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Abstract: (1) Background: analyses of gene networks can elucidate hematopoietic differentiation
from single-cell gene expression data, but most algorithms generate only a single, static network.
Because gene interactions change over time, it is biologically meaningful to examine time-varying
structures and to capture dynamic, even transient states, and cell-cell relationships. (2) Methods:
a transcriptomic atlas of hematopoietic stem and progenitor cells was used for network analysis.
After pseudo-time ordering with Monocle 2, LOGGLE was used to infer time-varying networks
and to explore changes of differentiation gene networks over time. A range of network analysis
tools were used to examine properties and genes in the inferred networks. (3) Results: shared
characteristics of attributes during the evolution of differentiation gene networks showed a “U”
shape of network density over time for all three branches for human and mouse. Differentiation
appeared as a continuous process, originating from stem cells, through a brief transition state marked
by fewer gene interactions, before stabilizing in a progenitor state. Human and mouse shared
hub genes in evolutionary networks. (4) Conclusions: the conservation of network dynamics in
the hematopoietic systems of mouse and human was reflected by shared hub genes and network
topological changes during differentiation.

Keywords: single-cell RNA sequence; time-varying network; transition state during differentiation

1. Introduction

Throughout life, hematopoietic stem cells (HSCs) maintain the mammalian blood
system [1]. HSCs have three major functional attributes: self-renewal to maintain a stem
cell pool; differentiation along distinct lineage pathways; and proliferation. Blood diseases
can result from an imbalance of fate choices and biased productions of cell types. A
cellular fate is mainly determined by activation of specific transcription factors and their
target genes in complex transcriptional regulatory networks [2]. Identification of valid
transcriptional regulations in biological processes with experiments remains challenging,
and many network reconstruction algorithms have been developed to infer functional
relationships between gene pairs. Most approaches have been based on bulk expression
profiles for samples which contain highly diverse cell types. Network reconstruction with
time-series data has become popular because the data capture a more thorough picture
of the system than does non-temporal data [3,4]. Recently, single-cell RNA sequencing
(scRNA-seq) has provided a powerful method to discover regulatory relationships in
hematopoiesis [5–7]. Pseudo-time ordering places individual cells along a virtual time
axis and provides a large amount of complex additional information for network analysis.
Gene interactions can change over time, and such changes can be inferred from time-
varying data. As an illustration, networks of three genes at three time points were not
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identical (Figure 1a) [8]. It is biologically meaningful to examine the evolution of these
patterns over time rather than characterizing a single static graph that represents only the
interactions persistent over time [6,7]. Reconstruction and dynamic network analysis with
bulk or single-cell data help to understand evolution of biological processes (differentiation,
development, and disease onset and progress) at the network level [3,4]. It is of more
interest to investigate the critical transition state as well as the genes that control the
transition with changes of networks across time. The temporal dynamics of this intergenic
interaction during hematopoietic differentiation are yet to be delineated. Gaussian Graphic
Models (GGMs) have been successfully applied to time-series data to estimate time-varying
graphs, on the assumption that covariance matrices change smoothly over time [9–13].
Thus a series of networks across time facilitate understanding of the evolution of gene
interactions. Recently, a Local Group Graphical Lasso Estimation (LOGGLE) [14] model
has been proposed to incorporate network gradual topology alteration over time, in order
to estimate edge sets of networks at different time points. In this model, neighborhood
information is efficiently integrated, and a computational speed is greatly increased by
a block-wise fast algorithm and pseudo-likelihood approximation. LOGGLE has been
utilized to model direct dynamic interactions between stocks during the global financial
crisis [14].

Figure 1. (a) Hypothetical model of three genes’ expression patterns with differentiation, from which
we inferred a time-varying network and a network change over time. Correlations were inferred
from expression at time points and neighboring time points. Three genes were corelated at time point
1. Only G2 and G3 were correlated at time 2, and there was no correlation at time 3. (b) Strategy to
infer the time varying network in hematopoiesis. (c) A flowchart of an algorithm of the LOGGLE,
with improvement with the ADMM approach. (d) Scheme of neighboring width d for the lasso-type
penalty function, pseudo-time is the inferred pseudo-time of the cell at the center of each bin.
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Here, we apply the LOGGLE model to pseudo-time ordered gene expression dataset
of three lineage differentiation branches of human and mouse so as to construct hematopoi-
etic time-varying gene interaction networks, since the model fits the biological realm of
differentiation. We quantify an evolutionary trend of the gene network with differentiation
(ordered by pseudo-time) by examining global attribute indicators, such as network density.
We further apply network similarity analysis to confirm three stages of differentiation
and to identify hub genes at different stages using centrality analysis. Last, we examine
evolutionary changes of gene network topology as they can provide novel insights into
hematopoietic differentiation. Hub genes identified in the aggregated networks (combined
networks at all times via a union operation) at different evolutionary stages provide inter-
acting candidate genes for further studies. Our model effectively captures the structural
transitions in the dynamic networks.

2. Materials and Methods
2.1. scRNA-seq Data from Hematopoietic Stem and Progenitor Cells (HSPCs) of Human
and Mouse

Bone marrow samples were obtained from healthy donors, as described in a previous
study [7]. CD3−CD14−CD19−CD34+ cells were sorted using a LSRII Fortessa Cytometer.
Lineage−CD117+ cells from bone marrow of C57BL/6 mice were sorted. scRNA-seq cDNA
libraries for human and mouse were prepared with the Chromium Single Cell 3‘ platform
(10x Genomics, Pleasanton, CA, USA). scRNA-seq libraries were sequenced on the Illumina
HiSeq 3000 System. The cellranger pipeline was used to process raw data, to align reads to
the genome, and to produce gene–cell expression matrices [15].

2.2. Preprocessing of Gene Expression Data

The R software package Seurat was used for downstream analyses (Figure 1b) [15].
Raw reads in each cell were first scaled to 10,000 and log-transformed. Highly variable genes
were identified with the FindVariableGenes function for Principal Component Analysis
(PCA). Unsupervised clustering of cells was performed with a graph-based clustering
approach at resolution 2, based on the top 30 principal components. Cells were visualized
based on uniform Manifold Approximation and Projection (UMAP) in Seurat. For each
cluster, gene expression was compared to a median expression of the same gene from cells
in all other clusters by the FindMarkers function in Seurat and cluster-specific genes were
identified with p < 0.01 as the cutoff. Genes then were ranked based on their expression fold
changes, and top cluster-specific genes were compared with published cell type-specific
genes. An HSPC subtype of each cluster was assigned based on statistical significance
of overlap between HSPC- and cluster-specific genes (Fisher’s exact test). Expression
analysis for mouse followed the same pipeline, using cell lineage-specific genes derived
from GSE81682 in GEO as references for cell type assignment.

Differentiation trajectory analyses were conducted with Monocle 2 [16]. Preprocessed
Seurat objects were imported into Monocle 2 with the “importCDS” function. The Monocle
2′s “orderCells” function arranged cells along a pseudo-time axis to indicate their positions
in a developmental continuum. A reversed-graph embedding algorithm was used to
impute differentiation trajectories and infer pseudo-time of cells.

2.3. Selection of the Most Relevant Genes

We first filtered genes to reduce noise and data dimensionality. In this work, we
considered the following two criteria for feature screening to obtain genes that carry
important information (Figure 1b), by merging the gene lists from manual annotation and
expression atlas of hematopoiesis [17,18].

(1) Relevance to hematopoiesis. We used an annotated gene list from one report [17].
There were 45 genes in total, including 33 transcription factors important for HSCs and
hematopoiesis, and 12 additional genes implicated in HSC biology, after removing three
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housekeeping genes [17]. Homologous genes of human were obtained accordingly (http:
//www.informatics.jax.org/, accessed on 1 January 2022).

(2) We also retrieved the lineage-specific genes (progenitors only) from Haemopedia,
an atlas of murine gene-expression data of 54 hematopoietic cell types [18]. We calculated
variance for each gene and selected top genes to construct time-varying network graphs.
Genes with smaller variance (not significantly expressed in any lineage with a cutoff of
standard deviation > 2.5 [18]) did not contain much information across the lineages and
thus were not considered. A purpose of this was to explore the evolution of networks
constructed with genes showing high variations in different differentiation stages. For
human, genes with maximal expression in the orthologous lineage were obtained for
network reconstruction [18]. The gene list is given in Supplementary File S1.

2.4. Estimating Time-Varying Graphs with the LOGGLE Model

We aimed to characterize an evolutionary pattern of inter-gene interactions over
time during the differentiation and to identify hub genes involved in network evolution.
Accordingly, we first used the LOGGLE model developed by Yang and Peng [14] (https://
github.com/jlyang1990/LOGGLE, accessed on 31 November 2021) to build and understand
differentiation time-varying network graphs (Figure 1c). For the gene expression data, due
to high dropout rates of single-cell data, for each branch we binned ordered cells into 25 bins
and used the averaged gene expression of cells in the same bin to represent expression at
certain time points. The model supposes that graph topology changes smoothly over time,
and it uses a local group lasso type penalty to represent information from adjacent time
points to ensure a smooth change in the graph structure. To make the work self-contained,
we here describe how the LOGGLE model constructs a time-varying network graph. More
technical details are described in its original paper and in the LOGGLE package [14].

2.5. Local Group Graphical Lasso Estimate

For a p-dimensional time-series random vector X(t) =
(
X1(t), X2(t), . . . , Xp(t)

)
at time t ∈ [0, 1], which follows a multivariate Gaussian distribution Np(µ(t), ∑(t)).
{xk} (k ∈ {1, . . . , N}) indicates the observation at time tk(0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tN ≤ 1),
in which N represents the number of time points. In our analysis, p is the number of genes.

LOGGLE aims to construct the graph edge set by estimating the precision matrix
Ω(t) = Σ−1(t). The model assumes the smoothness of the graphical profile, that is, the
edge set of the estimated network changes gradually over time. This is achieved by
penalizing with difference between the adjacent networks in the function. The output of the
model is d precision matrix Ώ(tk) at the kth time point with the local group lasso penalty,
through combining the locally weighted negative log-likelihood function [14]:

L(Ωk) :=
1√∣∣Nk,d

∣∣∑i∈Nk,d

[
tr
(
Ω(ti)Σ̂(ti)

)
− log|Ω(ti)|

]
+ λ∑µ 6=ν

√
∑i∈Nk,d

Ωµν(ti)
2 (1)

where Nk,d = {i ∈ 1 : |ti − tk| ≤ d} works as the penalty at the center tk and neighborhood
width d;

∣∣Nk,d
∣∣ is for normalization of Nk,d.

2.6. Model Fitting and Parameter Adjustment

In the algorithm of LOGGLE, three parameters need to be determined: the band-
width of kernel estimation h; the neighborhood width d, which controls the smoothness
of the graph over time; and the sparsity parameter λ, which determines the degree of
graph sparsity. The model uses the alternating directions method of multipliers (ADMM)
algorithm [11] to obtain the optimized results for the objective function in Equation (1).
Through cross-validation (CV), parameters at each time point were calculated (Figure 1c).

http://www.informatics.jax.org/
http://www.informatics.jax.org/
https://github.com/jlyang1990/LOGGLE
https://github.com/jlyang1990/LOGGLE
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Specifically, data were divided into training and validation sets, and a validation score on a
jth validation set was calculated by:

CVj(tk; λk; dk; h) = tr
(

Ω̂r f
−j(tk; λk; dk; h) ˆ∑(j)(tk)

)
− log

∣∣∣Ω̂r f
−j(tk; λk; dk; h)

∣∣∣ (2)

where CV(tk; λk; dk; h) = ∑K
j=1 CVj(tk; λk; dk; h)) is the K-fold cross-validation score at

time tk. The optimal combinations of three parameters (h, dk, λk) are the values that yield
the smallest CV score. To reduce a false positive rate, the “majority vote” procedure cv.vote
was calculated. A flow chart of LOGGLE algorithm is shown in Figure 1c.

2.7. Global Network Properties

Comparing network properties can provide good insights for interacting relationships
of genes within biological networks in a timely manner. For a network G (V,E), in which V
and E are vertices and edges, several common network properties, including the number
of edges, network diameter, and network density, were examined to explain a trend
of network topology changes. The network diameter represents the shortest distance
between the two most distant genes in the network, calculate as, D = max

i,j
δmin(i, j), where

δmin(i, j) represents the shortest path between gene i and j. A higher diameter indicates
that compactness between nodes in the network is low. The network density describes a
portion of potential connections in the network that are actual connections, and is defined
as d(G) = 2|E|

|V|(|V|−1) .

2.8. Network Similarity Analysis

After obtaining a series of networks at different time points, the similarity between
networks will be examined and similar networks will be merged for biological interpreta-
tion. CompNet neighbor similarity index (CNSI) is used to measure the similarity between
two compared networks [19]. Given two networks A and B, the similarity of each pair of
genes is calculated with the degree of overlap between the first neighbors of the nodes in

the two networks with CNSIi =
f A
ni
∩ f B

ni
f A
ni∪ f B

ni
, where ni is the i-th gene of the two networks, and

f A
ni

and f B
ni

refer to the first neighbors of the i-th gene in the two compared networks. The
similarity between the two networks is represented by the sum of CNSIi of all genes.

2.9. Centrality Analysis

In a gene network, not all genes equally influence a network. Gene networks usually
follow a scale-free distribution, in which the majority of the genes have one or two con-
nectivities, and only a few genes have large numbers of connectivities. Many centrality
measures are proposed to indicate a gene’s importance in the network context, such as
connectivity/degree (the number of first neighboring genes), betweenness (frequency of
genes is passed by the shortest paths of pairs of all other genes), clustering coefficient
(probability of connections among gene’s direct neighbors), and PageRank (popularity
of a gene based solely on the interactions). These measures were calculated with igraph
(https://igraph.org/r/, accessed on 22 January 2022). We also borrowed the concept of the
h-index, as widely used in the publication citation Networks [20]. The h-index of a scientist
is defined to be x, if one has published at least x papers with x or more citations each, and
is designed to capture both productivity and impact of published work. A recent study
found that in a number of manmade networks, the h-index performs well at capturing the
spreading influence of genes when compared with gene degrees in a network. The h-index
was calculated with the influential package (https://github.com/asalavaty/influential,
accessed on 25 November 2021).

https://igraph.org/r/
https://github.com/asalavaty/influential
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2.10. Characterization of a Global Network with Concepts of Entropy and Energy

The centrality features of all genes can be used to characterize the global network.
As a measure of uncertainty, the entropy captures the amount of information lacked in a
system, as a measure of uncertainty [21]. The more deterministic the network, the smaller
the uncertainty in the configuration of the graph is, and the smaller the entropy of the
graph. Overall certainty can be also assessed with the Shannon entropy of this network,
given by:

H(Q) = −1 ∗
n

∑
i=1

q(k) ∗ logq(k)

where q(k) = value(k)/sum(value(k)), and the value is degree, betweenness, or other
measures of a gene k. H(q) provides a measure of the network’s heterogeneity in degree or
betweenness of genes.

The concept of graph energy has been subjected to research in the domains of chemistry,
physics, and complex networks [22]. Graph energies reflect the compositions of subgraphs
in the network. Graph energies are matrix energies of various graph representations and
can be defined for any symmetric graph matrix. Graph energy can be defined over the
adjacency matrix, Randic, and Laplacian energies are defined over the Randic and Laplacian
matrices [22,23].

Graph energy is defined on the basis of the adjacency matrix MA of the network, let

MA[i, j] =
{

1 i f
{

vi, vj
}
∈ E

0 otherwise

be the adjacency matrix of G with nodes (V) and edges (E). The energy is defined as:

EG(G) =

n

∑
i=1
|µi|

where µ1, . . . , µn are the eigenvalues of the adjacency matrix MA.
The Randic adjacency matrix MR of the network is defined as:

MR[i, j] =


0 i f i = j

1√
CD(vi)∗CD(vj)

i f
{

vi, vj
}
∈ E

0 i f
{

vi, vj
}

/∈ E

where CD(vi) and CD
(
vj
)

are the degrees of vi and vj. The Randic energy is defined as:

ER(G) =

n

∑
i=1
|ρi|

where ρ1, . . . , ρn are the eigenvalues of the adjacency matrix MA.
Laplacian energy is defined on the basis of the Laplacian matrix ML of the network, Let,

ML[i, j] =


di i f i = j
−1 i f i 6= j ∩

{
vi, vj

}
∈ E

0 otherwise

The Laplacian energy of G is defined as:

EL(G) =

n

∑
i=1

∣∣∣∣λi −
2m
n

∣∣∣∣
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where λ1, . . . , λn are the eigenvalues of the adjacency matrix ML. m and n are the numbers
of edges and nodes.

3. Results
3.1. scRNA-seq Identified a Comprehensive and Conserved List of HSPC Types

Bone marrow samples from four human donors were collected to characterize the
early stages of hematopoiesis. Lineage−CD34+ cells were sorted to enrich for HSPCs. A
human dataset contained 15,245 single CD34+ stem/progenitor cells after filtering out
cells with small numbers of detected genes, as visualized in UMAP, displayed clear clus-
ters, suggesting distinct cell types at molecular levels (Figure 2a). Hematopoietic cell
identity was assigned to each cell cluster by examining cluster-specific genes with a re-
ported lineage signature gene list [1,6]. CD34+ cells were grouped into 15 clusters and
then computationally assigned to the following cell populations: hematopoietic stem
cells and multipotent progenitors (HSCs), granulocyte–monocyte progenitors (GMPs), B
megakaryocyte–erythroid progenitors (MEPs), lymphocyte progenitors (ProBs), and early T
lineage progenitors (ETPs). With the same computational strategy, 17,560 lineage−CD117+

cells from B6 mice were also clustered, unsupervised, based on transcriptome similarity
using UMAP. Hematopoietic cell identity was assigned to each cluster of cells by comparing
cluster-specific genes with published lineage signature genes. Cells were grouped into
36 clusters and assigned into long-term hematopoietic stem cells (LTHSCs), multipotent
progenitors (MPPs), lymphoid multipotent progenitors (LMPPs), common myeloid progen-
itors (CMPs), MEPs, and GMPs (Figure 2a). LMPP in mouse corresponds to ProB and ETP
populations in human, and they were used to be compared in the appendix of this paper.

Figure 2. (a) UMAP plots of human and mouse hematopoietic cells, colored by cell types. (b) A
Waddington landscape of differentiation (generated with the program from https://github.com/
zzwch/waddingtonplot, accessed on 21 January 2022). A cell fate was restricted at a ridge, and
determined once a cell fell into a valley. (c) Human and mouse lineage trees inferred by Monocle 2
using reverse graph embedding at two dimensions.

https://github.com/zzwch/waddingtonplot
https://github.com/zzwch/waddingtonplot
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3.2. Differentiation Trajectories in Human and Mouse Hematopoiesis

Clustering assumes biologically distinct groups, such as discrete cell types or states, and
pseudo-temporal ordering assumes that data lie on a connected manifold. A Waddington
landscape helps to illustrate progressive restriction of cell differentiation. Cells traverse a
landscape of valleys separated by ridges. The ridges prevent spontaneous conversion of cell
types, and thus a cell’s fate is restricted once it descends into a specific valley (Figure 2b).
Pseudo-temporal ordering helps to map the pathways in such a landscape and the underlying
regulatory programs along the paths, revealing how cell types are stabilized with differ-
entiation. We used Monocle 2 to arrange each cell by pseudo-temporal ordering, in order
to analyzing the transition from stem cells to lineage-restricted progenitors. After apply-
ing Monocle 2 to profiled human and mouse cells, an intuitive graphical representation of
early stages of HSPC differentiation emerged. In human, lineages clearly separated among
lineage−CD34+CD38+ progenitors (Figure 2a).

We defined HSC in human and LTHSC in mouse as roots, so that they were located at
starting points of the hierarchies. In both human and mouse, three branches arose from HSC
and LTHSC. When the three-dimensional projection of Monocle 2 was colored with assigned
cell types, conservation of hematopoietic differentiation between human and mouse was
evident. Both human and mouse cells were distributed along pseudo-temporally ordered
paths from HSCs/LTHSCs to three branches: erythroid/megakaryocytic, myeloid, and
lymphoid (Figure 2c). Since the adjacency of cell types on plotting reflects differentiation
pathways at molecular levels, we concluded differentiation trajectories of human and
mouse were highly similar, indicating the species’ conservation.

3.3. Evolution of Time-Varying Network Graphs during Hematopoietic Differentiation

When the parameter d is set to 0, the network does not change over time. In contrast,
when d 6= 0, the differentiation time-varying graph constructed by the LOGGLE and kernel
models captures evolving patterns of gene interactions over time. Thus, both the LOGGLE
and kernel models can describe the evolutionary mode of differentiation well, but the
LOGGLE model has a better CV score and is better supported by data. Finally, we chose
the well-balanced LOGGLE model for further analysis. Six models for the three branches
of human and three branches of mouse were obtained. Supplementary File S2 shows a
result of the parameter selection of the LOGGLE model, obtained by cross validation, at
each differentiation stage.

Based on the above model comparison results, we selected the best performing LOG-
GLE model results to further analyze the evolution of the hematopoietic differentiation
gene expression networks over time. A time-varying graph of the gene interaction net-
works fitted by this model, at 25 pseudo-time points, were obtained for all three branches
of human and mouse. For a list of network edges corresponding to all differential stages,
refer to Supplementary Figure S1. Note that some interactions among genes only appeared
in certain time points. For example, in mouse interactions among Slc4a1, Fn3k, Alas, and
Hbq1i only appeared at time 24. An interaction between BPTF and HBX1 in the human
network disappeared in late stages (Supplementary Figure S1).

To illustrate changes in network topology in more detail, we calculated several global
network properties. It was observed that, from the HSC stage (stable state) to the transition
stage with differentiation, complexity of a gene interaction network (calculated with net-
work density) began to decrease, bottoming in the transition stage, then increased again
before becoming progenitor cells (another stable state) (Figure 3a). It is interesting that in
three branches of both human and mouse, U shapes of network density were observed.
This may suggest that transition stages are subject to weaker regulatory constraints.
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Figure 3. (a) The number of edges over the differentiation of three branches. All showed U
shapes. “To ProB” in human corresponds to “To LMPP” in mouse, both are for lymphoid direction.
(b) Three patterns of gene expression changes. (c) Biophysical foundation of cell-fate transitions.
Stable states corresponded to basins while the transition states were at the saddle points. A transition
state (with blue and red colors) owned both characteristics of two stable states, and drifted towards
to the second one over time. (d) Expression of typical driver genes fluctuated within the stable cells.
(e) Sigmoid shapes of GATA1 (human) and Gata1 (mouse) expression. (f) Venn diagrams of overlaps
of interactions between Monocle 2- and SlingShot-based approaches.

This phenomenon was consistent with the themes of human and mouse differentiation,
proving advantages of single-cell transcriptome profiling, which allowed inspection of
cell states and cell-state transitions at fine resolution, and the identification of transition
cells [24]. Transition cells were characterized by their transient dynamics during a cell-fate
switch, or their mixed identities from multiple cell states, different from the well-defined
stable cell states that usually express marker genes with distinct biological functions
(Figure 3b).

Dynamic modeling provided a method to characterize multi-phase cell-fate transitions
(Figure 3b). There are at least three possible perspectives to describe cell-fate transitions, as
either entirely discrete or continuous process, or as a multi-phase switch process between
two stable states mediated by the transition cells. The first two perspectives corresponded to
clustering or pseudo-time ordering frequently adopted in single-cell analysis (Figure 3b). In
the multi-phase model, cells undergoing transitions were analogized to particles, in which
the transient states corresponded to saddle points and the stable cell states corresponded to
commonly observed cell populations (Figure 3c).
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The number of cells in each state depends on the stability of the state, which is
determined by the energy states of the cells within the state. More cells would be found in
stable states and less cells in transition states, due to different levels of stability (Figure 3c).
To confirm the properties of transition cells, we examined expression changes of signature
genes over pseudo-time. Expression of both Gata1 in mouse and GATA1 in human graphs
were sigmoid shapes, implying existence of transition cells (Figure 3d,e). Cells in stable
states 1 and 2 formed two types of populations, which could be separated computationally
or experimentally. Transition cells made pseudo-time ordering possible because they
provided a bridge between two stable states.

The gene expression change (Figure 1e) was not synchronized with the transition
state identified by network density (Figure 1a). This is because the correlation or the
gene-gene interaction may not happen at the time of the highest gene expression, or
with synchronized modes, as the description for the model of FeedForward Loop [25].
Regulation may happen at certain time, leading to the increase in gene expression, and
there is a time delay. Additionally, gene regulation can only initiate with sufficient gene
expression and accumulation of protein regulators.

We further analyzed the similarity between the networks at different stages of differenti-
ation using the CNSI indicator. Corresponding hierarchical clustering (Figure 4a) aggregated
25 time points of networks from HSC to ProB into three stages. A CNSI chart also revealed
that the similarity among the adjacent HSC stages was very high (with high CNSI). Similarity
among progenitor stages was also high. In contrast, similarity between the transition stage
and HSC/progenitor stage was low, and a dendrogram of clustering placed the network
in three separate clusters. Network similarity analysis showed that the differentiation was
divided into three stages: a prime differentiation stage, a differentiation transition stage, and
a progenitor stabilized stage. Although the differentiation was continuous, clusters were
formed due to the existence of the stable states of HSC and progenitors.

Figure 4. (a) Network similarity of 25 networks of human. Values in grids are a sum of CNSI of all genes
between two networks. The time points were ordered by hierarchical clustering. (b) Correlation of gene
connectivity, PageRank, betweenness, and h-index between mouse and human. The Pearson correlations
are significant with p values of degree: 0.00011, PageRank: 0.00015, Betweenness: 3.355 × 10−5, h-index:
1.505 × 10−7.
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3.4. Estimated Time-Varying Networks Were Robust to the Choice of Pseudo-Time
Construction Tool

More than 70 pseudo-time construction tools had been already published until 2019 [26],
and they provide different algorithms to estimate pseudo-time with single-cell data. To
examine the robustness of our conclusions, we used SlingShot [27], which is able to handle
complicated lineages, to recompute pseudo-time for time varying network analysis. HSC in
human and LTHSC in mouse were used as starting clusters for SlingShot analysis. We selected
the value with the largest weight to assign pseudo-time, according to the suggestion from the
SlingShot website.

First, the correlation of estimated pseudo-times between Monocle 2 and SlingShot
was relatively high (r = 0.995 to MEP, r = 0.990 to GMP, and r = 0.994 to LMPP; Spearman
correlation) in mouse, and also high in human (r = 0.495 to MEP, r = 0.740 to GMP, and
r = 0.640 to ProB). The relatively lower correlations in human may be due to the hetero-
geneity of different individuals (four healthy donors in this study) and complicated lineage
specifications in human [1]. Then, pseudo-time ordered cells by SlingShot were analyzed
with LOGGLE, and the results were compared with those from Monocle 2-based results.
Overlapping interactions were 20–30 times higher than by random chance in mouse, and
8–15 times higher than random chance (p values < 1 × 10−5 in all time points, t-test) in
human (Figure 3f). Considering the current challenge in network reconstruction with
single-cell data, the consistency was quite high [2]. The existence of transition states was
also observed with a SlingShot approach, and we found weaker strains of gene regulation
through analyzing changes of global characteristics (density of network) in transition states.

3.5. Structural Measures of Transcription Regulation Networks of Genes Involved in Hematopoiesis

The time-varying networks in all three branches showed good scale-free behaviors,
for both human and mouse (Supplementary Figure S2). Frequency of connectivity had a
negative logarithmic correlation with the connectivity. In all networks, most genes were
connected to only a few other genes, showing a hallmark of scale-free networks [28]. The
test statistic of a Kolmogorov-Smirnov test (with the power.law.fit function in the igraph
package) that compares the fitted distribution with the degree distribution is shown in
Supplementary Figure S3.

Compared with random networks, time-varying networks had lower entropy (Figure 5a,b).
A network with a uniform topology would have maximum degree entropy. One implication
was that significant heterogeneity existed among genes in the network evolving through non-
random processes during hematopoiesis, and high-degree or high-betweenness genes.

Network energy is an invariant that encodes the network structure. It is defined
as a sum of absolute eigenvalues of a matrix, and so it is closely related to the network
structure [29]. Moreover, the dominating eigenvalues of adjacency matrix, Randic matrix,
and Laplacian matrix are proved to be related to network invariants, such as the largest node
degree, connectivity, the number of short cycles, and paths [29]. Time-varying networks
had smaller graph energies (Figure 4a,b). The graph energy is calculated by summing the
traces of the even powers of the adjacency matrix [29]. Using this new representation, new
bounds for the energy are sums of contributions of subgraphs. Consequently, based with
this structural interpretation, graph energy can be used in the general context of structural
graph theory or even to study gene networks [29]. Interpretation of the graph energy
can now be used to assess some real-world graphs, in which the specific contribution of
subgraphs can be obtained more precise bounds of the energy as the sum of fragments’
contributions, such as a subgraph containing a square with a pendant vertex and a subgraph
containing two triangles with a shared vertex.
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Figure 5. Lower entropy and energy than random networks. Network Entropy and energy of time-
varying networks of human (a) or mouse (b). Random networks with the same nodes and edges
were generated, and their entropy and energy were used as references. The Y axis shows normalized
values against those of random networks.

3.6. Hub Genes Accompanying the Differentiation in Hematopoiesis

Generally speaking, topological features of genes in a network associate to their
biological importance [28]. Genes with high connectivity are termed “hub genes” and
are usually functionally important. “Betweenness” measures the number of the shortest
paths transiting through the genes, and the highest betweenness genes control most of the
information flow in the network, and thus representing its critical nodes of the network.
Betweenness is a better indicator of essentiality than is gene connectivity, but they are
usually highly correlated. Network connectivity and betweenness of our gene lists are
shown in Supplementary Table S1, and individual examples among genes with top degree
and betweenness are provided below.

MEIS1 expression is correlated with cell self-renewal in normal hematopoiesis, and
its expression level is highest in HSCs and declining with differentiation. In mouse, Meis1
is required to maintain functional LTHSCs [30]. Gata1 is a hub gene in time-varying
network from HSC to MEP with high betweenness. Gene targeting studies of Gata1 have
confirmed its importance in primitive and definitive erythroid cells and megakaryocytes.
For examples, in chimeric mice, Gata1-null erythroid cells are not able to mature beyond the
proerythroblast stage, and a lack of Gata1 in megakaryocytes leads to increased proliferation
and deficient maturation of megakaryocytic progenitors [31]. Gata2 is a hub gene with
high betweenness in the LMPP subnetwork. (Gata2 is critical in also stem cells, and
transcriptional gene expression cannot distinguish LMPP from HSC [1,7]).
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3.7. Conservation of Time-Varying Networks between Human and Mouse

Animal models are widely used in biological research on the predicate that fundamen-
tal biochemical processes are conserved across species, as between human and mouse [9].
Evolutionary cross-species comparisons can provide a framework to refine human biologi-
cal research. scRNA-seq has been extensively applied to study hematopoiesis of human and
mouse, but cross-species comparison of the hematopoietic system is not firmly established
at network-level comparisons. We collapsed the networks of different times to obtain
an aggregated network and calculated an average of all central indices. A range of gene
connectivity values in human were generally comparable to those in mouse, suggesting
broad structural similarity in gene regulation (Figure 4b). There was high correlation in
genes’ connectivity values between human and mouse networks (Figure 4b). PageRank
and betweenness centralities confirmed high correlation of human and mouse (Figure 4b).
These results suggested there was species conservation and genes with strongly conserved
connectivity were generally to be functionally evolutionary stable, and played important
roles in hematopoiesis. In addition to conserved network centrality between human and
mouse, the time-varying networks of two species share other same global characters. Both
showed scale-free behaviors that the degree distribution was a power-law. Calculation
of the shortest path length (L) and clustering coefficient (CC), and comparison with the
randomized networks with the same number of nodes and edges showed that networks
owned small-world properties (L ≈ L random, CC � CCrandom) [9].

3.8. Conserved Networks between Human and Mouse

Networks were converted into hypergraphs with the Dual Hypergraph Transformation
(DHT) approach, which transforms the edges of a graph into the nodes of a hypergraph
(Figure 6a). The total number of gene-gene interactions in the 25 original time-varying
networks were assigned, as attributes to nodes of a hypergraph (the number of edges
between associated two genes) [32]. There were a high number of overlapping interacting
gene pairs appearing both in human and mouse networks, with odds ratios of 1.7, 2.2,
and 3.1; and p values of 3 × 10−4, 8 × 10−6, and 3 × 10−3, comparing to the numbers
occurred by chance in HSC to GMP, HSC to MEP, and HSC to LMPP. For the total number
of interactions (the number of appearances in all times) of shared interacting gene pairs,
correlations were high between human and mouse in three trajectories (HSC to MEP,
r = 0.42, p = 0.019; HSC to GMP, r = 0.24, p = 0.06; and HSC to LMPP, r = 0.26, p = 0.05).
These showed species’ conservation of gene regulation during hematopoiesis.

Considering conservation between human and mouse networks, we applied an R-
package, bioNet, to three aggregated hypergraphs for the analysis with a heuristic approach
to identify sub-hypergraphs which had higher numbers of edges in 50 time-varying net-
works in human and mouse [33]. Three sub-hypergraphs were converted back to gene
modules, and these modules played critical roles in the differentiation (Figure 6b). In the
module from HSC to MEP, GATA1 and GATA2 are both hub genes, as expected. BLNK,
a hub gene for the module from HSC to LMPP, encodes a cytoplasmic linker or adaptor
protein that plays a critical role in B cell development [34]. All genes and their related
degrees in the identified core subnetworks are shown in Supplementary Table S1. In all
three networks, most genes were connected to only a few other genes, which is a hallmark
of scale-free networks. We examined whether the core networks were small-worlds through
generating randomized networks with the same number of nodes and edges, and com-
pared the mean shortest path length (L) and the clustering coefficient [35]. The conserved
networks of HSC to GMP, HSC to MEP, and HSC to LMPP had the shortest path lengths of
1.98, 1.76, and 2.61, respectively. The shortest path lengths for Erdos random networks were
1.86 ± 0.004, 1.69 ± 0.001, and 2.32 ± 0.03, respectively. Their clustering coefficients were
0.379, 0.510, and 0.366, respectively, and the same-sized randomized networks had cluster-
ing coefficients 0.187 ± 0.007, 0.309 ± 0.006, and 0.134 ± 0.027, respectively. Thus, all three
networks had the properties of a small-world with some highly connected subnetworks
(Supplementary Table S1) [35].
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Figure 6. (a) A schematic diagram of hypergraph construction. Two nodes were corresponding to
two original edges of G1–G3 and G1–G2. G2–G3 did not exist because G2 and G3 did not interact in
original networks. The edge number attributes of G1–G3 and G1–G2 are 3 and 2, which will be used
as input of BioNet. Core subnetworks expressed from HSC to MEP (b), to GMP (c), and to LMPP
(d) progenitors identified by the edge-based scoring approach.

4. Discussion

Hematopoiesis is a stepwise process, originating from HSCs and associated function-
ally with activation of lineage-specific transcription factors for progenitor cells. Transition
cells are considered critical in many important biological processes, such as in organ
development. We performed time-varying network reconstruction and analysis on pseudo-
temporally ordered gene expression data of cells during hematopoietic differentiation.
Conservation between human and mouse should help in interpreting disease models for
research. Due to the complexity of the LOGGLE algorithm, we could only include about
100 genes, and more efficient algorithms are needed for the analysis of more genes. Another
limitation is that the estimated pseudo-time does not accurately represent the biological
time, and thus we cannot precisely determine the biologically interesting time points for
network reconstruction. Due to the characteristics of single-cell data, a high noise level and
a dropout rate affect the performance of LOGGLE to estimate networks, and imputation
algorithms to perform denoising and drop out imputation in scRNA-seq may be a good
direction to improve the results. The lower consistency between the results with Monocle
2 and SlingShot in human indicates the complicated branching structures may make the
pseudo-time ordering difficult, and then affect the network estimations.
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5. Conclusions

The evolutionary trajectory of the time-varying networks, built with the LOGGLE
model, characterizes the changes in transcription programs at the gene interaction levels,
instead of at the individual gene expression levels. The differentiation trajectory could
be divided into three stages, through similarity analysis of neighboring networks along
pseudo-time, and hub genes at different differentiation stages were identified. The evo-
lution of time-varying graphs revealed the differentiation patterns of human and mouse
hematopoiesis with three states. Existence of transition states may be able to explain why
different phenotype cells can form clusters in UMAP and the cells can be sorted with FACS
technology (Figure 3c). Analogous to chemical reactions, the transition can be conceptu-
alized as sharing some features of reactants and products (two stable states), and cannot
be isolated due to instability. Identification of the ‘catalysts’ for differentiation would be
useful to understand production regulation of blood cells from stem cells. Phase transitions
are crucial for the survival and reproduction of the cells, and failure to implement phase
transitions will result in dysfunction within cells and networks. It would be desirable to
study different models for the network evolution to investigate the regulation change over
time. The lower edge density successfully showed weaker regulation in this study, and
more quantities rephrased in terms of a nonlinear system on network is expected to investi-
gate the critical transition from healthy states to disease states [36,37]. The investigation of
energy in gene networks is still in its infancy. The energy reflects the connections within the
network of a vertex define the way in which any abstract resource (information, influence,
or importance) circulates in its neighboring vertexes. We report the results here in the hope
of stimulating further investigation of network energy [38–42].

There was conservation of the overall hematopoietic process between mouse and
human. Both showed three branches of differentiation pathways. Their networks shared
hub genes and global topological characteristics. Six dynamic networks all had transition
stages with loose network constrains. The conservation of networks and important genes
inside helps to understand hematopoiesis and to develop treatment of blood diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101890/s1, Figure S1: 25 time varying networks for
hematopoietic differentiation in human and mouse. Networks were plotted with circular layout
of aggregated networks. Figure S2: histograms to show distribution of degrees of networks. Table
S1: all centrality measures, clustering coefficient, and network length of genes in the time-varying
networks. File S1: genes used for analysis. Genes were collected with manual curation and expression
lineage specificity, shown in column 3. File S2: parameters of LOGGLE chosen by cross validation,
where λ_opt, h_opt, and d_opt indicate the optimal λ, h, and d. File S3: power-law fitting results of
networks. The KS.stat was calculated by examining the similarity with the fitted distribution.
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