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Abstract: Infection with hepatitis B virus (HBV) remains a global health challenge. Approximately
292 million people worldwide are chronically infected with HBV and the annual mortality from
the infection is approaching 900,000. Despite the availability of an effective prophylactic vaccine,
millions of individuals are at risk of potentially fatal complicating cirrhosis and hepatocellular
carcinoma. Current drug treatments can suppress viral replication, slow the progression of liver
fibrosis, and reduce infectivity, but can rarely clear the viral covalently closed circular DNA (cccDNA)
that is responsible for HBV persistence. Alternative therapeutic strategies, including those based on
viral gene silencing by harnessing the RNA interference (RNAi) pathway, effectively suppress HBV
replication and thus hold promise. RNAi-based silencing of certain viral genes may even lead to
disabling of cccDNA during chronic infection. This review summarizes different RNAi activators
that have been tested against HBV, the advances with vectors used to deliver artificial potentially
therapeutic RNAi sequences to the liver, and the current status of preclinical and clinical investigation.
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1. Introduction

Problems arising as a result of chronic infection with hepatitis B virus (HBV) continue to pose
major global health challenges (reviewed in [1]). Annual mortality is estimated to be 880,000 and is
now similar to the death rate caused by human immunodeficiency virus-1 (HIV-1). HBV infection is
particularly common in sub-Saharan Africa, East and Southeast Asia, and the western Pacific islands,
where complicating cirrhosis and hepatocellular carcinoma occur with high frequency. Although an
effective prophylactic vaccine is available, it has little use for individuals who are already chronically
infected with HBV. Moreover, available therapies have modest curative efficacy and are incapable of
reliably eliminating all replication intermediates of the virus.

2. HBV Replication

The virion of HBV, or Dane particle, has large, middle, and small surface antigens (HBsAgs)
embedded in a surrounding envelope (reviewed in [2]). The nucleocapsid is located within the
envelope and comprises an icosahedral capsid, which is typically made up of 120 dimers of the
core protein [3], with encapsulated viral relaxed circular DNA (rcDNA) and polymerase protein. In
addition to the intact infectious particles, serum of HBV-infected individuals contains an abundance of
subviral particles that are mostly made up of small surface protein [4–6]. Infection of hepatocytes is
initiated by interaction of the Dane particle with glycosaminoglycans located on the cell surface [7].
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Thereafter, specific binding of the myristylated large surface antigen to the sodium taurocholate
polypeptide (NTCP) bile acid transporter initiates cellular entry of the nucleocapsid [8,9] (Figure 1).
Evidence indicates that the epidermal growth factor receptor may also play a role in uptake of HBV
into liver cells [10,11]. The elusive NTCP receptor of HBV was only discovered in 2012 and thereafter
provided valuable impetus to research on HBV replication [8]. Prior to the discovery, work on HBV
was hampered by a lack of information about how HBV gains access to hepatocytes during infection.

After traversing the cell membrane, the nucleocapsid is released and transferred to the nucleus [12]
(Figure 1). This process is facilitated by nuclear localization signals of the core proteins. Regulated
breakdown of capsids leads to release of rcDNA, which is then converted to covalently closed circular
DNA (cccDNA) within the nucleus. The repair process involves use of host cell enzymes such as tyrosyl
DNA phosphodiesterase 2 (TDP2) [13] and flap endonuclease 1 (Fen1) [14]. Conversion of rcDNA to
cccDNA and establishment of HBV replication is an efficient process. Studies on chimpanzees [15]
and ducks [16] have shown that a single infectious particle is sufficient to initiate infection with a
replicating virus.
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Figure 1. Disruption of the hepatitis B virus (HBV) replication cycle by RNA interference (RNAi)
activators. HBV enters hepatocytes through a specific interaction with the sodium taurocholate
co-transporting polypeptide (NTCP) receptor and the nucleocapsid is transported to the nucleus.
Relaxed circular DNA (rcDNA) is then released and “repaired” to form covalently closed circular
DNA (cccDNA). This stable intermediate is transcribed to produce viral RNAs, including pregenomic
RNA (pgRNA), which are exported to the cytoplasm and translated. Encapsidation of the pgRNA,
together with a viral polymerase, by the core proteins signals its conversion to rcDNA, thereby yielding
a mature nucleocapsid. The nucleocapsids may then be recycled to replenish cccDNA in the nucleus
(dashed line) or trafficked through the Golgi endoplasmic reticulum (ER), thereby acquiring surface
antigen-embedded membranes, and then being secreted from the cell as a new infectious virions.
The protein coded by the viral X open reading frame, HBx, targets the cellular SMC5/6 (structural
maintenance of chromosomes) complex for degradation and thereby enables transcription from cccDNA.
RNAi activators function to degrade target RNAs, thus preventing the translation of viral transcripts and
inhibiting HBV replication. RNAi activators tested successfully against HBV include short interfering
RNAs (siRNAs), short hairpin RNAs (shRNAs), and artificial primary microRNAs (pri-miRNAs).

cccDNA is a stable replication intermediate and serves as the template for transcription of
pregenomic RNA (pgRNA) and viral protein-encoding mRNAs [17]. Maintenance of cccDNA within
infected hepatocytes is enabled by HBx, the protein encoded by the X open reading frame (ORF) [18].
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Naturally, extrachromosomal DNA such as cccDNA is targeted for transcriptional silencing by the
cellular structural maintenance of chromosomes 5/6 (SMC5/6) complex. HBx interacts with the damaged
DNA-binding (DDB) domain of ubiquitin ligase 1 to render SMC5/6 unstable and thereby facilitate
HBV gene expression [18] (Figure 1). ORFs of the cccDNA are arranged in a remarkably compact
organization (reviewed in [2]). The protein-coding sequences overlap with each other and multiprotein
coding is enabled by use of different reading frames. Further adding to the compact arrangement is
the embedding of regulatory elements, such as promoters and enhancers, within the viral ORFs.

HBV transcripts are initiated at the basic core promoter/enhancer II, PreS1, S, and X promoters
(reviewed in [19]). However, with only one poly(A) site on the cccDNA, the RNAs terminate at a
common 3′ end. There are four viral ORFs: polymerase (P), core (C), surface (S), and X (reviewed
in [20]). The polymerase protein is the largest viral protein and comprises 833 amino acids. This enzyme
is responsible for priming, reverse transcription, and degradation of hybridized RNA (RNaseH action)
during the synthesis of rcDNA from the pgRNA. The C ORF has two in-frame translation initiation
sites: preC and C. Translation initiated at the preC AUG leads to expression of the preC/C fusion
protein, which is processed in the endoplasmic reticulum and gives rise to the secreted HBV e antigen
(HBeAg). This marker is a useful clinical indicator of active viral replication. Translation initiated at
the C AUG gives rise to the capsid-forming core protein. The S ORF has three in-frame translation
initiation codons: preS1, preS2, and S, which code for the large, middle, and small HBsAgs, respectively.
Assembly of the viral particles is initiated by encapsidation of pgRNA and polymerase in the capsid
particles. Reverse transcription of the pgRNA is commenced in the nucleocapsid. Subsequent secretion
via the endoplasmic reticulum adds the envelope with surface proteins to release intact infectious
virions. rcDNA-containing capsids may also be transported to the nucleus without secretion and
thereby contribute to further replenishment of cccDNA. During replication, HBV per se causes minimal
cytotoxicity. It is the inflammatory response to the infection that is largely responsible for hepatitis that
accompanies HBV infection.

3. Goals of Treating Chronic Infection with HBV

Various types of cure from HBV infection have been defined [1]. A functional cure describes the
status of a patient after HBsAg is eliminated, with or without seroconversion, but is usually associated
with continued presence of cccDNA. Complete cure is a functional cure with elimination of cccDNA,
and complete eradication refers to removal of all viral elements from an infected patient. Functional
cure is currently thought to be a realistic goal of treatment strategies. However, complete sterilizing
eradication of the virus, which would probably require combination therapy, is the ultimate goal
of HBV therapy. A difficulty of assessing success of treatment is the lack of suitable biomarkers for
measurement of intrahepatic cccDNA. Some recently described and potentially useful assays include
evaluation of core-related HBV antigen (HBcrAg) [21] and serum viral RNAs [22]. These show promise,
but thorough validation remains to be established.

4. Currently Licensed Treatment for HBV

The rationale for treating infection with HBV is to minimize or eliminate complications that result
from persistence of the virus. Currently there are two main classes of drug available to treat HBV
infection: nucleoside/nucleotide analogues (NAs), which disrupt viral DNA synthesis during reverse
transcription, and interferon-alpha (IFN-α) (reviewed in [23]). The six currently licensed NAs are
lamivudine (LAM), adefovir dipivoxil (ADV), telbivudine (LdT), entecavir (ETV), tenofovir disoproxil
fumarate (TDF), and tenofovir alafenamide (TAF). These drugs efficiently suppress viral replication
and may inhibit formation of new cccDNA molecules, but they have little effect on established pools
of cccDNA or formation of cccDNA in newly infected cells. The first-generation NAs—LAM, ADV,
and LdT—are limited by their low barrier to viral resistance. TAF, TDF, and ETV are more effective
and curb emergence of viral escape. IFN-α is usually administered as a pegylated molecule to improve
bioavailability and durability of antiviral action. IFN-α has various antiviral actions and not all are



Viruses 2020, 12, 851 4 of 20

completely understood. In addition to immunomodulation, IFN-α acts to inhibit viral DNA replication.
Although a few cases of seroconversion from HBsAg positive to negative status have been reported in
HBV-infected individuals treated with IFN-α (reviewed in [1]), the drug is not without drawbacks. It is
expensive and also associated with side effects. Moreover IFN-α is contraindicated in HBV carriers
with decompensated cirrhosis.

5. New HBV Drugs under Development

A variety of new approaches is being developed for treatment of chronic infection with HBV.
Gene editing has gained popularity and is based on targeted mutation of HBV sequences, particularly
cccDNA (reviewed in [24]). Use of transcription activator-like effector nucleases (TALENs) and
RNA-guided endonucleases derived from the clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated (Cas) system have shown good efficacy. The underlying rationale
for the approach is based on achieving specific mutation of HBV sequences following repeated target
cleavage and subsequent error-prone repair by non-homologous end joining (NHEJ). Evidence from
preclinical studies has been promising. Evaluation of efficacy in a clinical setting will likely be
undertaken when challenges of ensuring specificity and efficient delivery of sequences encoding
gene editors to HBV-infected hepatocytes have been met. The capsids of HBV enhance formation
of cccDNA by regulating nuclear import of nucleocapsids and encapsulation of pgRNA prior to
reverse transcription. Capsids have therefore been the target of a new class of drugs termed capsid
assembly modulators (CAMs) (reviewed in [25]). Several candidates have shown promise in preclinical
evaluations and are being developed for clinical translation. Importance of the interaction between
the myristoylated large HBsAg and the NTCP receptor has been exploited to develop HBV entry
inhibitors [26–28]. MyrcludexB (Bulevirtide), a drug candidate comprising a truncated large HBsAg
with N-terminal myristoyl that functions as a competitive inhibitor of viral entry is now in phase 3
clinical trial (clinicaltrials.gov, NCT03852719).

5.1. Rationale for Advancing RNAi-Based Anti-HBV Therapy

RNA molecules, both pgRNA and mRNAs encoding viral proteins, are essential for HBV
replication. Destabilizing these viral sequences is therefore justifiably thought to be a good strategy
for inactivating the virus. By effecting degradation of pgRNA, formation of cccDNA is countered.
Moreover, inhibition of translation of viral proteins that are important for cccDNA formation, such
as C and HBx, should also limit cccDNA production. Compact arrangement of the HBV genome
limits sequence plasticity and ability to evade silencing sequences. Furthermore, presence of common
3′ sequences that include HBx means that different viral transcripts may be targeted by individual
silencing sequences (Figure 1).

5.2. The RNAi Pathway

RNA interference (RNAi) is a ubiquitous post-transcriptional gene silencing (PTGS) mechanism
found in metazoan cells. Potent and specific gene silencing is affected by small duplex RNAs such as
21–23 nt short interfering RNAs (siRNAs) and ≈22 nt microRNAs (miRNAs). In mammalian cells,
miRNAs play a fundamental role in gene regulation and are generated by the miRNA biogenesis
pathway (reviewed in [29]). Although the basic steps of this pathway are well known, additional
regulatory factors and mechanisms have been recently described (reviewed in [30]).

Genes encoding miRNAs are transcribed to produce precursor transcripts from which the mature
sequences are generated in a stepwise manner that involves action of RNase III enzymes (reviewed
in [29]). Characteristic hairpin structures in the transcript constitute primary miRNAs (pri-miRNAs).
Sequence motifs in the pri-miRNA are recognized for processing by the nuclear Drosha–DGCR8
microprocessor complex. The product is a shorter hairpin known as a precursor miRNA (pre-miRNA),
which is exported from the nucleus by Exportin-5 in a Ran-GTP-dependent manner through nuclear
pore complexes. In the cytoplasm, the terminal loop of the pre-miRNA is cleaved by the RNase III
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enzyme Dicer [31] to produce an imperfectly paired ≈22 bp miRNA duplex. The ends of the duplex
have 2 nt 3′ overhangs as a result of RNase III cleavage by Drosha and Dicer.

One strand of the miRNA duplex is selected as the mature miRNA or guide sequence and loaded
onto an Argonaute (Ago) protein of the RNA-induced silencing complex (RISC) (reviewed in [32]).
Prior to loading, Dicer associates with the TAR (trans-activation response) RNA-binding protein (TRBP)
to form the RISC loading complex (RLC). RISC loading is asymmetric as the strand of the miRNA
duplex with the lower 5′ stability is selected as the mature miRNA. There are four closely related Ago
proteins (Ago 1–4) that may associate with the miRNA, but only Ago2 has endonuclease activity [33,34].

The miRNA typically directs RISC to partially complementary binding sites in the 3′ untranslated
region (UTR) of messenger RNAs (mRNAs), which are then targeted for translational repression,
deadenylation, and degradation (reviewed in [35]). Alternatively, if there is near-perfect complementary
base pairing between the miRNA and mRNA, the mRNA may be cleaved by an Ago2-RISC. This is
often the case with artificial RNAi activators that have been developed for anti-HBV therapeutic
application. These artificial sequences are designed to function as intermediates at different steps of
the miRNA biogenesis pathway to reprogram silencing for therapy. As with natural intermediates,
sequence and structural features of RNA activators are important to achieve efficient processing
gene silencing.

5.3. RNAi Activators

It is ironic that exploitation of the RNAi pathway preceded its complete elucidation. Following
the demonstration by Fire and colleagues that introduction of long double-stranded RNA into the
nematode worm caused potent and specific silencing [36], numerous studies used this approach to
suppress gene expression. Initial attempts to induce RNAi in mammalian cells however were met with
failure. This was because long duplex RNA induces an interferon response that leads to non-specific
gene silencing and apoptosis. Elucidation of the pathway revealed that large double-stranded RNAs
are processed to 21–23 nucleotide duplexes termed small interfering RNA (siRNA) (Figure 2A) [37].
siRNAs were further shown to have 5′ phosphates, 2′ hydroxyls, and overhangs of two nucleotides at
their 3′ ends. Subsequently, chemically synthesized short RNA duplexes with these characteristics were
shown to be capable of gene silencing in vitro [38]. When tested in mammalian cells, these siRNAs
achieved silencing without inducing the interferon response [39]. This was a seminal study in the field
as it broadened the scope of RNAi and paved the way for its use as a therapeutic modality.

Use of DNA to express RNAi activators was also explored at an early stage. This entailed
expression of each individual strand of an siRNA from two expression cassettes [40] or the transcription
of short hairpin RNAs (shRNAs) (Figure 2B) [41]. RNA polymerase III promoter-driven shRNA
expression proved to be very effective, but given knowledge of RNAi at the time, it was unclear how
hairpins achieved gene silencing. It is now clear that shRNAs induce the RNAi pathway by simulating
precursor miRNA and siRNAs by mimicking mature miRNA duplexes. This simple concept underlies
the basis of reprogramming the RNAi pathway by synthetic or expressed exogenous sequences that
mimic various intermediates of the pathway. Later generation exogenous activators of RNAi were
designed to resemble miRNAs more closely and are aptly named artificial miRNA (Figure 2C,D).

The discovery that RNAi could indeed be triggered in mammalian cells by synthetic siRNA [39]
led to advancing use of the silencing pathway against viral infections. HBV was no exception and
there was a concerted effort to achieve siRNA-mediated silencing of the viral genes in vitro and
in vivo [42–46]. Initial studies were promising and demonstrated that targeting HBV RNA suppressed
replication potently. Because of the arrangement of the HBV genome, with the virus producing
overlapping transcripts with a common 3′ end, a single siRNA could simultaneously affect multiple
viral factors.
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Figure 2. Synthetic and expressed activators of the RNA interference (RNAi) pathway. (A). Small
interfering RNA (siRNA), typically produced as synthetic sequences, are perfectly matched 19–21
nucleotide duplex RNAs with two nucleotide 3′ overhangs. Each strand contains terminal 5′ phosphate
and 3′ hydroxyl groups. siRNAs mimic miRNA duplexes and enter the RNAi pathway when taken up
by RNA-induced silencing complex (RISC). Strand selection occurs to remove the passenger strand
and activated RISC silences cognate mRNA. (B) Short hairpin RNAs (shRNAs) are generally expressed
from RNA polymerase III promoters as a single RNA sequence that folds into a stem loop. As mimics
of pre-miRNA, shRNA are recognized and processed by Dicer to form siRNAs that then then enter
RISC. (C) Artificial pre-miRNAs are imperfectly matched stem loop RNAs that resemble naturally
occurring pre-miRNA. As such, they are processed by Dicer into miRNA duplexes and subsequently
enter RISC. (D) The design of artificial pri-miRNAs (apri-miRNAs) is based on the architecture of
naturally occurring pri-miRNA and are recognized and processed by the microprocessor complex,
exported from the nucleus, processed by Dicer, and then taken up by RISC.

The designs of synthetic siRNAs were such that the structural features did not deviate significantly
from those established in earlier studies [47] and invariably comprised a 19–21 nucleotide duplex with
overhangs of two nucleotides at the 3′ ends. Subsequent efforts explored chemical modification as
a means of improving siRNA efficacy. Initial reports explored use of 2′-OH modifications (2′-fluoro
and 2′-O-methyl), inclusion of deoxyribonucleotides and use of phosphorothioate linkages [48,49].
Combinations of these modifications were introduced into both strands of the siRNA and evaluated
in vitro and in mice. Modifications improved in vitro stability of siRNA from a few minutes to
hours, and silencing efficacy was not compromised. In vivo, the modified siRNAs outperformed



Viruses 2020, 12, 851 7 of 20

their unmodified counterparts. Formulation of the modified siRNAs into lipoplexes then delivery to
transgenic mice stably expressing HBV inhibited viral replication with high efficacy [49]. Moreover,
with an initial 3-day daily dose of lipoplexed siRNA, followed up with a single weekly dose, silencing
was maintained for up to 6 weeks. More recently, the activity of synthetic siRNA containing novel
modified ribonucleotides was explored [50–52].

Incorporation of altritol, a six-membered ring in place of ribose, into synthetic anti-HBV siRNA
improved silencing activity but at a cost of some hepatoxicity in vivo [50]. In contrast, altritol-modified
siRNA exhibited an improved immunostimulatory profile when compared to unmodified siRNA.
Incorporation of 2′-O-guanidinopropyl-modified ribonucleotides similarly showed improved stability,
silencing, and immunostimulatory profiles [52]. The ease of manufacture of siRNA and compatibility
with non-viral delivery vehicles have spurred their rapid adoption and implementation for therapeutic
use. This is highlighted by the fact that there are several clinical trials already underway assessing the
efficacy of anti-HBV siRNAs (clinicaltrials.gov).

Although chemical modification to siRNAs may increase their half-lives to prolong therapeutic
silencing, repeated dosing is required to treat chronic HBV infection effectively. Renewable expression
of RNAi activators from DNA cassettes has the potential for more durable silencing. RNA polymerase
III-driven transcription, which naturally produces short defined RNA sequences, was initially explored
for expression of RNAi activators [41]. Transcription of shRNA sequences (Figure 2B) from RNA
polymerase III promoters, first described by Brummelkamp et al. using the H1 promoter [41], proved
very popular and remains an important method of gene silencing. The robust U6 promoter has been
employed to express anti-HBV shRNA and was shown to silence viral replication with good efficacy
in cell culture and in vivo [53]. A caveat of strong shRNA expression is that endogenous miRNA
processing may be disrupted to cause severe toxicity in mice [54]. Expression of anti-HBV shRNA
from the H1 promoter [55] and the tRNALys promoter [56] also silenced viral replication effectively.
Characterization of miRNA mechanisms of action fueled research aimed at exploring RNAi activators
that more closely resemble these natural gene silencers. Using known miRNA sequences and structures
as scaffolds, researchers have developed artificial miRNAs resembling pre-miRNAs and pri-miRNAs
(Figure 2C,D) [57,58]. In particular, artificial pri-miRNAs (apri-miRNAs) are very useful because they
allow expression from RNA polymerase II promoters, thereby enabling better transcriptional control of
RNAi activators [58] and avoidance of toxicity caused by overexpression. Furthermore, as pri-miRNAs
often exist as polycistronic sequences, this feature may be adapted to produce multi-targeting miRNAs
from single DNA cassettes. This is particularly useful to limit emergence of viral escape mutants [58].
Another advantage of expression cassettes is their compatibility with efficient viral vectors. This was
verified by incorporation of anti-HBV shRNA expression cassettes into hepatotropic adenoviral vectors
that effectively suppressed HBV replication in transgenic mice [59,60]. This approach was expanded
to using lentiviral [61] and adeno-associated viral vectors (AAVs) [62] to deliver HBV-targeting
polycistronic apri-miRNA. Using AAVs, inhibition of viral replication was effective for up to 40 weeks
in transgenic mice. Considering the importance of long-term silencing for treatment of chronic HBV
infection, this is a significant finding.

5.4. Significance of Genotype Variability for Advancing RNAi-Based HBV Therapy

HBV is considered a good target for potential treatment on the basis of RNAi [53,59] but sequence
variation among genotypes and subgenotypes could influence silencing efficacy. Given the sensitivity
of gene silencers to target sequence changes, designing siRNAs, shRNAs, and artificial micro RNAs
(amiRNAs) against the conserved sites is essential to ensure activity across multiple genotypes. HBV has
been classified phylogenetically into nine genotypes, which are based on intergroup divergence of more
than 7.5% across the complete genome (reviewed in [63]). There is a putative 10th genotype, J, isolated
from a single individual and predicted to be a genotype C recombinant, but further characterization
is required [64]. Genotypes A-D, F, H, and I are classified further into at least 35 subgenotypes on
the basis of intergroup nucleotide differences across the complete genome. Genotypes and certain
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subgenotypes have distinct geographical distributions and differ in their clinical manifestations.
For example, subgenotype A1 predominates in Africa, whereas subgenotype A2 is mainly found
in Europe. Genotype A is associated with severe liver disease and progression to hepatocellular
carcinoma. The HBeAg seroconversion, which is an important intermediate stage in the evolution of
chronic hepatitis B (CHB), occurs earlier during genotype A1 infection when compared to genotype
A2 and D infection [65]. Genotype C infection is associated with more frequent progression to liver
cancer than genotype B infection [66]. Different genotypes also differ in response to antiviral therapy.
Genotype A-infected patients respond better than genotype D-infected patients to IFN-α [67,68]. In a
recent study, genotype A and D responded poorly to tenofovir but was found to be effective against
genotype C and B infection [69,70]. These differences in clinical manifestation and response to therapy
may be as a result of subtle viral genomic sequence variation, although host factors may also play a
part. Supporting this notion is the fact that nucleotide variability in precore/core (preC/C) sequences of
subgenotype A1 and genotype D accounts for differences in expression of HBeAg and efficiency of
pregenomic RNA (pgRNA) packaging [71]. Another example is the A1762T/G1764A sequence variation
located in the basal core promoter (BCP), which is responsible for controlling pgRNA transcription
and is associated with a higher viral load in patients infected with genotype C [72].

In a study aimed at evaluating efficacy of expressed shRNAs against genotypes A-H, the researchers
designed 21 shRNAs to target conserved regions [73]. Six of the shRNAs were highly effective and
in some cases could tolerate mismatches between the guide and target. One of the effectors, sh10,
reduced viral DNA by ≥95%, despite having one mismatch in targets of genotypes A, B, and E and
two mismatches to cognates of genotype G and H. This efficacy equaled that of silencers with perfectly
complementary targets. In another study, 40 shRNAs were designed to target conserved sequences of
genotypes A-I [74]. Four shRNAs were effective against genotypes A-D and I, and inhibited HBV gene
expression by up to 90%. However, the inhibitory efficacy of these shRNAs varied significantly against
the different genotypes. Employing polycistronic RNAi activators, which produce multiple guides,
may be a useful means of overcoming problems of silencing varied sequences with one effector [58].
Overall, it is clearly important that anti-HBV RNAi therapy regimens be tested in the panel of described
HBV genotypes to be able to achieve broad efficacy in most chronic carriers of HBV.

6. Models of HBV Infection

To advance RNAi-based therapy for HBV infection, use of models that accurately simulate
HBV infection and replication is important. Improved understanding of the molecular biology of
HBV replication has been beneficial, but suitability and convenience of models that reproduce all
stages of HBV infection remain a concern. A factor that has impeded progress was incomplete
understanding of the mechanism of HBV entry into hepatocytes. Until fairly recently, cultured cells that
could be infected with the virus were limited to primary human hepatocytes (reviewed in [75]) and
the HepaRG cell line [76,77]. Description of the NTCP quickly led to generation of HBV-infectable
cell lines that had been stably transfected with sequences encoding the receptor [8]. Transfection of
liver-derived cells with plasmids that encode reporter constructs that are fused to HBV sequences
or greater-than-genome-length replication-competent HBV DNA have been popular and widely
used [78,79]. Cells with stably integrated replication-competent HBV DNA have also been used to test
antivirals [80,81]. Although convenient, these cell lines do not recapitulate all stages of HBV replication.
Differentiation of induced pluripotent stem cells (iPSCs) into HBV-infectable hepatocytes and liver
organoids is finding application [82,83].

Preclinical studies in mice have commonly relied on plasmid-derived [48,57,58] or transgenic [62]
HBV replication as mice are not natural hosts of hepadnavirus infection. With the hydrodynamic
injection mouse model, rapid tail vein injection of a large volume containing replication-competent
HBV plasmid results in viral replication in the liver with production of viral antigen markers in the
serum [84,85]. This model is useful, but the high-pressure injection may be technically challenging and
usually results in transient liver damage. Delivery of replication-competent greater-than-genome-length
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HBV sequences using AAVs has also been used to replicate HBV in mice [86]. Transgenic mice with
integrated DNA comprising greater-than-genome-length HBV sequences replicate the virus in vivo in
a model that mimics chronic human infection [86,87]. Although these mice are transgenic, difficulties
have been that HBV gene expression is variable and development of antibodies to HBsAg complicates
reliability of HBsAg measurements. Ducks and woodchucks can also be used as models of hepatitis
infection but are only infected by species-specific hepatitis strains (DHBV and WHV, respectively) [88].
However, genetic and immunological differences of these animals makes inferences from studying
these animals to the human condition unpredictable. Asian tree shrews (Tupaia belangeri) can be infected
by HBV, but these animals have not yet been widely used for evaluation of RNAi-based treatment of
HBV infection [89].

Chimpanzees are the only primates susceptible to HBV infection and are an excellent model of
chronic HBV infection. However restrictions on use of chimpanzees, high costs, and ethical concerns
have limited their use as a preclinical model [90]. Alternatively, other non-human primates may be
rendered susceptible to HBV infection. Expression of the human sodium-taurocholate co-transporting
polyepeptide (hNTCP) in macaques using a helper-dependent adenoviral (HDAd) vector permitted
in vivo infection with HBV and markers of replication were detected for up to 6 weeks after infection [91].
This is a promising HBV infection model, but further optimization is still required to ensure long-term
HBV expression.

7. Delivery of HBV-Targeting Gene Silencers

An important goal in the translation of RNAi-based therapies for HBV is targeted delivery
to the liver. Several delivery strategies have been investigated, which include synthetic non-viral
formulations and recombinant viral vectors, which are used for delivery of synthetic and expressed
RNAi activators, respectively.

7.1. Non-Viral Vectors

Lipid nanoparticles (LNPs) were used in a number of earlier studies to deliver siRNAs (reviewed
in [92]). These vectors comprise nucleic acid-binding lipids together with other compounds that
assemble to form the LNPs. Hepatocyte-targeting compounds, such as galactopyranoside cholesterol,
and PEG to improve stability in blood are also often used in formulations. Uniform small size of the
LNPs (<100 nm diameter) is important to avoid sequestration during circulation and facilitate traversing
of the sinusoidal fenestrations to reach hepatocytes. Features that promote efficient endosomal escape
are also required to augment cytoplasmic siRNA delivery.

In an early study, chemically modified siRNAs targeting HBV were incorporated into stable
nucleic acid lipid particles (SNALPs) then administered by intravenous injection to mice replicating
HBV [49]. This SNALP-formulated siRNA had a longer half-life in the liver and improved efficacy
compared to unformulated siRNAs. Reduced HBV DNA was detected in the serum for up to 6 weeks
following weekly dosing. Pegylated nanoparticles were used successfully to target unmodified siRNAs
to the liver [93]. Following repeated systemic administration, threefold reductions of markers of HBV
replication were observed in HBV transgenic mice over a 28 day period. Hepatotropic lipoplexes
containing guanidinopropyl-modified siRNAs targeting X also effectively silenced HBV replication [52].

More recently, conjugate-mediated delivery of siRNAs has gained momentum in preclinical and
clinical applications. siRNAs conjugated to N-acetylgalactosamine (GalNAc/NAG) have become a
popular choice for liver-targeted delivery. Conjugation of siRNAs to ligands derived from GalNAc
enables uptake by the asialoglycoprotein receptor (ASGPR) on hepatocytes, resulting in liver-specific
delivery of siRNAs in vitro and in vivo [94]. A single co-injection of GalNAc-conjugated melittin-like
peptide (NAG-MLP) with a cholesterol conjugated HBV-targeting siRNA successfully reduced HBV
RNA, DNA, and protein expression in mice [95]. A similar two-vial formulation was used in the
well-known clinical trial candidate ARC-520 (Arrowhead Pharmaceuticals), in which two distinct
cholesterol-conjugated siRNAs were mixed with NAG-MLP prior to injection. ARC-520 initially
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showed promising preclinical and clinical results [96,97], but lethal toxicity of the EX1 dynamic
polyconjugate (DPC) delivery vehicle, a version of NAG-MLP, in a related safety study in non-human
primates led to the discontinuation of the ARC-520 clinical trial (Table 1).

In a recent advancement, GalNAc was modified to produce a triantennary GalNAc ligand that
enabled robust and durable gene silencing in the liver following subcutaneous administration to
mice [98]. In further refinement of this formulation, 5′ siRNA modification significantly enhanced the
stability of triantennary GalNAc–siRNA conjugates in mice and non-human primates [99]. The effect
was presumably a result of preventing degradation by cellular exonucleases. Strategic positioning of
chemical modifications, such as with 2′-deoxy-2′fluoro and 2′-O-methyl ribose, also improved siRNA
potency and duration of silencing in non-human primates [100]. Interestingly, fully modified siRNAs
appear to be better suited for conjugate-mediated delivery in vivo, and this is irrespective of the siRNA
sequence or type of conjugate [101].

Table 1. Selected clinical trials evaluating gene silencing-based treatment for HBV infection.

siRNA
Activator Delivery Company Phase Identifier

(Clinicaltrials.Gov) End Date Reference

JNJ-3989
(ARO-HBV) GalNAc Arrowhead

Pharmaceuticals I/IIa
NCT03365947
NCT03982186
NCT04129554

September 2020 -

ARC-520 GalNAc Arrowhead
Pharmaceuticals I, IIb

NCT01872065
NCT02065336
NCT02604199
NCT02604212

Completed/terminated [96,97,102]

ARC-521 GalNAc Arrowhead
Pharmaceuticals I NCT02797522 Terminated -

VIR-2218
(ALN-HBV02) GalNAc

Alnylam
Pharmaceuticals/

Vir
Biotechnology

I/II NCT03672188
NCT02826018 March 2021 -

ARB-1467 LNP Arbutus
Biopharma IIa NCT02631096 Completed -

7.2. Viral Vectors

Viruses have evolved efficient mechanisms of cell transduction, and this feature has been exploited
to make viral vectors that have been used successfully to deliver expressed gene silencers in vivo
(reviewed in [103]). Typically, these vectors are replication defective and lack essential viral components
that are necessary to reproduce after infecting cells. Transgenes are coupled to viral vector packaging
signals, and production of the vector particles in packaging cells is enabled by expressing essential
constituents in trans. Recombinant viral vectors typically interact with cell surface molecules to facilitate
endocytosis then effect a cascade of events that culminate in transgene delivery and expression.

Recombinant lentiviral vectors (LVs), adenoviral vectors, and adeno-associated viral vectors
(AAVs) have all shown good transduction efficiency of the liver, and have therefore been a logical
choice for delivery of anti-HBV sequences [59–62]. However, not all the vectors are ideally suited to
delivering HBV-targeting silencing expression cassettes. Adenoviral vectors typically display high
innate immunostimulation to result in relatively short-term transgene gene expression. Lentiviral
vectors transduce adult hepatocytes in vivo with low efficiency and also carry oncogenic risk owing to
their chromosomal integration.

AAVs have emerged as good candidates for delivery of gene-based therapies. Initial concerns
about oncogenic potential of AAVs [104] were allayed by subsequent investigation [105]. Several
pre-clinical studies against HBV and other diseases have demonstrated the safety and efficacy of AAVs
in vivo [62,106]. Moreover, a recently published one-year study of a patient treated with Glybera,
an AAV-based gene therapy drug for lipoprotein lipase deficiency, confirmed AAV vector safety and
efficacy for human application [107]. AAVs have a non-enveloped icosahedral structure, and properties
of the capsid protein from different numbered serotypes determine features of the vectors. For example
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AAV8 is hepatotropic, while AAV5 efficiently targets cells in the brain [108]. The two commonly
used types of recombinant AAVs are single-stranded AAVs (ssAAVs) and self-complementary AAVs
(scAAVs). These vectors differ according to their genomic DNA conformations, transgene capacity,
and expression kinetics [109]. Ideally, the ssAAV and scAAV are capable of packaging about 4.7 kb
and 2.35 kb DNA sequence, respectively. Despite smaller transgene capacity of scAAVs, an important
advantage of these vectors is their faster transgene expression. Expression cassettes encoding shRNAs or
apri-miRNAs are typically small and can usually be accommodated by scAAVs [62,110,111]. Moreover,
the interesting observation that HBV infection enhances AAV transduction of hepatocytes makes these
vectors well suited to delivery of anti-HBV RNAi expression cassettes [112].

Use of AAVs to deliver anti-HBV shRNAs or miRNAs has been extensively explored [62,110,113].
Delivery of anti-HBV sequences with scAAV8 achieved inhibition of replication of HBV in transgenic
mice that lasted the 10 month duration of the study [62]. This was achieved following administration
of a low single dose of 1 × 1011 vector genome copies per mouse, which was a 10-fold lower dose
than that which was reported in a previous study [114]. AAV-based combinatorial strategies that
simultaneously target both HBV and host fibrotic mediators such as transforming growth factor-beta
(TGF-β) have been shown to improve efficacy [113]. Using AAVs to deliver antiviral RNAi effectors,
together with components of the RNAi machinery such as Argonaute 2 or sense strand inhibitory RNA
decoys, avoid endogenous RNAi pathway saturation, reduce toxicity, improve specificity, and enhance
efficacy [110,115].

Despite their impressive efficacy and safety profile, rAAVs are not without shortcomings. High
prevalence of pre-existing immunity to vectors derived from popular serotypes, such as AAV2 or AAV8,
leads to short-lived transgene expression in humans [116,117]. This obstacle is being addressed by
AAV capsid re-engineering, de novo rational design of capsids, directed evolution, and in silico vector
synthesis [118–121]. An example of directed evolution entailed use of mutated capsids, generated by
DNA shuffling, which were exposed to rounds of selective pressure by neutralizing antibodies [119,122].
This resulted in selection of AAV vectors that evaded immunity and transduced the liver efficiently.
Another approach towoards overcoming pre-existing immunity to AAV capsids involved simultaneous
administration of transgene-carrying capsids and decoy (empty) capsids [123].

In silico construction of synthetic AAV vectors has been a particularly promising approach to
avoiding pre-existing immunity and has been used to generate ancestral genes encoding synthetic
AAV capsid variants [120,121]. The method entails several steps. Extant AAV capsids from different
serotypes are aligned and phylogenetic methods are then applied to determine ancestral protein
sequences. Predicted ancestral DNA sequences are cloned, expressed in transfected mammalian
cells, and selected on the basis of sequences encoding capsids that are capable of packaging AAV
genomes [121]. Using this approach, Santiago and colleagues compared transduction efficiencies of
several ancestral AAV variants and natural AAV serotypes 1–9 in different cell lines. All ancestral AAVs
transduced multiple cell lines with more efficiency than AAV2, 4, 5, 8, and 9, although AAV1 and AAV6
showed similar efficiencies [120]. In another study an ancestral vector (Anc80L65) that is antigenically
distinct to extant AAV capsids showed enhanced attributes of transduction [121]. Compared to rAAV8,
Anc80L65 achieved stronger GFP reporter transgene expression in the muscle, liver, and eye. Moreover,
Anc80L65 transduced AAV8 pre-immunized mammals efficiently. These encouraging results based on
modification of AAV capsids to improve liver transduction bode well for advancing use of AAVs to
delivery HBV gene silencers.

7.3. Clinical Trials Evaluating RNAi-Based Treatment for HBV Infection

Use of siRNAs has reached clinical evaluation for numerous diseases, including chronic HBV infection.
GalNAc-conjugated siRNAs developed in preclinical studies by Arrowhead Pharmaceuticals [96,97]
have been tested in clinical trials for HBV treatment [102] (Table 1). The ARC-520 siRNA was
found to be well-tolerated with no serious adverse events in healthy volunteers (NCT01872065,
clinicaltrials.gov) [96]. ARC-520 was also well-tolerated and active in patients with CHB in a phase II
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trial (NCT02065336), resulting in a strong HBsAg reduction in treatment-naïve HBeAg positive patients,
but not in HBeAg-negative patients or those previously on long-term nucleoside/nucleotide analogue
treatment [97]. This observation was further investigated in chimpanzees and attributed to notable
HBsAg expression from integrated copies of the HBV genome, many of which lacked the ARC-520
target site, which was commonly deleted upon integration. In subsequent phase II trials (NCT02604199,
NCT02604212), ARC-520 reduced HBsAg expression for at least 85 days in both HBeAg-negative
and HBeAg-positive nucleoside/nucleotide analogue-experienced patients [102]. However, the data
showed that absolute reductions in HBsAg were moderate, again likely a result of HBsAg expression
from integrated HBV DNA.

These studies showed the previously underappreciated contribution of HBsAg expression from
integrated copies of the HBV genome, as opposed to cccDNA, and highlighted the need for additional
siRNAs capable of targeting all HBV transcripts, regardless of origin. A second-generation siRNA
targeting all HBV transcripts, ARC-521, was found to reduce HBsAg and HBV DNA levels in a phase I
trial (NCT02797522). However, both ARC-520 and ARC-521 trials were discontinued following the
observation of lethal toxicity of the EX1 delivery formulation, a version of NAG-MLP, in a safety study
in non-human primates. Subsequently, a GalNac-conjugated siRNA capable of targeting all HBV
transcripts (JNJ-3989, formerly ARO-HBV) and administered subcutaneously is under investigation
(NCT03365947) and being developed in collaboration with Janssen Pharmaceuticals. Clinical data
released thus far indicates that JNJ-3989 is well-tolerated in patients with CHB, with a HBsAg
reduction by ≥1 log10 IU/mL in all 40 patients and HBsAg < 100 IU/mL in 88% of patients over
24 weeks. Importantly, all measurable viral products were reduced in both HBeAg-positive and
-negative patients. JNJ-3989 is currently being investigated in a phase II clinical trials in combination
with a nucleoside/nucleotide analogue and JNJ-6379, a capsid assembly modulator (NCT03982186,
NCT04129554).

A siRNA delivered intravenously using LNPs (ARB-1467) was also assessed in a phase II clinical
trial by Arbutus Biopharma (NCT02631096) (Table 1). The treatment was well-tolerated and both
HBsAg and HBcrAg were reduced after multiple doses with a HBsAg reduction of > 1 log in 6 out of 11
patients. In a cohort receiving a biweekly dose, an average HBsAg reduction of 1.4 log10 was observed
in all 12 patients (https://investor.arbutusbio.com/node/13611/pdf). Despite encouraging results, the
development of ARB-1467 has been discontinued. In an ongoing phase I/II study by Vir Biotechnology in
collaboration with Alnylam Pharmaceuticals, the VIR-2218 (formerly ALN-HBV02) GalNAc-conjugated
siRNA is being assessed in healthy and chronically infected volunteers to determine safety, tolerability,
and antiviral efficacy (NCT03672188). Vir Biotechnology has indicated that preliminary results
are promising with a durable, dose-dependent reduction in HBsAg, but official data have not yet
been published.

8. Future of the Field

Over the past 20 years, synthetic siRNAs and expressed activators of the RNAi pathway have
proved to be capable of silencing HBV replication in vitro and in vivo. Durability of silencing efficacy
achieved by expressed HBV-targeting sequences, such as those that are encoded by apri-miRNA
expression cassettes delivered with viral vectors, is a very useful property for treating the chronic
disease. However, advancing the technology to enable inexpensive production of viral vectors,
avoidance of host immunity, and efficient transduction of hepatocytes need to be tackled successfully
before this approach is translated to a clinical setting. Synthetic anti-HBV siRNAs in non-viral
formulations are currently at a more advanced stage than HBV-targeting viral vectors, and are being
tested in clinical trials. Available clinical data are promising and indicate that anti-HBV siRNAs are
safe and well-tolerated. Given the large number of people who are chronically infected with HBV,
an important potential advantage of these synthetic drug candidates is that they are more conveniently
amenable to scalable and economical production.

https://investor.arbutusbio.com/node/13611/pdf
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Progress with optimizing effectors of gene silencing and identifying good HBV targets has
been impressive. Silencers have been directed to sequences that encompass almost the entire HBV
genome, but particularly good efficacy does not appear to result from targeting specific viral sequences.
Nevertheless, certain viral targets may become more favored for reasons that are not yet completely
understood. Improved knowledge about the cellular mechanisms of HBV infection and replication,
particularly as they pertain to cccDNA biogenesis, transcription, and degradation, may provide the
insights that are necessary to improve selection of viral cognates. HBx has recently been shown to
facilitate degradation of the structural maintenance of chromosomes (SMC) 5/6 complex [18,124].
The effect is achieved through action of a cellular ubiquitin ligase, and results in enhanced transcription
from cccDNA. It will be interesting to determine whether RNAi activators targeting HBx have a
particularly suppressive effect on transcription from cccDNA. Inhibition of transcription from cccDNA,
especially if it is sustained, will be a significant achievement and go some way to achieving a functional
cure for HBV infection. An added benefit of directing RNAi activators to HBx is that the sequence is
common to all viral transcripts, and inhibition of expression of all viral proteins may be achieved by
targeting this gene.

Developing new approaches to economic preparation of vectors, avoidance of host immunity,
characterization of pharmacokinetics, exclusion of unintended off-target silencing, and assay of
biomarkers of cccDNA in carriers are current priorities. Moreover, available animal models of
HBV infection have limitations, and testing candidate drugs in settings that closely simulate natural
chronic HBV infection will facilitate drug development. Meeting these goals will provide an impetus.
Nevertheless, overall progress in the field indicates that potent, effective silencing of viral transcripts
generated from cccDNA in chronic HBV infection is achievable and has therapeutic potential. Results
from current and future clinical trials are keenly awaited, and outcomes from these studies will pave
the way for achieving the goal of a functional cure for chronic HBV infection.
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