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Abstract: Tomato crops suffer attacks of various pathogens that cause large production losses.
Late blight caused by Phytophthora infestans is a devastating disease in tomatoes because of its
difficultly to control. Here, we applied metabolomics based on liquid chromatography–mass
spectrometry (LC-MS) and metabolic profiling by matrix-assisted laser desorption ionization mass
spectrometry (MALDI-MS) in combination with multivariate data analysis in the early detection of
late blight on asymptomatic tomato plants and to discriminate infection times of 4, 12, 24, 36, 48, 60,
72 and 96 h after inoculation (hpi). MALDI-MS and LC-MS profiles of metabolites combined with
multivariate data analysis are able to detect early-late blight-infected tomato plants, and metabolomics
based on LC-MS discriminates infection times in asymptomatic plants. We found the metabolite
tomatidine as an important biomarker of infection, saponins as early infection metabolite markers
and isocoumarin as early and late asymptomatic infection marker along the post infection time.
MALDI-MS and LC-MS analysis can therefore be used as a rapid and effective method for the
early detection of late blight-infected tomato plants, offering a suitable tool to guide the correct
management and application of sanitary defense approaches. LC-MS analysis also appears to be a
suitable tool for identifying major metabolites of asymptomatic late blight-infected tomato plants.

Keywords: late blight; Phytophthora infestans; LC-MS; MALDI-MS; multivariate analysis; plant-pathogen
interaction; tomato

1. Introduction

Tomato (Solanum lycopersicum) is one of the most widespread vegetables worldwide, with more
than 160 million tons produced in 2013 alone [1]. Tomatoes are highly consumed, mainly as fresh
fruits or processed products, due to their nutritional and beneficial properties to human health [2–4].
These crops, however, suffer attacks of various pathogens such, as viruses, bacteria, fungi and
nematodes, causing substantial production losses. Late blight, caused by the phytopathogenic
oomycete Phytophthora infestans, is one of the most devastating tomato diseases, demanding high
chemical input for disease control worldwide [5–8]. On farms with conditions favorable to pathogens,
such as a high humidity and temperature, late blight can cause severe epidemics and destroy the entire
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tomato crop production [9]. The expenses due to tomato late blight and control measures are estimated
to exceed $5 billion annually worldwide [10]. The development of resistant cultivars is an important
alternative for pathogen management and control, but as yet there are no highly resistant cultivars.
The early detection of asymptomatic infected S. lycopersicum with P. infestans is therefore fundamental
to establish effective strategies for pathogen management and control.

P. infestans exhibits a two-phases life cycle. Post infection in the host is characterized as an
asymptomatic biotrophic phase, and a late necrotrophic stage is characterized by tissue degradation
and disease [11,12]. The identification of P. infestans is realized by traditional techniques that require
isolation from the plant tissue followed by culture-based morphological evaluation, but this protocol
requires a high level of taxonomic expertise [13]. Recently, new techniques of plant pathogen diagnosis,
including monoclonal antibodies, enzyme-linked immune sorbent assay (ELISA) and DNA-based
techniques, have been introduced, which are far more specific, sensitive and accurate [14–17] than the
traditional techniques. These techniques efficiently identify the pathogens, but they fail to provide
information on the pathogen-host interaction at the molecular level or the biochemical alterations
caused by late blight.

Mass spectrometry techniques are known to provide rapid and accurate target and untargeted
analysis of metabolites, allowing the detection of pathogens in plants and detection of the metabolites
of the pathogen-host interaction. MALDI-MS has been applied to evaluate metabolic alterations due
to different phytopathogen infestations. MALDI-MS was able to establish metabolic interactions
between rice−bacterium (Oryza sativa infected with Xanthomonas oryzae) and soybean−aphid (Glycine
max colonized with Aphis glycines) [18]. Additionally, MALDI-MS profiles of proteins, lipids and
metabolites have also revealed plant-pathogen interactions [14,19,20], specifically, the protein profile
of sugarcane after infection by Sporisorium scitamineum, [21] the identification of differential proteins of
rice leaves infected with the fungus Cochliobolus miyabeanus [22], and the proteins that may lead to the
resistance of tomato plants to P. infestans [7].

Metabolomics based on LC-MS and GC-MS approaches reveal changes in the metabolic
profiles of the plants as a response to the attack of pathogens [11,23–29]. Metabolomics has been
applied to investigate the biochemical responses of tomato to the attacks of single and multiple
pathogen infestations; the discrimination of different times post infection; the differentiation between
non-infected and infected plants; the susceptibility/resistance to several pathogens; and even the
beneficial interactions with mycorrhizal fungi [30]. All of these approaches have provided a deeper
insight into biological processes and supported the discovery of potential biomarkers [29,31,32].
The metabolomics studies of infected tomatoes have focused on the identification of metabolic
pathways and those metabolites that are up- and downregulated by infection with tomato mosaic virus
(ToMV) [33]; tomato yellow leaf curl virus (TYLCV) [34]; potato spindle tuber viroid (PSTVd) [35];
root-knot nematode (RKN) Meloidogyne incognita [36]; Pseudomonas syringae and Botrytis cinerea [37],
and infestation with spider mites (Tetranychus urticae) and aphids (Myzus persicae) [38,39]. There are,
however, only a few metabolomics studies about the metabolic interactions between tomato cultivars
and P. infestans that have focused on the early detection of infected plants. Here, we applied
metabolomic analysis of LC-MS and MALDI-MS profiles associated with multivariate data analysis in
the early detection of tomato infection by P. infestans and differentiated between the infection times.

2. Results and Discussion

2.1. Multivariate Statistical Analysis of LC-MS Metabolomics Data

To investigate the comprehensive metabolic changes that occur in response to infection by
P. infestans, tomato plants (Santa Cruz Kada cultivar) were inoculated with a sporangial solution of
P. infestans and collected at 4, 12, 24, 36, 48, 60, 72 and 96 h post inoculation (hpi). At 96 hpi, the infected
asymptomatic leaves were collected and examined under optical and stereoscopic microscope to
confirm the sporangia structures of P. infestans. In the LC-MS untargeted metabolomics analysis,
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the ion chromatograms obtained in the ESI positive and negative ion modes (see Figures S1a and S2a,
respectively) showed no apparent differences between the infected and non-infected samples, but the
Cloud Plot univariate analysis showed 5582 and 4790 features for the positive and negative ion modes,
respectively, with statistical significance (ANOVA p ≤ 0.01, see Figures S1b and S2b).

In the first step of the statistical processing, the principal component analysis (PCA), a technique
used for dimensionality reduction of multivariate data whilst preserving most of the variance [40],
was applied to LC-MS metabolic profiles data in order to find cluster of samples. The PCA score plot
(Figures S3 and S4) clearly shows three clusters of the samples according to the different infection times,
corresponding to early asymptomatic infection (4, 12, 24 and 36 hpi), late asymptomatic infection (48,
60, 72 and 96 hpi) and the initial control.

Secondly, multivariate analysis of OPLS-DA was then applied, and it revealed significant
differences between the control and early- and late-infected asymptomatic plants, along with additional
information regarding significant molecular features of the infection stages. In the OPLS-DA plots
(Figure 1a,b), three different clusters in both the positive and negative ion modes corresponding to
the initial control, early infection (4 to 36 hpi, cluster I) and late infection (48 to 96 hpi, cluster II) were
delineated. Additionally, the heat map plots based on HCA showed additional information about the
similarities between samples and clusters [41].

The variable importance in projection (VIP) scores, which estimate the importance of each variable
in the projection used in a PLS model [42], show potential discriminant metabolites with high score
values and high discriminator power (Figure 1c,d). The annotated metabolites isocoumarin (M301T17);
the diterpene lactone (M579T17) (Figure 1c) and the triterpene saponin (M984T24) (Figure 1d) increase
in intensity with the progression of the infection, whereas the intensity of the triterpenoid (M685T19);
the peonidin 3-(4-sinapoylgentiobioside) (M832T22) (Figure 1c) and the sulfoquinovosyldiacylglycerol
(M820T23) (Figure 1d), decrease. The level of annotation and additional information on these
metabolites are summarized in Supplementary Table S1.

Subsequently, partial least squares-discriminant analysis (PLS-DA) that is a supervised
chemometric method used to optimize the separation between different groups [40], was applied
to investigate specific metabolic changes in the early asymptomatic infection stage. In Figure S7a,b,
the differentiation of the infection times (4, 12, 24 and 36 hpi) based on metabolic profiles is now
apparent. The VIP score-plots derived from PLS-DA (Figure 2a,b) can also discriminate other possible
metabolites, such as the triterpene saponin (M798T23), the demissine (M529T12) (Figure 2a) and the
triterpenoid saponin (M791T21) (Figure 2b), which increase at the early asymptomatic infection stage.
For level of annotation see the Table S1.
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Figure 1. OPLS-DA score plots for the eight post-infection time points (4, 12, 24, 36, 48, 60, 72 and 96 
hpi) and the initial control: (a) LC-ESI (+)-MS and (b) LC-ESI (−)-MS. VIP score-plot derivate of PLS-
DA analysis (c) LC-ESI (+)-MS and (d) LC-ESI (−)-MS. The coding M and T after the number indicates 
nominal mass and retention times, respectively, of each feature. Cluster I includes the infection times 
of 4–36 hpi. Cluster II includes the infection times of 48–94 hpi. Coding 4-hpi indicates positive 
ionization mode analysis for the samples collected at four hours post infection. Coding 4-hpi_neg 
means negative ionization mode analysis of the samples collected at four hours post infection. Coding 
C and C_neg means the analysis of the controls in positive and negative ionization modes, 
respectively. Variable Importance in Projection (VIP), is a weighted sum of squares of the PLS 
loadings taking into account the amount of explained Y-variation, in each dimension. VIP scores are 
calculated for each component and were used average of two components to calculate the feature 
importance. The color scale depends on the range intensity of the metabolites in all samples and the 
media intensity of the samples the same time. 
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Figure 1. OPLS-DA score plots for the eight post-infection time points (4, 12, 24, 36, 48, 60, 72 and 96 hpi)
and the initial control: (a) LC-ESI (+)-MS and (b) LC-ESI (−)-MS. VIP score-plot derivate of PLS-DA
analysis (c) LC-ESI (+)-MS and (d) LC-ESI (−)-MS. The coding M and T after the number indicates
nominal mass and retention times, respectively, of each feature. Cluster I includes the infection times of
4–36 hpi. Cluster II includes the infection times of 48–94 hpi. Coding 4-hpi indicates positive ionization
mode analysis for the samples collected at four hours post infection. Coding 4-hpi_neg means negative
ionization mode analysis of the samples collected at four hours post infection. Coding C and C_neg
means the analysis of the controls in positive and negative ionization modes, respectively. Variable
Importance in Projection (VIP), is a weighted sum of squares of the PLS loadings taking into account
the amount of explained Y-variation, in each dimension. VIP scores are calculated for each component
and were used average of two components to calculate the feature importance. The color scale depends
on the range intensity of the metabolites in all samples and the media intensity of the samples the
same time.

Similarly, PLS-DA analysis was applied to investigate the specific metabolic changes at the late
infection stage (48 to 96 hpi, cluster II). The differentiation of the 48, 60, 72 and 96 hpi is now also
apparent. The PLS-DA plots of Figure S8a,b confirm the closeness between the post inoculation time
points of the cluster II. The gradient variation of the component between 48 and 96 for the LC-MS data
in both positive and negative ion modes is notable.

The VIP plot (VIP > 5) of the late infection stage allows the identification of late discriminant
metabolites. The polyacetylene (M277T16); the isoprene (M367T19); the carboxylic acid esters
(M207T14) and the macrolide (M253T13) (Figure 3b) features show a gradual increase in relative
abundance from 48 to 96 hpi. Other features are also present in the s-plot (Figure S8c,d), supporting
the idea that the bulk of the potential biomarkers increase as a function of infection time.

These discriminant molecular features of the Figures 2a,b and 3a,b are in concordance with the ions
depicted in the s-plot derived from the OPLS-DA model (Figures S7c,d and S8c,d), where the p(corr)
axis represents the reliability of each variable and has a value of between + 1 and − 1. Variables in the
extreme lower left and upper right quadrants are reliable for the extraction of putative biomarkers [28].
The permutation test applied to the LC-ESI (+)-MS data from the early and late asymptomatic infection
stages (4–96 hpi and control) revealed a Q2 value of 0.691 and an R2Y of 0.995 (p < 5 × 10−4) (Figure
S9a). Likewise, the LC-ESI (−)-MS data from the early and late asymptomatic infection stages (4–96 hpi
and control) revealed a Q2 value of 0.893 and an R2Y of 0.977 (p < 0.003) (Figure S10a). The permutation
test applied to the multivariate LC-ESI (+)-MS data from only at the early asymptomatic infection stage
(4–36 hpi) revealed a Q2 value of 0.85 and an R2Y of 0.999 (p < 5 × 10−4), and multivariate LC-ESI
(+)-MS data from only at the late asymptomatic infection stage (48–96 hpi) revealed a Q2 value of
0.741 and an R2Y of 0.998 (p < 5 × 10−4). Similarly, the LC-ESI (−)-MS data (4–36 hpi) revealed a Q2
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value of 0.943 and an R2Y of 0.997 (p < 0.01), and the LC-ESI (−)-MS data (48–96 hpi) revealed a Q2
value of 0.908 and an R2Y of 0.984 (p < 0.01). These results indicate that the OPLS-DA model has good
fitness and prediction power. Cross validation (CV) of the PLS-DA models by leave-one-out (LOO) or
10-fold revealed five latent variables (components) for the optimal performance of the multivariate
data (Figures S9b–e and S10b–e).Molecules 2018, 23, x FOR PEER REVIEW  5 of 23 
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Figure 2. VIP score-plots derived from the PLS-DA analysis, displaying the discriminant features at the
early asymptomatic infection stage (cluster I: 4, 12, 24 and 36 hpi): (a) LC-ESI (+)-MS and (b) LC-ESI
(−)-MS. Coding of M and T after the number respectively indicates nominal mass and retention time of
each feature. (c–f). Box plots from s-plot of the molecular features M845T24 (m/z 845.4816), M301T17
(m/z 301.1379), M179T12 (m/z 178.9792) and M998T24 (m/z 997.5185), respectively. In the box plot,
Y axis represents intensity of the metabolites as quartile for each sample group related to all data set.
The range of the vertical scale is from the minimum to the maximum value of the selected group, or,
to the highest or lowest of the displayed reference points, median, and 95% confidence interval of the
mean. Coding 4-hpi means positive ionization mode analysis of the samples collected at four hours
post infection. Coding 4-hpi_neg means negative ionization mode analysis of the samples collected at
four hours post infection. Coding C and C_neg indicates the analysis of the controls in positive and
negative ionization modes, respectively.
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range of the vertical scale is from the minimum to the maximum value of the selected group, or, to 
the highest or lowest of the displayed reference points, median, and 95% confidence interval of the 
mean. Coding 48-hpi means positive ionization mode analysis of the samples collected at forty-eight 
hours post infection. Coding 48-hpi_neg means negative ionization mode analysis of the samples 
collected at forty-eight hours post infection. Coding C and C_neg means the analysis of the controls 
in positive and negative ionization modes, respectively. 
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Figure 3. VIP score-plots derived from the PLS-DA analysis displaying discriminant features at the
late infection stage (cluster II: 48, 60, 72 and 96 hpi): (a) LC-ESI (+)-MS and (b) LC-ESI (−)-MS. Coding
of M and T after the number respectively indicates the nominal mass and retention time of each feature.
(c–f). Box plots from s-plot of the molecular features M663T19 (m/z 663.4508), M628T25 (m/z 628.3657),
M998T24 (m/z 997.5185) and M998T25 (m/z 997.5184), respectively. In the box plot, Y axis represents
intensity of the metabolites as quartile for each sample group related to all data set. The range of the
vertical scale is from the minimum to the maximum value of the selected group, or, to the highest or
lowest of the displayed reference points, median, and 95% confidence interval of the mean. Coding
48-hpi means positive ionization mode analysis of the samples collected at forty-eight hours post
infection. Coding 48-hpi_neg means negative ionization mode analysis of the samples collected at
forty-eight hours post infection. Coding C and C_neg means the analysis of the controls in positive
and negative ionization modes, respectively.

The discriminant molecular features (Table 1) M845T24 (m/z 845.4816), M984T24 (m/z 983.5392)
and M798T23 (m/z 797.5049) were annotated as triterpene saponins using MS and MS/MS spectra in
the MS-Finder database. Similarly, the features M529T12 (m/z 528.7643) and M737T20 (m/z 737.4186)
were annotated as the steroidal saponins demisine and tuberoside J, respectively. The triterpene and
steroidal saponins are usually reported to have important roles in the defense response of plants against
pathogens, pests and herbivores due to their antimicrobial, antifungal, antiparasitic, insecticidal and
anti-feed properties [43–46]. The saponins are produced by tomatoes and have been studied in detail in
relation to their potential role in the defense response of plants against phytopathogenic fungi [45,47].
The biosynthesis of triterpenoid saponins is induced in the roots in response to Phytophthora cactorum
attack in roots of Fragaria vesca [48].

Using the MS and MS/MS spectra obtained from the LC-MS analysis, the following compounds
were successfully annotated: steroidal glycoalkaloids α-tomatine (M1079T12; m/z 1078.5436),
dehydrotomatine (M1077T12; m/z 1076.527), hydroxytomatine isomer I (M1095T10; m/z 1094.5382),
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the unknown glycoalkaloids UGA 11 (M1109T12; m/z 1108.5541) and UGA 28 (M1121T12;
m/z 1120.5120) and the aglycon tomatidine (M414T20; m/z 414.3385) (Table 1), which occur naturally
in tomatoes [49–51]. However, some studies of glycoalkaloids have shown that these molecules
have antibiotic properties against a variety of fungi [52,53], suggesting that tomatine (α-tomatine
and dehydrotomatine) may play a major role in disease resistance in the tomato plants [49,51,54].
Tomatidine is an important biomarker of infection, because bacterial and fungal pathogens secrete
various types of tomatinase enzymes that can detoxify α-tomatine by removing one or more sugar
residue [55,56]. Thus, it has also been suggested that products resulting from tomatinase activity play
an indirect role in the virulence of pathogens against tomato plants by suppressing plant defense
responses [55]. However, the sensitivity to saponins might be correlated with the type of sterols present
in the membranes of the potential pathogen. The oomycetes have been shown to be insensitive to
saponins, probably because their membranes lack 3β-hydroxy sterols [55,57], similar to plant cell
membranes. In P. infestans there is evidence of genes encoding certain glycoside hydrolases with
potential activity against glycoalkaloids, but there is no evidence that deglycosylation takes place [52].
Even though the glycoalkaloids were annotated, the LC-MS data does not allow for determining
whether the P. infestans infection of the tomato plants produces a significant effect on these metabolites.

On the other hand, the discriminant features M293T15 (m/z 293.1774) and M221T16 (m/z
221.1561) are attributed to phytuberin and rishitin, respectively (Table 1). These sesquiterpenoids
are antimicrobial phytoalexins produced by plants in response to biotic and abiotic stress [58,59].
Phytuberin and rishitin are reported to be present during the infection of potato plants with
P. infestans [60–62]. Furthermore, the feature M267T14 (m/z 267.1617) (Table 1) was also annotated
as the toxic furanosesquiterpene dihydro-7-hydroxymyoporone, which has been isolated from sweet
potato (Ipomoea batatas) infected with Ceratocystis fimbriata [63].

Some of the significant features annotated as flavonoids are apigenin 7-[rhamnosyl-(1->2)-
galacturonide] (M610T24; m/z 610.1758; [M + NH3]+) and peonidin 3-(4-sinapoylgentiobioside)
(M832T22; m/z 832.2387; [M + H]+). Additionally, naringenin-hexose I (M433T13; m/z 433.1115)
and the catechin 7,4′-dimethyl ether (M317T13; m/z 317.1020) were annotated (Table 1). The defensive
role of flavonoids is less known; however, they are thought to be beneficial to the plant itself as
physiologically active compounds, principally to stress protecting agents and play a significant role in
plant resistance [4,64,65]. Some metabolomics studies of tomatoes infected with Botrytis cinerea showed
higher concentrations of flavonoids, such as rutin and quercetin-3-galactoside [37]. Similarly, rutin,
saponarin and several kaempferol and related compounds were identified in potato leaves resistant to
late blight [66]. Additionally, NMR-based metabolic profiling showed that rutin was the flavonoid that
was most expressed in response to Pseudomonas syringae infection of tomato [67], and higher levels of
rutin are associated with late blight resistance of different cultivars of potato plants [68]. Regarding the
specific interaction tomato-P. infestans, tomato resistance to phytopathogen was associated with genes
involved with reactive oxygen species (ROS) scavenging systems [69]. Besides, the overexpression of
the SpWRKY1 gene in tomato regulates antioxidants as flavonoids to reduce ROS accumulation and
alleviate cell membrane injury after P. infestans infection [70,71].

The other 67 metabolites that were annotated as organic acids, macrolides, alkaloids, and gibberellins
are summarized in the supplementary information, Table S1. The annotation data includes retention
time, molecular formulas, exact masses, ion products and metabolite identification levels according to
the MSI guidelines [72,73].
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Table 1. Principal metabolites associated with tomato late blight annotated with LC-MS/MS data. Annotation level: identified metabolites (level 1), putatively
annotated compounds (level 2), putatively characterized compound classes (level 3), and unknown compounds (level 4) [73,74].

Molecular
Feature

RT
(min) Metabolite Molecular

Formula
Annotation

Level Theor. (m/z) Found (m/z) AME (ppm) Adducts

M609T9 9.06 Quercetin 7-(rhamnosylglucoside) C27H30O16 2 609.14555 609.1464 1.4 [M − H]−

M1095T10 9.85 Hydroxytomatine isomer I C50H83NO22 3 1094.53832 1094.5382 0.1 [M + FA − H]−

M1077T12 11.52 Dehydrotomatine C50H81NO21 2 1076.52776 1076.5277 0.1 [M + FA − H]−

M1109T12 11.58 UGA11 C52H87NO24 3 1108.55397 1108.5541 0.1 [M − H]−

M1121T12_1 11.72 UGA28 C52H83NO25 3 1120.51759 1120.5120 5.0 [M − H]−

M1079T12 11.94 Tomatine C50H83NO21 2 1078.5440 1078.5436 0.4 [M + FA − H]−

M433T13_2 12.86 Naringenin-hexose I C21H22O10 3 433.11347 433.1115 4.5 [M − H]−

M317T13_2 13.09 Catechin 7,4′-dimethyl ether C17H18O6 2 317.10251 317.1020 1.6 [M − H]−

M293T15_1 14.51 Phytuberin C17H26O4 2 293.17528 293.1774 7.2 [M − H]−

M221T16_2 16.30 Rishitin C14H22O2 2 221.15415 221.1561 8.8 [M − H]−

M737T20 19.55 Tuberoside J C39H64O14 2 737.41121 737.4186 10.0 [M − H]−

M414T20 19.59 Tomatidine C27H45NO2 2 414.3372 414.3385 3.1 [M − H]−

M791T21 21.46 Triterpenoid saponins- Sapimukoside J C44H72O12 2 791.49455 791.4955 1.2 [M − H]−

M832T22_2 22.21 Peonidin 3-(4-sinapoylgentiobioside) C39H43O20 2 832.24259 832.2387 4.7 [M + H]+

M794T22_1 22.24 1,2-Di-O-palmitoyl-3-O-(6-sulfoquinovopyranosyl)glycerol C41H78O12S 2 793.51357 793.5109 3.4 [M − H]−

M798T23_2 22.58 Triterpene saponins- UNPD101109 C43H72O13 2 797.50511 797.5049 0.3 [M + H]+

M820T23 22.69 Sulfoquinovosyldiacylglycerols C43H80O12S 3 819.5289 819.5269 2.4 [M − H]−

M743T23_3 22.83 3-O-a-L-Arabinopyranosylproanthocyanidin A5 C35H32O16 2 743.13788 743.1395 2.2 [M + Cl]−

M610T24 24.07 Apigenin 7-[rhamnosyl-(1->2)-galacturonide] C27H28O15 2 610.17719 610.1758 2.3 [M + NH4]+

M845T24 24.40 Triterpene saponins- Cyclopassifloside III C43H72O16 2 845.48986 845.4816 9.8 [M + H]+

M984T24_1 24.49 Triterpene saponins C48H84O18 3 983.53461 983.5393 4.8 [M + Cl]−

M984T25 24.87 Triterpene saponins C48H84O18 3 983.53461 983.5392 4.7 [M + Cl]−
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2.2. MALDI-MS Protocol for Analysis of Infected Tomato

Similar to the LC-MS analysis, we aimed at differentiating the early and late asymptomatic stages
and the infection times of the tomato plants infected by P. infestans through MALDI-MS metabolic
profiles. MALDI-MS is a fast and direct analysis that requires no chromatographic separation [21,75,76].
To optimize the analysis protocol, seven different MALDI matrices were tested. DHB, 9-AA and
trans-ferulic acid were tested in the positive ion mode, and DMAN, DHB, 4-NA, MBT and ATT were
tested in the negative ion mode. The DHB and MBT matrices provided the best MALDI spectra,
according to the number and abundance of the ions, over the mass range (600–1500 Da) where there
was no matrix effect. Using the selected matrices, characteristic MALDI-MS profiles were obtained
from the control, early asymptomatic infection (12 hpi) and late asymptomatic infection stages (96 hpi).
Figure S11 shows that m/z 871.4, 909.3, 1034.2 and 1072.1 were the major ions in the positive ion mode.
Figure S12 shows m/z 629.8, 661.8, 709.4, 793.4, 815.4 and 837.4 as major ions in the negative ion mode.
Due to quite similar MALDI profiles, multivariate analysis was applied in an attempt to differentiate
the infected plants into three clusters, similar to what was observed with the LC-MS analysis of the
control, early asymptomatic infection (cluster I, 4–36 hpi) and late asymptomatic infection stage (cluster
II, 48–96 hpi).

2.3. Multivariate Data Analysis of MALDI-MS

As shown in Figures 4a,b and 5a,b, the MALDI-MS metabolic profiles of early and late
asymptomatic infected plants (clusters I and II) and control plants could be differentiated using
the PLS-DA analysis. Therefore, such fast MALDI-MS analysis could be used to identify late
blight in tomato plants in the absence of symptoms on the basis of their corresponding metabolic
profiles. The VIP score plots (Figure 4c,d) show discriminating features for the control, early and
late asymptomatic infection clusters that were detected in the positive ion mode (VIP scores > 1).
The discriminating ion of m/z 675.4 decreases throughout the infection, but the discriminating ions of
m/z 1034.2 and 1072.1 decrease in the early asymptomatic infection (Figure S11) and then increase in
the late asymptomatic infection stage (see m/z 1034.2; 1056.2 and 1072.1 ion, Figure S11). These ions are
attributed to the protonated molecule and adducts of the glycoalkaloid α-tomatine, that is, [M + H]+

of m/z 1034.2; [M + Na]+ of m/z 1056.2; and [M + K]+ of m/z 1072.1, which is also detected in LC-MS
as the ion at m/z 1078.5436 [M + FA − H]−.
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The decrease in the relative abundance of α-tomatine adducts in early asymptomatic infection
in relation to the control should therefore be related to the successful infection of asymptomatic
tomato plants within the first hours. However, there was a subsequent increase of α-tomatine adduct
intensities at the late infection stage compared to control, which may be associated with the posterior
glycosylation of tomatidine to α-tomatine. This glycosylation appears to be crucial in protecting the cell
from the toxic effect of steroidal alkaloids, such as tomatidine, which causes marked developmental
defects, including the growth retardation of tomato plants [51].

The most downregulated metabolite in the late asymptomatic infection stage (Figure S11) was
detected as the ion of m/z 871.5 [M + H]+ (VIP > 2.5), attributed to pheophytin α. The ions of m/z
893.3 and m/z 909.4 correspond to the adducts [M + Na]+ and [M + K]+, respectively, of pheophytin α

(Figure S11). This same ion at m/z 871.5609 was detected by LC-MS, and its fragmentation pattern
allowed us to attribute it as pheophytin α. Pheophytin α is a chlorophyll derivative involved in
the electron transfer pathway of photosystem II [77,78]. It has been found that genes involved in
photosynthesis and chlorophyll biosynthesis are downregulated upon challenge by virulent and
avirulent pathogens [79–81], along with the upregulation of defense-related pathways [82].

Likewise, a few metabolites detected in the negative ion mode (score > 0.5) have similar
behavior throughout the infection. The intensities of the ions of m/z 837.4; 839.4 and 831.4
increased in the early stage in relation to control, but those of the ions of m/z 709.3 and 725.3
are most abundant in the control in relation to the early and late asymptomatic infection stages
(Figure 5c,d). The upregulated ions of m/z 793.4 ([M − H]−), m/z 815.4 ([M – Na − 2H]−) and
m/z 837.4 ([M + FA − H]−) (Figure S12 and Figure 5c) are attributed to the sulfolipid known as
1,2-di-O-palmitoyl-3-O-(6-sulfoquinovopyranosyl)glycerol (m/z 793.5109) isolated from Byrsonima
crassifolia [83]. Sulfoquinovosyl diacylglycerols (SQDGs) and phosphatidylglycerols (PGs) are major
classes of the thylakoid membrane lipids in plants [84–86]. The increase in SDQGs by P. infenstans
inoculation might be indicating compositional and/or structural changes of the chloroplast membrane,
as reported in tobacco plants inoculated with Phytophthora parasitica [87].

The score of the VIP plots (Figure 4c,d and Figure 5c,d ) shows that the discrimination power
of metabolites is lower in MALDI-MS than in LC-MS, revealing that LC-MS metabolomics provides
more significant potential biomarkers. It is likely that MALDI-MS suffers from extensive ion
suppression [76,88] due to a lack of chromatographic separation and to interferences of the low
molecular weight (<500 Da) ions of the matrix [75]. The MALDI-MS approach could be relevant to
future applications for detecting late blight directly on the leaf material through imaging analysis.
Although the irregularity of the leaf surface is a limitation for some MSI techniques [89,90], there are
some strategies, such as imprinting with several adsorbent materials, that allow the selective adsorption
of specific metabolites and that would enable the rapid detection of infection in tomato plants.

3. Materials and Methods

3.1. Chemicals

The LC-MS-grade solvents used were acetonitrile, isopropanol (Sigma-Aldrich, St. Louis, MO,
USA) was used as an additive for the mobile phase and MALDI matrix solution preparation.
The ultrapure water was purified by a Direct-Q water system (Millipore, Bedford, MA, USA).
The MALDI matrices were 2,5-dihydroxybenzoic acid (DHB), 2-mercaptobenzothiazole (MBT),
6-aza-2-thiothymine (ATT), 4-nitroaniline (4-NA), N,N,N′,N′-tetramethyl-1,8-naphthalenediamine
(DMAN), 9-aminoacridine (9-AA) and trans-ferulic acid (Sigma-Aldrich). The lipid standards
used for TOF mass calibration were sphingomyelin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine,
2-oleoyl-1-palmitoyl-glycero-3-phosphocholine, and L-α-phosphatidylcholine (Sigma-Aldrich).
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3.2. Tomato Plant Samples

The seeds of the Santa Cruz Kada tomato cultivar were obtained from a local market. The seeds
were germinated in a germination chamber (120 mm Petri dishes containing wet germination paper)
maintained at 18 ◦C with a 16 h photoperiod for three days. The germinated seeds were planted in
16 cm diameter pots containing a 1:1 mixture of soil and vermiculite and subsequently subirrigated
once per day. The 45 plants were maintained at 18 ◦C, with a 16 h photoperiod, and approximately
60–70% relative humidity (RH).

3.3. Pathogen Strain

A culture of P. infestans, named as IBSP-34, was obtained from the microorganism collection of the
Biological Institute of Sao Paulo, SP, Brazil. The isolate was subcultured on V8 media [91] in 90 mm
Petri dishes at 18 ◦C. After 2–3 weeks, a sporangial suspension was prepared by scraping the surfaces
of the colonies with a sterile scalpel, and the mycelia were suspended in sterilized water to produce
the infecting solution. The concentration of sporangia in the suspension was adjusted to 1.0 × 105

sporangia mL−1 using a Neubauer chamber.

3.4. Infection of Tomato Plants with Phytophthora Infestans

After 5–6 weeks, 40 plants were inoculated at the same time with 10 µL of the sporangial
suspension of P. infestans at four different sites, two on each side of the midrib of the leaf. The infection
was carried out by carefully depositing a drop of the sporangial suspension on the leaf with the aid of
a micropipette, without mechanically wounding the leaf. The 5 control plants were inoculated with
ultrapure water using the same procedure. The experimental design for the infection consisted of two
sets of plants that were the initial control (CN) and the inoculated (IN) plants. At each time point
after inoculation (4, 12, 24, 36, 48, 60, 72 and 96 hpi), five infected plants were randomly collected and
separately analyzed as replicates.

3.5. Sample Preparation

All the tomato leaves were excised with sterilized scissors and were immediately macerated
in liquid nitrogen. A 100 mg aliquot of the crushed powder was vortexed (Multi Reax, Heidolph,
Schwabach, Germany), extracted with 1 mL of methanol for 10 min at room temperature, and then
centrifuged for 5 min at 12,000× g at 20 ◦C (Centrifuge 5418, Eppendorf, Hamburg, Germany).
The supernatants were stored at −20 ◦C until analysis. For LC-MS analysis, 50 µL of the supernatant
was diluted with 950 µL of methanol in a vial. For MALDI-MS analysis, 1 µL of the supernatant was
deposited on the MALDI plate.

3.6. Untargeted Analysis of Metabolites

3.6.1. UHPLC-Q-TOF-MS Analysis

The extracts of infected and noninfected leaves were analyzed with a 1290 Infinity UHPLC
coupled to an Agilent 6550 iFunnel Q-TOF LC-MS system with Agilent Dual Jet Stream electrospray
ionization technology (ESI, Agilent Technologies, Santa Clara, CA, USA). For metabolite separation,
a Kinetex XB-C18 Core-Shell column (2.1 × 150 mm, 1.7 µm, 100 Å; Phenomenex Inc., Torrance, CA,
USA) was used and maintained at 40 ◦C. The mobile phases were A (0.1% aqueous formic acid) and B
(0.1% formic acid in methanol). The chromatographic gradient of B was increased from 5% to 95% over
18 min and maintained for 7 min at 95% with a flow rate of 0.35 mL·min−1. Subsequently, the initial
conditions were reached in 8 min, and the column was equilibrated for 7 min. The injection volume
was 2 µL. To avoid degradation, the samples were maintained at −20 ◦C in a freezer, and prior to
analysis they were placed in an autosampler maintained at a room temperature of approximately
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21 ◦C. Prior to injection, the needle was washed for 20 s with a mixture of H2O:ACN:IPA (4:4:2) using
the flush port. The external needle wash volume was 150 µL.

The ESI source was used in the positive or negative ion mode in the following conditions:
drying gas temperature 250 ◦C, drying gas flow rate 14.0 L·min−1, sheath gas temperature 250 ◦C,
sheath gas flow rate 10.0 L·min−1, nebulizer gas 45 psig, and capillary voltage +3.5 kV and −3.5 kV
for the positive and negative ionization mode, respectively. The Q-TOF parameters were acquisition
rate of 1.0 spectra/s over the m/z 100−1700 amu range, skimmer voltage 65 V, octopole RF 750 V,
fragmentor 150 V and nozzle voltage 350 V. The multichannel plate detector voltage was 650 V, and the
photomultiplier tube voltage was 700 V. The pulser was set to a pulse width of 125 counts/pulse,
with a pulse width of 25 counts. A second reference sprayer orthogonal to the sample sprayer in
the electrospray source was used to introduce a reference solution for accurate mass determinations.
The reference mass ions were of m/z 121.0509 and m/z 922.0098 in ESI (+) and m/z 119.0363 and m/z
966.0007 in ESI (−). The detection window for the reference masses was set to 10 ppm, with an average
of 10 scans and a minimum peak height of 100 counts/s. A mass calibration was performed with an
Agilent tune mix from 100 to 1600 Da. The data were acquired in profile mode using high resolution
mode (2 GHz).

First, an experiment in full scan mode over the entire mass range was performed, and then two
fragmentation experiments were carried out. The auto MS/MS experiments were performed with
fixed energies of 30, 40 or 50 eV, in which a first step was to select the 10 most intense ions per scan to
produce the MS2 spectra. The auto MS/MS experiments that were performed in the variable energy
mode used scan speeds that varied based on the precursor abundance and used energies based on
the precursor mass-to-charge. The collision energies applied were 6.5 V/100 Da and were offset by
2.0 V. The QC samples consisted of a pool of all the different inoculation times and controls and were
analyzed at the beginning and at the end of each batch and after every 10 injections.

3.6.2. MALDI-MS Profile Analysis

The extracts (1 µL) were directly smeared onto a 384-position MALDI target plate (Bruker Daltonics,
Bremen, Germany). After drying, the spots were immediately overlaid with 1 µL of the matrix solution:
2,5-dihydroxybenzoic acid (DHB) for the positive ion mode and 2-mercaptobenzothiazole (MBT) for
the negative ion mode. All MALDI matrices used for method optimization (DHB, ATT, 4-NA, MBT,
9AA and trans-ferulic acid) were prepared at a concentration of 10 mg·mL−1 in methanol/water
(80:20 v/v). The DMAN matrix solution only was prepared at a concentration of 10 mg·mL−1 in
methanol/water (90:10 v/v) because of its low solubility. Tuning of the smart beam laser position
and energies, as well as electronic adjustment of the lens, was performed by Bruker when necessary.
The external TOF calibration was made using 1 µL of a lipids mixture composed of sphingomyelin,
1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 2-oleoyl-1-palmitoyl-glycero-3-phosphocholine and
L-α-phosphatidylcholine, followed by 1 µL of DHB applied in the same conditions as the samples [92].

The MALDI-MS analyses were performed on a Bruker Autoflex III MALDI–TOF/TOF mass
spectrometer equipped with a 334 nm smart beam laser. The metabolite profiles were acquired in the
TOF reflector mode, using the positive or negative ion mode. The accelerating voltage was +20 kV
for positive and −20 kV for the negative ion mode, with delayed extraction of 260 ns for both. Each
spectrum was manually collected as an average of 5000 laser shots (1000 laser shots at five different
positions on the same spot). The laser energy was set at 70% for spectra acquisition. The m/z 600–1500
range was used for metabolite profile acquisition of both positive and negative ion modes. The spectra
were acquired in triplicates via the AutoExecute tool of the Flexcontrol acquisition software (version
2.4; Bruker-Daltonik GmbH, Bremen, Germany).
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3.7. Multivariate Data Analysis

3.7.1. LC-MS-Based Metabolomics Data

The LC-MS data processing was performed using MassHunter Qualitative Analysis (Agilent
Software B07.00, Santa Clara, CA, USA), in which raw original data was converted to the mzData
format. The mzData files were uploaded to XCMS online for further data processing (https://
xcmsonline.scripps.edu/). The XCMS software was used for feature detection, retention time correction,
feature alignment and univariate statistical analysis [93]. The data were analyzed as pairwise jobs,
with the following settings: centWave feature detection with 5 ppm of maximal tolerated m/z deviation;
minimum peak width 5 s; maximum peak width 20 s; signal/noise threshold 6; noise filter abundance 0;
prefilter abundance 100; mzdiff 0.01, and integration method type 1. Obiwarp retention time correction
with 1 m/z step size (profStep) was used to generate the profiles. Other parameters were alignment:
mzwid 0.015; minfrac 0.5; mz width: 0.015; bw: 5. An unpaired parametric t test (Welch test) was
performed to identify significant features with a p value threshold of 0.05 and a fold change threshold
(highly significant features) of 1.5 [94]. The .csv file from the XCMS processing was uploaded to
MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) for multivariate statistical data analysis. The file
comprised a list of features (m/z, retention times and intensities) for all samples from infected and
noninfected leaves. The data processing applied an integrity check, missing value check, data filter,
and normalization before statistical analysis [95,96]. The presence of missing values or features
with constant values (i.e., all zeros) was checked, and data filtering using the interquantile range
(IQR) was applied to remove variables close to the baseline or detection limits and variables with
near-constant value [97].

3.7.2. MALDI-MS Profile Data

The analysis of MALDI data was conducted in three distinct steps: (1) preprocessing, (2) processing
and (3) statistical analysis. The raw spectra were preprocessed in the FlexAnalysis software
(Bruker-Daltonik GmbH, Bremen, Germany) after baseline subtraction for background removal,
alignment of the spectra scale, ion selection with an S/N ratio greater than 3 and normalization
of intensities. Data processing was performed before multivariate analysis for the metabolite profiles
in MetaboAnalyst 3.0. The uploaded files (.csv format) comprised a list of features (m/z and relative
intensities). The ions were realigned within a tolerance of m/z 0.4 (0.4 Da) to remove ions that
appeared in less than half of the samples in each group [92]. The presence of missing values or
features with constant values (i.e., all zeros) was checked, and data filtering using relative standard
deviation (RSD) was applied to remove variables close to baseline or detection limit and variables with
near-constant values.

Both LC-MS and MALDI-MS data were normalized by sum for adjustment of the differences
among samples and Pareto scaling (mean-centered and divided by the square root of the standard
deviation of each variable) was used to make individual features more comparable [92]. To discriminate
the infection times of the tomato plants with P. infestans based on their LC-MS and MALDI-MS
metabolite profiles, principal component analysis (PCA), partial least squares discriminant analysis
(PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) was performed on
the data using MetaboAnalyst 3.0. To identify the molecular features related to variation between
groups of samples, the corresponding loading plots and the variable importance in projection (VIP)
were applied [98]. The validation of the classification models obtained by multivariate analysis was
made to confirm the capability of classification and prediction of the models. The data were permuted
100 times, and Q2 and R2Y were used as quality-of-fit criterion [99].

3.8. Annotation of Metabolites

The major discriminant features of the LC-MS analyses were selected out of the multivariate
analysis, and their annotation was made according to the exact mass (m/z) of the protonated or

https://xcmsonline.scripps.edu/
https://xcmsonline.scripps.edu/
http://www.metaboanalyst.ca/
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deprotonated ion and their fragmentation spectra. The .txt data archives with m/z and relative
abundance of the ions obtained from MS and MS/MS spectra were uploaded to MS-FINDER
software ver. 2.26 (http://prime.psc.riken.jp/Metabolomics_Software/MS-FINDER/), which provides
molecular formulas of the precursor ions based on accurate mass, isotope ratio, and product
ion spectra [100].

The Metlin (http://metlin.scripps.edu), ChemSpider (www.chemspider.com), MassBank (http://
www.massbank.jp/), HMDB (http://www.hmdb.ca/), and LipidMaps (http://www.lipidmaps.org/)
spectra databases and a comparison with fragmentation profiles of previously reported metabolites
from tomato infection were also used for confirmation of the metabolite annotation [1,38,51,101–103].

4. Conclusions

The LC-MS metabolites profiles discriminate between early and late asymptomatic infection,
and between each infection time in the infected tomato plants and identified major metabolites
that are altered in late blight. Metabolites detected via LC-MS operating in the negative ion
mode provided more discriminant clusters compared to those detected in the positive ion mode.
The annotated metabolites correspond to tricarboxylic acid (TCA) cycle secondary metabolites and
include terpenoids, flavonoids, alkaloids, saponins, sesquiterpenes and glycoalkaloids. We found
the metabolite tomatidine to be an important biomarker of infection because it is produced by the
action of the fungal pathogen enzymes. Also, we found that saponins might be early infection
metabolite markers because their abundance increases between 4 and 36 hpi as specific response
to the type of sterols present in the pathogen membrane. We found the metabolite isocoumarin
(M301T17) as a good infection marker because its abundance increases linearly along the post infection
time. These metabolites could be relevant in future applications to detect late blight directly on the
asymptomatic leaf material through imaging analysis using DESI-MS or MALDI imaging.

Additionally, the metabolite profiles obtained by MALDI (±)-MS, associated with multivariate
analysis, have provided late blight detection of tomato plants in early and late asymptomatic
infection. The major discriminant metabolites are α-tomatine, pheophytin α and 1,2-di-O-palmitoyl-
3-O-(6-sulfoquinovopyranosyl)glycerol, but α-tomatine has an important role in infection control
because it decreases within the first hours and increases in the late asymptomatic infection stage.
MALDI (±)-MS seems to offer a rapid and effective method to detect late blight in asymptomatic
tomato plants and therefore it could function as a suitable guide for the management of sanitary
defense approaches.

Supplementary Materials: The following are available online, Figures S1 and S2: (a) Chromatographic profiles
and (b) Cloud plot of metabolites detected in infected tomato samples, LC-ESI (+)-MS and LC-ESI (−)-MS,
respectively; Figures S3 and S4: PCA, LC-ESI (+)-MS and LC-ESI (−)-MS, respectively; Figures S5 and S6: LC-ESI
(+)-MS and LC-ESI (−)-MS, respectively; Figures S7–S10: Validation; Figures S11–S12: MALDI-MS profiles.
Table S1: Metabolites in tomato plants infected with P. infestans.
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27. Wojakowska, A.; Muth, D.; Narożna, D.; Mądrzak, C.; Stobiecki, M.; Kachlicki, P. Changes of phenolic
secondary metabolite profiles in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections
with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 2013, 9, 575–589. [CrossRef]

28. Augustyn, W.A.; Regnier, T.; Combrinck, S.; Botha, B.M. Metabolic profiling of mango cultivars to identify
biomarkers for resistance against Fusarium infection. Phytochem. Lett. 2014, 10, civ–cx. [CrossRef]

29. Cajka, T.; Vaclavikova, M.; Dzuman, Z.; Vaclavik, L.; Ovesna, J.; Hajslova, J. Rapid LC-MS-based
metabolomics method to study the Fusarium infection of barley. J. Sep. Sci. 2014, 37, 912–919. [CrossRef]

30. Rivero, J.; Gamir, J.; Aroca, R.; Pozo, M.J.; Flors, V. Metabolic transition in mycorrhizal tomato roots.
Front. Microbiol. 2015, 6, 598. [CrossRef]

31. Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite
profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. [CrossRef]

32. Wolfender, J.; Rudaz, S.; Choi, Y.H.; Kim, H.K. Plant metabolomics: From holistic data to relevant biomarkers.
Curr. Med. Chem. 2013, 20, 1056–1090. [CrossRef] [PubMed]

33. López-Gresa, M.P.; Lisón, P.; Kim, H.K.; Choi, Y.H.; Verpoorte, R.; Rodrigo, I.; Conejero, V.; Bellés, J.M.
Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. J. Plant Physiol. 2012,
169, 1586–1596. [CrossRef] [PubMed]

34. Sade, D.; Shriki, O.; Cuadros-Inostroza, A.; Tohge, T.; Semel, Y.; Haviv, Y.; Willmitzer, L.; Fernie, A.R.;
Czosnek, H.; Brotman, Y. Comparative metabolomics and transcriptomics of plant response to Tomato
yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 2015, 11, 81–97.
[CrossRef]

35. Bagherian, S.A.A.; Hamzehzarghani, H.; Izadpanah, K.; Djavaheri, M. Effects of potato spindle tuber viroid
infection on tomato metabolic profile. J. Plant Physiol. 2016, 201, 42–53. [CrossRef]

36. Eloh, K.; Sasanelli, N.; Maxia, A.; Caboni, P. Untargeted metabolomics of tomato plants after root-knot
nematode infestation. J. Agric. Food Chem. 2016, 64, 5963–5968. [CrossRef] [PubMed]

37. Camañes, G.; Scalschi, L.; Vicedo, B.; González-Bosch, C.; García-Agustín, P. An untargeted global
metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum
lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis
cinerea and Pseudomonas sy. Plant J. 2015, 84, 125–139. [CrossRef] [PubMed]

38. Errard, A.; Ulrichs, C.; Kühne, S.; Mewis, I.; Drungowski, M.; Schreiner, M.; Baldermann, S. Single versus
multiple-pest infestation affects differently the biochemistry of tomato (Solanum lycopersicum ’Ailsa Craig’).
J. Agric. Food Chem. 2015, 63, 10103–10111. [CrossRef]

39. Kant, M.R.; Ament, K.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C. Differential timing of spider
mite-induced direct and indirect defenses in tomato plants. Plant Physiol. 2004, 135, 483–495. [CrossRef]

http://dx.doi.org/10.4236/ajps.2013.46149
http://dx.doi.org/10.1155/2011/989016
http://dx.doi.org/10.1002/pmic.201400066
http://www.ncbi.nlm.nih.gov/pubmed/25047395
http://dx.doi.org/10.1007/s10658-007-9150-8
http://dx.doi.org/10.1371/journal.pone.0111930
http://www.ncbi.nlm.nih.gov/pubmed/25369450
http://dx.doi.org/10.1371/journal.pone.0079485
http://www.ncbi.nlm.nih.gov/pubmed/24223954
http://dx.doi.org/10.1016/j.plaphy.2009.05.004
http://dx.doi.org/10.1007/s11306-012-0475-8
http://dx.doi.org/10.1016/j.phytol.2014.05.014
http://dx.doi.org/10.1002/jssc.201301292
http://dx.doi.org/10.3389/fmicb.2015.00598
http://dx.doi.org/10.1016/j.chroma.2014.10.091
http://dx.doi.org/10.2174/092986713805288932
http://www.ncbi.nlm.nih.gov/pubmed/23210790
http://dx.doi.org/10.1016/j.jplph.2012.05.021
http://www.ncbi.nlm.nih.gov/pubmed/22795749
http://dx.doi.org/10.1007/s11306-014-0670-x
http://dx.doi.org/10.1016/j.jplph.2016.06.014
http://dx.doi.org/10.1021/acs.jafc.6b02181
http://www.ncbi.nlm.nih.gov/pubmed/27389052
http://dx.doi.org/10.1111/tpj.12964
http://www.ncbi.nlm.nih.gov/pubmed/26270176
http://dx.doi.org/10.1021/acs.jafc.5b03884
http://dx.doi.org/10.1104/pp.103.038315


Molecules 2018, 23, 3330 18 of 21

40. Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review:
Metabolomics and partial least squares-discriminant analysis–A marriage of convenience or a shotgun
wedding. Anal. Chim. Acta 2015, 879, 10–23. [CrossRef]

41. Ivanisevic, J.; Benton, H.P.; Rinehart, D.; Epstein, A.; Kurczy, M.E.; Boska, M.D.; Gendelman, H.E.; Siuzdak, G.
An interactive cluster heat map to visualize and explore multidimensional metabolomic data. Metabolomics
2015, 11, 1029–1034. [CrossRef]

42. Banerjee, P.; Ghosh, S.; Dutta, M.; Subramani, E.; Khalpada, J.; RoyChoudhury, S.; Chakravarty, B.;
Chaudhury, K. Identification of key contributory factors responsible for vascular dysfunction in idiopathic
recurrent spontaneous miscarriage. PLoS ONE 2013, 8, e80940. [CrossRef]

43. Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic
intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [CrossRef]
[PubMed]

44. Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular activities, biosynthesis and evolution of
triterpenoid saponins. Phytochemistry 2011, 72, 435–457. [CrossRef]

45. Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A. A saponin-detoxifying enzyme mediates
suppression of plant defences. Nature 2002, 418, 889–892. [CrossRef] [PubMed]

46. Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013,
12, 877–893. [CrossRef]

47. Osbourn, A.E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell Online
1996, 8, 1821–1831. [CrossRef]

48. Toljamo, A.; Blande, D.; Kärenlampi, S.; Kokko, H. Reprogramming of strawberry (Fragaria vesca) root
transcriptome in response to Phytophthora cactorum. PLoS ONE 2016, 11, 1–21. [CrossRef]

49. Friedman, M. Tomato glycoalkaloids: Role in the Plant and in the diet. J. Agric. Food Chem. 2002, 50, 5751–5780.
[CrossRef]

50. Ito, S.; Eto, T.; Tanaka, S.; Yamauchi, N.; Takahara, H.; Ikeda, T. Tomatidine and lycotetraose, hydrolysis
products of α-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato
cells. FEBS Lett. 2004, 571, 31–34. [CrossRef]

51. Itkin, M.; Rogachev, I.; Alkan, N.; Rosenberg, T.; Malitsky, S.; Masini, L.; Meir, S.; Iijima, Y.; Aoki, K.; de
Vos, R.; et al. Glycoalkaloid metabolim 1 is Required for steroidal alkaloid glycosylation and prevention of
phytotoxicity in tomato. Plant Cell 2011, 23, 4507–4525. [CrossRef]

52. Dahlin, P.; Müller, M.C.; Ekengren, S.; McKee, L.S.; Bulone, V. The impact of steroidal glycoalkaloids on the
physiology of Phytophthora infestans, the causative agent of potato late blight. Mol. Plant-Microbe Interact.
2017, 30, 531–542. [CrossRef] [PubMed]

53. Al Sinani, S.S.S.; Eltayeb, E.A. The steroidal glycoalkaloids solamargine and solasonine in Solanum plants.
South African J. Bot. 2017, 112, 253–269. [CrossRef]

54. Carere, J.; Colgrave, M.L.; Stiller, J.; Liu, C.; Manners, J.M.; Kazan, K.; Gardiner, D.M. Enzyme-driven
metabolomic screening: A proof-of-principle method for discovery of plant defence compounds targeted by
pathogens. New Phytol. 2016, 212, 770–779. [CrossRef] [PubMed]

55. Ökmen, B.; Etalo, D.W.; Joosten, M.H.A.J.; Bouwmeester, H.J.; de Vos, R.C.H.; Collemare, J.; de Wit, P.J.G.M.
Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol.
2013, 198, 1203–1214. [CrossRef] [PubMed]

56. Martin-Hernandez, M.; Dufresne, M.; Hugouvieux, V.; Melton, R.; Osbourn, A. Effects of targeted
replacement of the tomatinase gene on the interaction of septoria lycopersici with tomato plants.
Mol. Plant-Microbe Interact. 2000, 13, 1301–1311. [CrossRef] [PubMed]

57. Blades, A.T.; Ikonomou, M.G.; Kebarle, P. Mechanism of electrospray mass spectrometry. Electrospray as an
electrolysis cell. Anal. Chem. 1991, 63, 2109–2114. [CrossRef]

58. Jeandet, P.; Clément, C.; Courot, E.; Cordelier, S. Modulation of phytoalexin biosynthesis in engineered
plants for disease resistance. Int. J. Mol. Sci. 2013, 14, 14136–14170. [CrossRef]

59. Li, R.; Tee, C.-S.; Jiang, Y.-L.; Jiang, X.-Y.; Venkatesh, P.N.; Sarojam, R.; Ye, J. A terpenoid phytoalexin plays a
role in basal defense of Nicotiana benthamiana against Potato virus X. Sci. Rep. 2015, 5, 1–6. [CrossRef]

60. Jadhav, S.J.; Mazza, G.; Salunkhe, D.K. Terpenoid phytoalexins in potatoes: A review. Food Chem. 1991,
41, 195–217. [CrossRef]

http://dx.doi.org/10.1016/j.aca.2015.02.012
http://dx.doi.org/10.1007/s11306-014-0759-2
http://dx.doi.org/10.1371/journal.pone.0080940
http://dx.doi.org/10.3109/10409238.2014.953628
http://www.ncbi.nlm.nih.gov/pubmed/25286183
http://dx.doi.org/10.1016/j.phytochem.2011.01.015
http://dx.doi.org/10.1038/nature00950
http://www.ncbi.nlm.nih.gov/pubmed/12192413
http://dx.doi.org/10.1007/s11101-013-9322-4
http://dx.doi.org/10.1105/tpc.8.10.1821
http://dx.doi.org/10.1371/journal.pone.0161078
http://dx.doi.org/10.1021/jf020560c
http://dx.doi.org/10.1016/j.febslet.2004.06.053
http://dx.doi.org/10.1105/tpc.111.088732
http://dx.doi.org/10.1094/MPMI-09-16-0186-R
http://www.ncbi.nlm.nih.gov/pubmed/28510502
http://dx.doi.org/10.1016/j.sajb.2017.06.002
http://dx.doi.org/10.1111/nph.14067
http://www.ncbi.nlm.nih.gov/pubmed/27353742
http://dx.doi.org/10.1111/nph.12208
http://www.ncbi.nlm.nih.gov/pubmed/23448507
http://dx.doi.org/10.1094/MPMI.2000.13.12.1301
http://www.ncbi.nlm.nih.gov/pubmed/11106022
http://dx.doi.org/10.1021/ac00019a009
http://dx.doi.org/10.3390/ijms140714136
http://dx.doi.org/10.1038/srep09682
http://dx.doi.org/10.1016/0308-8146(91)90043-N


Molecules 2018, 23, 3330 19 of 21

61. Coxon, D.T.; Curtis, R.F.; Price, K.R.; Howard, B. Phytuberin: A novel antifungal terpenoid from potato.
Tetrahedron Lett. 1974, 27, 2363–2366. [CrossRef]

62. Andreu, A.; Oliva, C.; Distel, S.; Daleo, G. Production of phytoalexins, glycoalkaloids and phenolics in leaves
and tubers of potato cultivars with different degrees of field resistance after infection with Phytophthora
infestans. Potato Res. 2001, 44, 1–9. [CrossRef]

63. Burka, L.T. 1-(3′-furyl)-6,7-dihydroxy-4,8-dimethylnonan-1-one, a stress metabolite from sweet potatoes
(Ipomoea batatas). Phytochemistry 1978, 17, 317–318. [CrossRef]

64. Treutter, D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol.
2005, 7, 581–591. [CrossRef] [PubMed]

65. Ahmed, I.M.; Nadira, U.A.; Bibi, N.; Cao, F.B.; He, X.Y.; Zhang, G.P.; Wu, F.B. Secondary metabolism and
antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild
barley. Environ. Exp. Bot. 2015, 111, 1–12. [CrossRef]

66. Yogendra, K.N.; Pushpa, D.; Mosa, K.A.; Kushalappa, A.C.; Murphy, A.; Mosquera, T. Quantitative resistance
in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct. Integr. Genomics
2014, 14, 285–298. [CrossRef] [PubMed]

67. López-Gresa, M.P.; Maltese, F.; Bellés, J.M.; Conejero, V.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Metabolic
response of tomato leaves upon different plant-pathogen interactions. Phytochem. Anal. 2010, 21, 89–94.
[CrossRef] [PubMed]

68. Tomita, S.; Ikeda, S.; Tsuda, S.; Someya, N.; Asano, K.; Kikuchi, J.; Chikayama, E.; Ono, H.; Sekiyama, Y.
A survey of metabolic changes in potato leaves by NMR-based metabolic profiling in relation to resistance to
late blight disease under field conditions. Magn. Reson. Chem. 2017, 55, 120–127. [CrossRef]

69. Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and
susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans
by co-expressing glutaredoxin. Plant J. 2017, 89, 577–589. [CrossRef]

70. Li, J.; Luan, Y.; Liu, Z. SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and
drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes
in tomato. Plant Cell Tissue Organ Cult. 2015, 123, 67–81. [CrossRef]

71. Cui, J.; Xu, P.; Meng, J.; Li, J.; Jiang, N.; Luan, Y. Transcriptome signatures of tomato leaf induced by
Phytophthora infestans and functional identification of transcription factor SpWRKY3. Theor. Appl. Genet.
2018, 131, 787–800. [CrossRef]

72. Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional
genomics era. Phytochemistry 2003, 62, 817–836. [CrossRef]

73. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.;
Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics
2007, 3, 211–221. [CrossRef] [PubMed]

74. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for
metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 13. [CrossRef] [PubMed]

75. McCombie, G.; Knochenmuss, R. Small-molecule MALDI using the matrix suppression effect to reduce or
eliminate matrix background interferences. Anal. Chem. 2004, 76, 4990–4997. [CrossRef] [PubMed]

76. Popkova, Y.; Schiller, J. Addition of CsCl reduces ion suppression effects in the matrix-assisted laser
desorption/ionization mass spectra of triacylglycerol/phosphatidylcholine mixtures and adipose tissue
extracts. Rapid Commun. Mass Spectrom. 2017, 31, 411–418. [CrossRef] [PubMed]

77. Fuchs, B.; Süß, R.; Schiller, J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res.
2010, 49, 450–475. [CrossRef] [PubMed]

78. Bhandari, D.R.; Wang, Q.; Friedt, W.; Spengler, B.; Gottwald, S.; Römpp, A. High resolution mass
spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst 2015, 140, 7696–7709.
[CrossRef]

79. Swarbick, P.J.; Schulze-Lefert, P.; Scholes, J.D. Metabolic consequences of susceptibility and resistance
(race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell Environ.
2006, 29, 1061–1076. [CrossRef]

80. Scholes, J.; Rolfe, S. Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia
coronata): Quantitative imaging of chlorophyll fluorescence. Planta 1996, 199, 573–582. [CrossRef]

http://dx.doi.org/10.1016/S0040-4039(01)92255-5
http://dx.doi.org/10.1007/BF02360281
http://dx.doi.org/10.1016/S0031-9422(00)94176-1
http://dx.doi.org/10.1055/s-2005-873009
http://www.ncbi.nlm.nih.gov/pubmed/16388461
http://dx.doi.org/10.1016/j.envexpbot.2014.10.003
http://dx.doi.org/10.1007/s10142-013-0358-8
http://www.ncbi.nlm.nih.gov/pubmed/24408130
http://dx.doi.org/10.1002/pca.1179
http://www.ncbi.nlm.nih.gov/pubmed/19866456
http://dx.doi.org/10.1002/mrc.4506
http://dx.doi.org/10.1111/tpj.13408
http://dx.doi.org/10.1007/s11240-015-0815-2
http://dx.doi.org/10.1007/s00122-017-3035-9
http://dx.doi.org/10.1016/S0031-9422(02)00708-2
http://dx.doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://dx.doi.org/10.1186/2047-217X-2-13
http://www.ncbi.nlm.nih.gov/pubmed/24131531
http://dx.doi.org/10.1021/ac049581r
http://www.ncbi.nlm.nih.gov/pubmed/15373433
http://dx.doi.org/10.1002/rcm.7806
http://www.ncbi.nlm.nih.gov/pubmed/27958640
http://dx.doi.org/10.1016/j.plipres.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20643161
http://dx.doi.org/10.1039/C5AN01065A
http://dx.doi.org/10.1111/j.1365-3040.2005.01472.x
http://dx.doi.org/10.1007/BF00195189


Molecules 2018, 23, 3330 20 of 21

81. BILGIN, D.D.; ZAVALA, J.A.; ZHU, J.; CLOUGH, S.J.; ORT, D.R.; DeLUCIA, E.H. Biotic stress globally
downregulates photosynthesis genes. Plant. Cell Environ. 2010, 33, 1597–1613. [CrossRef]

82. Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during
plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [CrossRef]
[PubMed]

83. Amarquaye, A.; Che, C.; Bejar, E.; Malone, M.; Fong, H. A new glycolipid from Byrsonima crassifolia.
Planta Med. 1994, 60, 85–86. [CrossRef] [PubMed]

84. Endo, K.; Kobayashi, K.; Wada, H. Sulfoquinovosyldiacylglycerol has an essential role in thermosynechococcus
elongatus BP-1 under phosphate-deficient conditions. Plant Cell Physiol. 2016, 57, 2461–2471. [CrossRef]
[PubMed]

85. Okazaki, Y.; Saito, K. Roles of lipids as signaling molecules and mitigators during stress response in plants.
Plant J. 2014, 79, 584–596. [CrossRef] [PubMed]

86. Boudière, L.; Michaud, M.; Petroutsos, D.; Rébeillé, F.; Falconet, D.; Bastien, O.; Roy, S.; Finazzi, G.;
Rolland, N.; Jouhet, J.; et al. Glycerolipids in photosynthesis: Composition, synthesis and trafficking.
Biochim. Biophys. Acta Bioenerg. 2014, 1837, 470–480. [CrossRef] [PubMed]

87. Cho, K.; Kim, Y.; Wi, S.J.; Seo, J.B.; Kwon, J.; Chung, J.H.; Park, K.Y.; Nam, M.H. Nontargeted Metabolite
profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using
UPLC-Q-TOF/MS. J. Agric. Food Chem. 2012, 60, 11015–11028. [CrossRef]

88. Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; A critical review on causes,
evaluation, prevention and applications. Talanta 2013, 115, 104–122. [CrossRef]

89. Dong, Y.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatoš, A.; Franceschi, P. Sample preparation
for mass spectrometry imaging of plant tissues: A Review. Front. Plant Sci. 2016, 7, 60. [CrossRef]

90. Thunig, J.; Hansen, S.H.; Janfelt, C. Analysis of secondary plant metabolites by indirect desorption
electrospray ionization imaging mass spectrometry. Anal. Chem. 2011, 83, 3256–3259. [CrossRef]

91. Scanu, B.; Linaldeddu, B.T.; Deidda, A.; Jung, T. Diversity of phytophthora species from declining
mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp.
nov. PLoS ONE 2015, 10, e0143234. [CrossRef]

92. dos Santos, F.N.; Tata, A.; Belaz, K.R.A.; Magalhães, D.M.A.; Luz, E.D.M.N.; Eberlin, M.N. Major
phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or
peptide/protein profiles. Anal. Bioanal. Chem. 2017, 409, 1765–1777. [CrossRef] [PubMed]

93. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data
for metabolite profiling using nonlinear peak alignment, matching and identification. Anal. Chem. 2006,
78, 779–787. [CrossRef] [PubMed]
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