of the model. The αk value scales the risks of each of the models in the SL. In the risk of the SL, only four
models are represented, i.e. are not scaled down to zero. Those four models are both DS models, ROPRO and RSF.
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and SL, obtained significantly higher C-index values that ROPRO
for all feature sets. Furthermore, in the 88 covariate feature set, the
regularized Cox models obtained significant increases in C-index.

The C-index values showed a considerable variation between
cancer entities. Most cancer entities had lower C-index values
than the complete FH test (that had C-index values between 0.698
and 0.723). Only diffuse large B-cell lymphoma (C-index between
0.715 and 0.741), and follicular cancer (C-index between 0.771
and 0.788) had C-index values higher than the whole FH test
dataset. Acute myeloid leukemia, breast cancer, gastric cancer,
head and neck cancer, andmetastatic breast cancer had the lowest
discriminative power with C-index values close to 0.650.
Advanced non-small cell lung cancer, the largest cohort in the
FH test set, had C-index values between 0.673 and 0.687. In all
cohort/feature set combinations, none of the more complex
models obtained a significant increase in C-index against the
ROPRO.

We reshuffled the original FH dataset twice, generating two
extra sets of FH train and test. There were only minor changes in

C-index between the results of the primary analysis (in the section
above) and the results from these two extra sets. More specifically,
in the FH test, GB (C-index [95% CI] 0.724 [0.718, 0.729]; 0.723
[0.718, 0.728]), RSF (C-index [95% CI] 0.722 [0.717, 0.728]; 0.720
[0.715, 0.725]), DS (C-index [95% CI] 0.724 [0.718, 0.730]; 0.723
[0.718, 0.728]), and SL (C-index [95% CI] 0.725 [0.720, 0.731];
0.724 [0.719, 0.729]) obtained significant C-index increases when
compared with ROPRO (C-index [95% CI] 0.701 [0.695, 0.707];
0.701 [0.695, 0.707]). As above, the C-index values refer to the 44
covariate feature set although we observed similar patterns for all
feature sets. We presented for each model two C-index and 95%
CI, each of which refers to one set of new FH train and test sets. In
the 88 covariate feature set of the two new sets of FH train and
test, the regularized Cox models also obtained significant
increases in C-index. The only deviation in C-index
significance observed compared to the primary analysis was
that the AE model had a significant increase in C-index
against ROPRO in the 88 covariate feature set of one of the
sensitivity analyses.

FIGURE 5 | Individual model contribution to the SL risk by time-to-event in the FH training set. To create this visualization, the patients were split into groups based
on their time to event (TTE). Each of these groups is represented in the x-axis. Then, for each group the median risk value per model was calculated and is displayed on
the y-axis. The contribution changes over time because the models correctly assign higher risk for lower times-to-event and lower risk for later times-to-event.
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DISCUSSION

We conducted an extensive benchmarking study to investigate:
1) whether the predictive power of prognostic scores in
oncology could be improved by replacing the Cox model
with more complex machine learning models and 2)
whether increasing the number of covariates from
27 model-selected to 44 and 88 would increase the models’
performance. To that end, we performed a comprehensive
head-to-head comparison between a classic Cox model-based
approach (ROPRO) and more complex ML-based survival
models including two novel methods employing
autoencoder and super learner algorithms. Overall, our

analysis suggests that neither increasing the number of
covariates nor using complex machine learning models
increases the performance of prognostic scores in oncology.
In part, this might be explained by the absence in baseline
clinical data (like blood work data and patient/disease
characteristics) of complex covariate interactions that would
have otherwise been learned by the more complex models. We
hypothesize that the addition of rich patient/disease
information in the form of imaging, genomics or
longitudinal data could be the key to improving prognostic
scores in cancer. These more complex data types, apart from
adding prognostic factors to the models, should also contain
information that are not easily extractable by classical methods

FIGURE 6 | Violin plot of the C-index in the FH test dataset (top) and OAK III (bottom). The C-index results for the 27, 44 and 88 covariate sets are illustrated in
Figure (A)–(C), respectively. The plot displays the distribution and a box-plot of the C-index. Bootstrap was used to determine the distribution of the C-index.
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(like the Cox model) which should lead to an increase in
performance of the more complex models and therefore better
prognostic performance.

To our knowledge, this is to date the largest benchmarking
study of prognostic scores in oncology both in terms of number of
models and patients. Previous analyses that compared the
performance of simple and complex machine learning models
have yielded rather inconsistent results. Some of these studies
have demonstrated improvements in using complex models
against the classic Cox model. For instance, a recent study
challenged the Cox model against random survival forests
(RSF) and DeepSurv (DS) to derive prognostic scores among
patients with oral cancer (Kim et al., 2019). The DS was overall
the model with the highest C-index. Yet, the study was limited by
the low number of 255 patients and nine covariates. A separate
study applied the Cox model, RSF and regularized cox to a larger
dataset comprising a population of 80,000 patients with
cardiovascular disease (Steele et al., 2018). The authors
concluded that the elastic net model (C-index 0.801) using 600
covariates performed better than the Cox model (C-index 0.793)
using 27 covariates, but the overall improvement was only
moderate. In comparison, three other studies did not find any
noticeable improvements by employing machine learning models
(Chen et al., 2019; Christodoulou et al., 2019; Desai et al., 2020).
However, these studies compared the use of logistic regression

with a binary endpoint against machine learning methods instead
of the Cox model with a time-to-event endpoint. Our results
showed that some of the more complex models, that could model
covariate interactions and non-linear effects, did obtain significantly
higher C-index values when compared to ROPRO. Although the
C-index improvement size was still only moderate. Hence, the main
results of the here presented study may contextualize the findings
from (Chen et al., 2019; Christodoulou et al., 2019; Desai et al., 2020)
to a survival analysis framework concluding that more complex
machine learning models may not lead to a significant increase in
performance over the Cox model.

Additionally, some of these studies also analyzed the effect of
the covariate number in the prognostic score performance. The
study by Kim et al. (Kim et al., 2019) analyzed models employing
a range of five–nine covariates and found that the model
performance increased with an increase in the covariate
number. The same increase in performance was also observed
when the performance of established prognostic scores (Arkenau
et al., 2009; International Non-Hodgkin’s Lymphoma Prognostic
Factors Project 1993; Ko et al., 2015; Kinoshita et al., 2013), which
used a maximum of six covariates, was compared to the more
recently developed ROPRO (Becker et al., 2020) that reported a
number of 27 highly prognostic and independent covariates.
Therefore, there is evidence that increasing the covariate size
from small (less than 10 covariates) to a larger, but still moderate,

TABLE 4 | C-index and corresponding 95% confidence interval (CI) for all the models (ROPRO, regularized Cox models, Gradient Boosting (GB), Random Survival Forests
(RSF), autoencoder (AE), DeepSurv (DS) and Super Learner (SL)) and covariate sets. Significant increases in C-index are in bold. Please refer to Individual Model
Development section for the complete model hyperparameters.

#Covariates Model FH test OAK

C-index 95% CI C-index 95% CI

27 covariates ROPROa 0.702 [0.698, 0.707] 0.668 [0.652, 0.683]
Cox + elastic net 0.709 [0.705, 0.714] 0.674 [0.657, 0.689]
Cox + lasso 0.709 [0.705, 0.714] 0.674 [0.657, 0.690]
Cox + ridge regression 0.710 [0.706, 0.715] 0.675 [0.659, 0.690]
GB 0.721 [0.716, 0.725] 0.660 [0.644, 0.676]
RSF 0.721 [0.716, 0.726] 0.665 [0.649, 0.680]
AE 0.705 [0.700, 0.710] 0.664 [0.648, 0.680]
DS 0.721 [0.716, 0.725] 0.673 [0.658, 0.689]
SL 0.721 [0.717, 0.726] 0.676 [0.659, 0.691]

44 covariates ROPROa 0.701 [0.696, 0.706] 0.670 [0.657, 0.685]
Cox + elastic net 0.708 [0.704, 0.714] 0.674 [0.658, 0.689]
Cox + lasso 0.708 [0.704, 0.714] 0.674 [0.657, 0.687]
Cox + ridge regression 0.709 [0.704, 0.714] 0.677 [0.661, 0.692]
GB 0.722 [0.718, 0.727] 0.665 [0.650, 0.681]
RSF 0.720 [0.716, 0.725] 0.670 [0.654, 0.686]
AE 0.708 [0.703, 0.713] 0.660 [0.645, 0.676]
DS 0.721 [0.717, 0.726] 0.674 [0.658, 0.689]
SL 0.723 [0.718, 0.728] 0.677 [0.662, 0.695]

88 covariates ROPROa 0.698 [0.693, 0.702] 0.671 [0.656, 0.686]
Cox + elastic net 0.711 [0.706, 0.716] 0.669 [0.653, 0.684]
Cox + lasso 0.711 [0.706, 0.716] 0.668 [0.653, 0.683]
Cox + ridge regression 0.711 [0.706, 0.715] 0.669 [0.652, 0.685]
GB 0.717 [0.712, 0.722] 0.671 [0.656, 0.686]
RSF 0.714 [0.709, 0.719] 0.677 [0.660, 0.692]
AE 0.703 [0.698, 0.707] 0.662 [0.646, 0.678]
DS 0.720 [0.716, 0.725] 0.673 [0.656, 0.688]
SL 0.721 [0.717, 0.726] 0.678 [0.662, 0.692]

aThe ROPRO was applied to all feature sets (27, 44 and 88 covariates). In all feature sets the ROPRO only uses 27 covariates (it was not refit) but since each dataset was separately
imputed, the C-index value changes between feature sets.
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number (30 covariates) leads to an increase in the prognostic
score performance. This finding is not unexpected as the addition
of more covariates increases the chances that some of them
contain prognostic information that could be used by the
models to increase their performance. In our analysis, we built
upon the progress made in (Becker et al., 2020) by increasing the
feature set from 27 to 44 and 88 covariates. However, the addition
of these extra covariates did not lead to an increase in
performance of the models as in previous studies. This could
be caused by multiple reasons: First, the higher missingness in the
44 and 88 feature sets could have led to an erroneous imputation
of the covariates with high missingness. Second, the 27 covariates
included had been previously selected as the most relevant in
(Becker et al., 2020), hence any additional covariates could have
lower prognostic value. Both reasons should contribute to the lack
of performance improvement. Yet, since the regularized Cox
models did incorporate additional covariates from the 44 and
88 feature sets it gives evidence that there was some prognostic
value in them although they did not lead to an increase in
performance.

Conversely, in (Steele et al., 2018) two datasets with differing
covariate numbers were studied: an expert-selected covariate
dataset with 27 covariates vs. a much larger dataset with 600
covariates. The results demonstrated that the best 600 covariate
model (elastic net) obtained a slightly higher C-index value than
the best 27 covariate model (Cox model). The elastic net model
added covariates such as prescription of cardiovascular
medication (that should indicate severe cardiovascular

problems) and prescription of laxatives/home visits (that
might indicate general frailty). All these covariates are possibly
associated (proxies) with cardiovascular disease but were not
identified by the experts as prognostic, which may explain the
increase in performance of the elastic net model. This result
illustrates the need to incorporate more diverse data into
prognostic scores. As explained above, we followed a different
approach in this analysis and instead focused on increasing the
number of biomarkers (blood work/patient characteristics) from
27 model-selected to 44 and 88 feature sets. Our results showed
that this addition did not result in an increase in performance.We
hypothesized that, perhaps, we had exhausted the available
information in the blood work/patient characteristics in the 27
covariate dataset and the covariates added in the 44 and 88 feature
sets did not carry prognostic information. Therefore, these results
might suggest that perhaps there is a hard limit on the predictive
power of baseline blood work/patient characteristics. To further
increase the performance it might be necessary to incorporate
other types of covariates as suggested by Steele et al. (Steele et al.,
2018) or data with increased richness, like images, genomics or
longitudinal biomarkers. Although, we would suggest that further
research in this area is still needed.

Furthermore, all models had a comparable internal
performance (C-index 0.70–0.72 within the FH test and
C-index 0.66–0.68 within OAK) while the performance
between datasets, which may be an indicator for model
generalizability, was less strong. Particularly when the same
models were compared between datasets, the C-index

TABLE 5 | Uno C-index and corresponding 95% confidence intervals. Significant increases in C-index over the ROPRO model are in bold.

#Covariates Model FH test OAK

Uno C-index 95% CI Uno C-index 95% CI

27 covariates ROPRO 0.674 [0.669, 0.679] 0.653 [0.637, 0.668]
Cox + elastic net 0.683 [0.678, 0.688] 0.659 [0.643, 0.674]
Cox + lasso 0.683 [0.678, 0.688] 0.659 [0.643, 0.674]
Cox + ridge regression 0.683 [0.678, 0.688] 0.660 [0.644, 0.675]
GB 0.695 [0.690, 0.700] 0.645 [0.629, 0.661]
RSF 0.697 [0.692, 0.701] 0.650 [0.635, 0.666]
AE 0.679 [0.674, 0.684] 0.650 [0.634, 0.665]
DS 0.694 [0.689, 0.699] 0.658 [0.644, 0.674]
SL 0.695 [0.690, 0.700] 0.660 [0.645, 0.676]

44 covariates ROPRO 0.672 [0.667, 0.676] 0.655 [0.640, 0.670]
Cox + elastic net 0.680 [0.675, 0.686] 0.659 [0.644, 0.675]
Cox + lasso 0.680 [0.675, 0.686] 0.659 [0.644, 0.673]
Cox + ridge regression 0.681 [0.675, 0.686] 0.662 [0.647, 0.676]
GB 0.697 [0.691, 0.701] 0.651 [0.635, 0.666]
RSF 0.693 [0.688, 0.698] 0.655 [0.640, 0.670]
AE 0.681 [0.675, 0.686] 0.647 [0.631, 0.662]
DS 0.693 [0.688, 0.699] 0.659 [0.644, 0.674]
SL 0.695 [0.690, 0.701] 0.665 [0.648, 0.679]

88 covariates ROPRO 0.669 [0.664, 0.674] 0.655 [0.640, 0.671]
Cox + elastic net 0.684 [0.679, 0.689] 0.654 [0.640, 0.670]
Cox + lasso 0.684 [0.679, 0.689] 0.654 [0.639, 0.669]
Cox + ridge regression 0.684 [0.679, 0.689] 0.655 [0.640, 0.670]
GB 0.692 [0.687, 0.697] 0.658 [0.643, 0.674]
RSF 0.687 [0.682, 0.692] 0.663 [0.648, 0.678]
AE 0.677 [0.672, 0.682] 0.648 [0.633, 0.664]
DS 0.695 [0.690, 0.700] 0.658 [0.643, 0.674]
SL 0.695 [0.690, 0.700] 0.664 [0.648, 0.680]
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differences were more apparent. Some models had a
considerable loss in performance with a decrease in C-index
between FH test and OAK as high as 0.060 for GB or 0.056 for
RSF. The ROPRO showed the most stable performance between
datasets with a C-index difference as low as 0.027. These results
suggest that the slight gains in performance achieved by the
more complex models in the FH test dataset are not
generalizable to other datasets. We hypothesize that this
could happen due to multiple reasons: First, differences in
the cohort number between FH test and OAK could cause
differences in the C-index as the model performance could
depend on the type of cancer. Second, the lack of some of the
covariates in OAK, e.g., blood oxygen or granulocytes, could
lead to a decrease in performance in the OAK dataset. Third,
since OAK is a clinical trial, it is likely that the patient
population is more homogeneous than in FH. Therefore,
more extreme values in highly prognostic covariates (e.g.
ECOG > 1) should be inexistent or rare, making it harder for
prognostic prediction. Additionally, the study start date was
defined differently between FH (first day of first line of
treatment) and OAK (first day of second or third lines of
treatment). We investigated some of these hypotheses in the
sensitivity analyses above. For the first hypothesis, we tested
whether the models had different performance for different
cohorts. The FH test set C-index for advanced non-small cell
lung cancer (the only cohort in OAK) ranged between
0.68–0.69, which is closer to the C-index in OAK. For the
second hypothesis, we removed the covariates inexistent in
OAK from the FH test and imputed them. This had little
effect on the C-index of the FH test, therefore, we discard
the effect of the absent OAK covariates. For the third
hypothesis, we performed a PCA analysis where we
compared both datasets, which supported the hypothesis that
OAK has less extreme values. Given the sensitivity analyses, we
argue that a combination of the first and third hypotheses is
more likely. The C-index for the advanced non-small cell cancer
in FH test was closer to the OAK value. Additionally, the other
differences introduced in the third hypothesis might further
decrease the C-index in the OAK dataset. Furthermore, there
could have also been some overfitting to the FH test set that
caused the decrease in OAK. Unfortunately, the compared
prognostic scores in literature utilized test sets from the same
data-source as the training set which makes a valid comparison
not feasible. We suggest that further studies should be
performed to investigate the true cause of this effect.

In general, we argue that in order to develop better prognostic
scores in oncology, rather than focusing onmore complex models
on the same dataset, we should focus on getting access to larger
and optimally multimodal data describing the patients in more
detail. In particular, adding data about tumor biology via rich data
types, e.g., via imaging, genomics or longitudinal data might be
more beneficial and could lead to improved clinical decision-
making when using prognostic scores. Consequently, these rich
data types should contain complex information that the classical
models cannot interpret, in that case, the more complex models
tested in this work should demonstrate increased performance.
Another area for improvement is related to the response of

patients to treatments. By combining the patients’ treatments
with longitudinal data, e.g. biomarkers, it might be possible to
model the disease progression, leading to models that could offer
real-time decision-making support. Overall, there remains an
unmet clinical need for precise survival prediction to enable
improved toxicity monitoring, treatment selection and
assessment of clinical trial eligibility and hence further work is
required to improve prognostic scores in oncology.

CONCLUSION

Prognostic scores are important clinical decision-making tools
for treatment decisions, monitoring adverse events, and clinical
trial eligibility. Our results show that complex machine learning-
derived models did not improve prognostic scores in oncology
compared to a classical Cox-based framework. We argue that
further research should focus on the impact of adding other data
types (e.g. imaging, genomics or longitudinal biomarkers)
describing complementary features of disease biology. In these
scenarios, complex machine learning architectures might still
prove beneficial.
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