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Abstract: In order to have an accurate and fast prediction of the artificial intelligence (AI) model, the
choice of input features is at least as important as the choice of model. The effect of input features
selection on the emission models of light diesel vehicles driven on real roads was investigated in
this paper. The gradient boosting regression (GBR) model was used to train and to predict the
emissions of nitrogen oxide (NOx), carbon dioxide (CO2), and the fuel consumption of real driving
diesel vehicles in urban scenarios, the suburbs, and on highways. A portable emissions measurement
system (PEMS) system was used to collect data of vehicles as well as environmental conditions. The
vehicle was run on two routes. The model was trained with the first route data and was used to
predict the emissions of the second route. There were ten features related to the NOx model and
nine features associated with the CO2 model. The importance of each feature was sorted, and a
different number of features were used as input to train the models. The best NOx model had the
coefficient of determination (R2) values of 0.99, 0.99, and 0.99 in each driving pattern (urban, suburbs,
and highways). Predictions of the second route had the R2 values of 0.88, 0.89, and 0.96 respectively.
The best CO2 model had the R2 values of 0.98, 0.99, and 0.99 in each driving pattern, respectively.
Predictions of the second route had the R2 values are 0.79, 0.82, and 0.83, respectively. The most
important features for the NOx model are mass air flow rate (g/s), exhaust flow rate (m3/min), and
CO2 (ppm), while the important features for the CO2 model are exhaust flow rate (m3/min) and
mass air flow rate (g/s). It is noted that the regression models based on the top three features may
give predictions very close to the measured data.

Keywords: NOx and CO2 emission; diesel vehicle; gradient boosting regression; features impor-
tance; PEMS

1. Introduction

The problem of air pollution in many metropolises has been gaining more and more
attention recently. According to the report of the World Health Organization (WHO), about
7 million people died of diseases related to air pollution in 2018 [1]. Among the pollutants,
nitrogen oxides (NOx) are severely concerning because they not only have a harmful effect
on the human body but are also closely related to ozone (O3) formation in the troposphere
and on the ground. Kuo et al. proposed research on the effects of ambient air pollutants
on childhood asthma hospitalization. They found that the O3 was positively associated
with this childhood disease [2]. Zhong et al. studied the effects of air pollutants on human
health. The results also indicated that the O3 had the highest health impact, followed by
particulate matter (PM10 and PM2.5) [3]. In 2021, Wang et al. proposed an investigation
on air pollution during pregnancy and childhood autism spectrum disorder (ASD). The
results indicated that the O3 had significant positive associations with childhood ASD and
might have different effects before and after birth [4].
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There are many anthropogenic sources of NOx. The combustion of diesel engines
is one of the primary sources of NOx in many areas [5]. The abatement of NOx in the
transportation sector has become an important issue.

In order to reduce the emission of nitrogen oxides effectively, both the automobile
manufacturer and governments are betting on considerable research and development
expenses, and the regulations of vehicle emissions are becoming more stringent. For
example, the EURO 6 emission standard implemented by the European Union in 2014 is
a milestone for the regulation of diesel vehicles [6]. It indicates that the government and
industry must face the air pollution problem seriously.

It is required that all new vehicles should comply with the current emission standard.
As the regulatory standards are becoming stricter and stricter, new vehicles will become
cleaner and cleaner. Taking EURO 6 as an example, the emission standard of NOx is
only 0.08 g/km. However, studies of the emissions measured by the portable emission
measurement system (PEMS) show that the actual emissions in real road driving are much
higher than the emission standards [7]. The year 2000 model diesel vehicles met the
regulation standards of 0.5 g/km NOx in the laboratory test. However, the study found
that the actual emissions of diesel vehicles on real roads reached 1.0 g/km. For the year
2014 model diesel vehicles, the legal limit was reduced to 0.08 g/km in the laboratory
test, about 1/6 of the standard in 2000. However, the actual road emission in NOx was
about 0.6 g/km. The regulation was tightened by 85% in 14 years, but the real road
emissions did not decrease as much as expected. They were reduced by only 40%. Research
conducted by Vicente et al. collected the real road emission data of a total of 541 EURO
5 and EURO 6 vehicles in Britain, Germany, France, and the Netherlands. The results of
this investigation showed that only 10% of the EURO 6 vehicles might meet the EURO 6
standard, and 13% of vehicles exceeded by ten times the EURO 6 standards [8].

Therefore, the emissions of diesel vehicles in real road driving becomes an important
issue, and the PEMS measurement becomes a valuable method for emission regulation. The
impact of the vehicle emission control policy can be effectively evaluated by this method since
the driving pattern on a real road is quite different from that in the laboratory. The US EPA also
recommends PEMS as an accepted alternative to the laboratory-based chassis dynamometer
measurement methods [9]. However, the real road measurement is time-consuming and the
cost is very high, so it is helpful to develop a new method to predict the emissions of diesel
vehicles on real roads to reduce the measurement cost [10]. Thus, using artificial intelligence
techniques is a prospective method to cope with these problems.

Using PEMS measurements for emission evaluation has gained much attention re-
cently, and many investigations have been conducted. Frey et al. proposed protocols of
data collection, screening, processing, and analysis to assure data quality and to provide
insights regarding the quantification of hot-stabilized emissions [11]. Frey et al. used PEMS
to investigate the impact of routes, time of day, and road grade on the emissions of selected
light duty gasoline vehicles [12].

McCaffery et al. conducted a study using PEMS to measure 50 heavy-duty vehicles
and analyzed these data in the Emission Factor (EMFAC) model [13]. The investigation
found that the temperature of selective catalytic reduction (SCR) influenced NOx emissions
strongly, and exhaust temperature showed the opposite trend.

The main objective of this paper is to find a feasible way to build a predictive model
for diesel emissions. The emissions in a running vehicle are affected by many factors, in-
cluding the engine operating conditions, the vehicle characteristics, and the environmental
conditions. It will be a huge computational burden if all parameters are taken into account.
Sorting of the relative importance for all the parameters is conducted in this research. It
was found that three parameters are good enough to build a model. A lot of computational
costs could be saved with this simplified model. However, the ranking order of the input
features is not the same for different routes. The results of this paper would be very useful
for the modelers, thereafter.

A structure diagram, Figure 1, of this article is presented to make it easier to read this paper.
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2. Literature Review of AI Research

Jaworski et al. presented an analysis of emission data from the PEMS system for real
driving cycles of various types of vehicles, complying with EURO 2–EURO 6 standards
and created the emission models with the Regression Learner applications in MATLAB
R2018b. Among the methods of regression trees and support vector technologies that have
been used, the boosted regression tree model was assessed to be the most appropriate to
well represent the real data [14].

Donateo et al. proposed a neural network model based on the interpolation of the
time-histories of driving conditions (speed, altitude, ambient temperature, humidity, and
pressure) and emissions measured on a diesel start-and-stop vehicle while performing a
series of real driving emission (RDE) tests. The Bayesian optimizer, implemented in the
MATLAB environment, was used to deal with the high number of combinations. This
method minimized the number of combinations examined by the model and significantly
reduced the computational time [15].

As mentioned above, a lot of PEMS measurements in real road driving have been
conducted before, but not many of them have used artificial intelligence (AI) to analyze the
collected data and to establish models for further predictions and evaluations. The purpose of
this study is to investigate the technique of AI models for diesel vehicles in real road driving
to reduce the cost of calculation and to increase the accuracy of the model prediction.

The big data analysis technique is an important tool to reduce the cost of emission
measurements on real roads. Compared with traditional ways of data analysis, the analysis
of vast amounts of data is no longer difficult in today’s big data era. For regression analysis,
machine learning technology has been widely used in related topics, such as support vector
machine (SVM), random forest (RF), and artificial neural networks (ANN).

Zeng et al. used SVM to estimate the fuel consumption of gasoline vehicles and found
a relationship between the fuel consumption and the corresponding factors such as average
speed and driving distance [16]. They also used the multiple linear regression (MLR)
model and artificial neural network to link the fuel summation with the SVM model for
comparisons. However, the measurement period took one month, which is too much of a
cost in time.

Henrik Almer compared the effect of sampling rate on the model performance. He
used the vehicle data, road data, and weather data collected in one year between 1 June
2013 and 31 May 2014 for training. The data collected between 1 June 2014 and 31 October
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2014 were used for validation and testing. The results of comparison showed that the
sampling rate of 10 min is better than the sampling rate of 1 min in model performance
because of its smaller variance in predicting fuel consumption. Moreover, among machine
learning models (linear regression, random forest, support vector regression (SVR), and
ANN), the performance of the random forest model was the best [17].

L. Thibault et al. presented the use of information and communication technology
(ICT) to transmit driving information to the cloud system through smartphones and to
calculate pollutant emissions in real time [18]. This coupled a microscopic model with
a real-world speed profile to estimate on-road pollutant emissions. However, it is not
possible to use the existing microscopic model well for a large vehicle fleet because the
input parameters of this model are not available for all vehicles. Thus, the modeling
approach should be chosen according to the vehicle data available for each car.

Air pollution is one of the major concerns for citizens due to its impact on public
health. Vehicle emissions are related to vehicle technology and driver behavior. Therefore,
L. Thibault et al. created a vehicle IoT device that gives the driver real-time feedback about
the emissions and reminds the driver of exposure during the trips [19]. The whole system
includes an IoT device, a smartphone, and web-based simulation models. It provides a
chance to improve the existing emissions through driving behavior.

Alimissis et al. used two interpolation methodologies to evaluate the ANN model
and MLR model of urban air quality data. The predictions of air pollutants’ concentrations
were compared with statistical measurements. ANN models were found to have better per-
formance than MLR models in most cases [20]. G. Bandyopadhyay and S. Chattopadhyay
also compared the performance of the ANN model and MLR model for ozone data. They
found that ANN models are perfect for an interpolation solution to nonlinear problems
using one input variable [21].

M. Gardner and S. Dorling used multilayer perceptron (MLP) neural networks to
model the NOx pollutants and found that they perform well in predicting hourly variations
of NOx and NO2 [22]. This indicates that MLP neural networks are capable of coping with
complex patterns of source emissions.

In addition, F. Perrotta et al. proposed a big data-type analysis of the driving fuel
consumption records of 1010 trucks over a 300 km travel distance, and performed a large
amount of data processing using three techniques (SVM, RF, ANN) in a machine learning
model [23]. They successfully established a fuel consumption model with big data and
found that the RF model outperformed the other two models.

The gradient boosting regression model is a very powerful tool in modeling and
prediction, and has been applied in many different fields [24–28]. However, this model has
not been used in pollution predictions widely. A review conducted in 2018 by Bai et al. [29]
showed that many AI methods have been used for air pollution predictions, including
ANN, adaptive neuro-fuzzy (ANF), MLP, SVM, and SVR. However, the GBR model was
not included. An investigation of the predictive power of the GBR model was carried out in
this paper. Wen et al. proposed another ANN nonlinear autoregressive exogenous model
(NARX) to predict NOx emissions in real road driving [30]. It is an inexpensive way of
conducting RD emission measurements using an NGK NOx sensor and an Arduino board
with Can Bus to measure the instantaneous vehicle emissions on the road. The results of
measurement seemed to be quite reasonable compared with a full PEMS system.

Yun et al. proposed a real-time model to predict vehicle instantaneous emissions
such as NOx and CO2 [31]. This is a practical model that integrates an ANN model with a
vehicle dynamic model. The accuracy of both NOx and CO2 models were evaluated by
varying number of features.

Table 1 summarizes the key points of previous investigations conducted by other
researchers related to the AI model applications in vehicle emissions measurements.
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Table 1. Key point of each study in the literature review.

No. Authors Reference Key Point

1 Donateo et al. [15] Proposed a neural network model based on the
interpolation of the time-histories of driving conditions.

2 Zeng et al. [16] Used support vector machine (SVM), multiple linear
regression, and artificial neural network (ANN) models.

3 Henrik Almer [17]
Proposed machine learning models (linear regression, random

forest, SVR, and ANN) and found that the
performance of random forest model was the best.

4 Alimissis et al. [20] Found artificial neural networks had better performance than
multiple linear regression in most cases.

5 Bandyopadhyay
et al. [21] Used artificial neural network (ANN) models as an

interpolation solution to nonlinear problems.

6 Gardner et al. [22] Indicated that MLP neural networks were capable of coping with
complex patterns of source emissions.

7 Perrotta et al. [23] Performed a large amount of data processing using three
techniques (SVM, RF, ANN) in the machine learning model.

8 Wen et al. [30] Proposed ANN nonlinear autoregressive exogenous model (NARX)
model to predict NOx emissions.

9 Yun et al. [31] Proposed a real-time model that integrates an artificial neural
network (ANN) model with a vehicle dynamics model.

The process of this study is to establish the AI model of one vehicle based on the PEMS
data of that specific vehicle in urban, suburb, and highways situations and then use the
data to predict the emission and fuel consumption for the second route of the same vehicle.
One vehicle was used in this study. The model performance of the vehicle includes NOx
and CO2 emissions and fuel consumption.

The method of gradient boosting regression (GRB) was adopted in this study to model
the NOx and CO2 emissions in three routes (urban, suburbs, and highway) and use them to
predict the NOx and CO2 emissions and fuel consumption of the same vehicle on a second
journey. A different number of input features were chosen for comparison to determine the
best combinations of input features of the models.

3. Materials and Methods
3.1. Experimental Setup

The HORIBA OBS-ONE PEMS was used in this research for emission measurements
on the real road. It is vehicle-mounted pollution analysis equipment that can be used
to measure CO, CO2, THC, NOx, and PN in driving vehicles continuously. The system
also integrates with the satellite positioning system (Global Positioning System, GPS) and
the environmental conditions such as atmospheric temperature, humidity, atmospheric
pressure, etc., to obtain the actual emissions data when the vehicle is driving on real roads.
The specifications of the PEMS are listed in Table 2 [32]. There are 35 parameters that can
be collected during the real road testing.

The detailed settings of PEMS installation are shown in Figure 2, including the location
of the analyzer, pitot tube flowmeter, atmospheric sensors, tailpipe temperature sensor, and
primary control computer [10]. Figure 2 shows the installation of the system in the cabin of
the test vehicle. The function of the primary control computer is using the HORIBA default
software to collect the data from different sensors, store the data, and output the raw data.
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Table 2. Specifications of HORIBA OBS-ONE PEMS [32].

Species Measurement Range Measurement Principle

CO2 0–5~20 vol% HNDIR
NOx 0–100~3000 ppm HCLD

Rpm capture: OBD/ECU; Exh. volume: pitot tube meter; weight: 32 kg
Dimension: 350(W) × 25(H) × 470(D) (mm); Vehicle type: Gasoline/diesel vehicles

Power: 24DC/110AC; Regulations: CFR Part 1065 subpart J/EC NO 582/2011/UN ECE R83
It is noted that the PEMS has the capability to measure five pollutants in exhaust pipe. However, only CO2 and
NOx are used in the analysis of this study, so only the specifications of CO2 and NOx are listed in Table 2.
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The PEMS system was powered by an independent battery pack inside the cabin. All
the instruments were well grounded to the negative pole of the battery to prevent any
pulse damage. Moreover, standard gases were carried in the cabin for calibration of sensors
before and after each test to ensure the accuracy of measurement.

The raw data were processed in the following way. Take the NOx data as an example.
The direct measurements by the PEMS system include the instantaneous concentrations of
NOx in the exhaust flow (xNOx ), the exhaust temperature (Texh.), the pressure in the exhaust
pipe (Pexh.), and the exhaust flow rate (Qex). The density of NOx (ρNOx ) was obtained using
the equation of state for ideal gas with the exhaust temperature and the exhaust pressure.
The instantaneous concentrations of NOx can then be converted to the mass flow rate by
multiplying the exhaust mass flow rate as shown by Equation (1).

.
mNOx = QexxNOx ρNOx (1)

One light duty diesel vehicle, Peugeot 208, produced in 2015, which meets EURO 5
emission standards, was used as the testing vehicle in this study. The engine displacement
of this vehicle is 1.6 L. The testing vehicle was run on real roads with two routes. The
driving route started from Zhangbin Industrial Park to Lukang, Puyan, and Huawei.
The total distance of this route is about 64 km. The route was divided into three parts
intentionally, including urban, suburbs and, highways. The vehicle speed in each part was
well controlled in specific ranges. The driving speed was from 0 to 60 km/h in the urban,
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from 60 to 90 km/h in suburbs, and above 90 km/h on highways. Figure 3 shows the speed
variations of route 1. It is noted that vehicle speed varies a lot in the first part because of
lots of traffic lights in the urban area. In the second part, we can see that the vehicle speed
was much faster than that in the urban area. No traffic lights were observed in this part. In
the last part of this route, the vehicle speed was in the range of 90~110 km/h. This is the
highway part. However, the speed was not fixed in a constant value because acceleration
and deceleration occurred quite often during overtaking, and the average speed was above
100 km/h.
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Two vehicle routes were used in this study. The driving patterns of these two routes
are shown in Table 3. It is noted that these two routes are not different by very much. The
distance and the average speed were controlled so as not to deviate from each other. The
driving data on the urban, suburbs, and highways sections were analyzed in this paper.
One used for building the model, and the other was used for validating the model.

Table 3. Driving pattern of the testing vehicle on real roads.

Driving Pattern Driving Distance Acceleration Average Speed
Route 1 Route 2 Route 1 Route 2 Route 1 Route 2

Urban 26.64 km 26.53 km −6.7~5.3 m/s2 −7.0~7.4 m/s2 26.59 km/h 25.17 km/h
Suburbs 11.08 km 11.04 km −3.9~5.5 m/s2 −4.8~3.6 m/s2 69.02 km/h 67.36 km/h

Highways 26.53 km 26.79 km −7.3~7.7 m/s2 −7.5~6.5 m/s2 101.43 km/h 100.97 km/h

3.2. Data

The total time span for one route was about 90 min. The sampling rate of data
collection was 10 Hz. The 10 Hz sampling rate is fast enough to capture the transient
behavior of the vehicle in acceleration or deceleration. A higher sampling rate is feasible
for the hardware capability of the PEMS system. However, it will cause a big burden for the
following data analysis because a total of 35 data were collected at a time. In total, about
54,000 data sets could be collected in one testing. There were, in total, 35 raw data collected
in the PEMS. The raw data can be divided into three groups. One is operating parameters
of the vehicle, including exhaust volume flow rate (m3/min), exhaust temperature (◦C),
exhaust pressure (kPa), engine coolant temperature (◦C), fuel pressure (kPa), engine speed
(rpm), intake air temperature (◦C), mass air flow rate (g/s), fuel rail pressure (kPa), fuel
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rail pressure (direct inject) (kPa), commanded EGR (%), barometric pressure (kPa), fuel
rail pressure (absolute) (kPa), engine oil temperature (◦C), engine fuel rate (L/h), actual
engine percent torque (%), and engine reference torque (Nm). The second group is the
environmental parameters of the vehicle, including test time (s), test distance (km), GPS
altitude (m), GPS latitude (deg), GPS longitude (deg), GPS speed (km/h), GPS course (deg),
system battery voltage (V), ambient temperature (◦C), ambient relative humidity (%), and
ambient pressure (kPa). The third group is the outcome of the vehicle, including CO (ppm),
CO2 (ppm), H2O (%), NO (ppm), NOx (ppm), NO2 (ppm), and THC (ppmC).

Since the goal of this research is to build the models of CO2 and NOx, some parameters
that are not closely related to the formation of CO2 and NOx are not considered in this
study to reduce the burden of model building.

The instantaneous NOx and CO2 concentrations in the tailpipe are shown in Figure 4a,c.
The raw data were recorded with a sampling rate of 10 Hz. A total of about 36,070 data are
presented in this Figure. It is noted that the NOx concentrations in the urban part vary a
lot at different vehicle speeds. The same trend could be found in suburbs and highways.
Even on the highway, the vehicle speeds are quite stable, and the NOx concentrations vary
a lot too. The variations of CO2 concentrations are similar to NOx emissions mentioned
above. The maximum values of CO2 are about 120,000 ppm (12%), which corresponds to
an air–fuel ratio of about 20 at full loads. The minimum values of CO2 are about 1093 ppm,
which corresponds to very lean combustion at idle condition. It is noted that the CO2
concentrations of diesel engines are much lower than of gasoline counterparts because
diesel engines run at much leaner conditions [33].
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The instantaneous concentrations can be converted to the mass flow rate by multiply-
ing the exhaust mass flow rate by Equation (1). The results of the conversion calculation
are shown in Figure 4b,d. Because of the limited space, only the variations in urban area
are shown. It is noted that the maximum flow rate of NOx is about 0.022 g/s, which occurs
at acceleration. The minimum flow rate of NOx is about 0.00004 g/s, which occurs at decel-
eration. For CO2, the maximum flow rate is about 2.79 g/s, which occurs at acceleration,
and the minimum flow rate is about 0.0068 g/s, which occurs at deceleration.

The instantaneous flow rate can be integrated with time to obtain the total emission
production factor. The results of the integration are shown in Table 4.

Table 4. Total emission rate.

Emissions Urban Suburbs Highway Average

NOx 0.78 g/km 0.62 g/km 0.95 g/km 0.78 g/km
CO2 154.12 g/km 105.54 g/km 142.68 g/km 134.11 g/km

3.3. Gradient Boosting

An introduction of gradient boosting was presented by Li [34]. This indicated that
the gradient boosting consists of two sub-terms, gradient descent and boosting, and it
could be applied in regression, classification, and ranking. These applications are based
on the gradient boosting algorithm proposed by Friedman [35]. This algorithm is used to
minimize the loss function of the model by adding weak learners using gradient descent.
The regression function is shown in Equation (2). The ensemble of gradient boosting is a
supervised learning algorithm that can learn nonlinear functions to solve regression and
classification problems. It is a complex model built by combining several simple models in
the best possible way. The high bias and low variance models can be combined additively
to form an ensemble with reducing bias while maintaining the low variance in boosting.

fm(x) = fm−1(x) + ρmh(x; αm) (2)

where f (x) is the loss function and h(x; α) is the base-learner model. For each iteration
m = 1, 2, · · · , M, compensating the residues is equivalent to optimizing the expansion
coefficients ρm and αm.

3.4. Features Importance

There are 35 parameters that were collected by the PEMS during the RD testing. Nine
of them are closely related to the formation of NOx, and they are considered as the input
features for the NOx model, including mass air flow rate (g/s), exhaust flow rate (m3/min),
CO2 (ppm), engine speed (rpm), tailpipe exhaust temp (◦C), GPS speed (km/h), ambient
humidity (%), ambient temperature (◦C), and GPS altitude (m). As for the CO2 model, eight
input features were considered for building the model, including exhaust flow rate, mass
air flow rate, engine speed, GPS speed, tailpipe exhaust temperature, ambient humidity,
GPS altitude, and ambient temperature.

Since there are too many input features for the NOx model as well as the CO2 model,
a way of reducing input features should be considered to reduce the calculation burden.
John et al. proposed the two main categories of reducing selected feature numbers [36].
One is the wrapper method that pluses and/or reduces the features to figure out the
optimizer that could obtain the highest performance. The other is the filter method that
evaluates the correlation between the variable and the predicted value, and excludes the
least relevant variable.

Casimir et al. used the Sequential Backward Selection (SBS) algorithm to find the
most relevant features [37]. The appropriate features are determined for better accuracy.
Dewi et al. proposed a method to cope with the features selection by using random
forest (RF) algorithm [38]. They found out that different combinations of features created
different model accuracy. As a result, the model performance is higher after using the RF
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features selection algorithm. The model performance statistic results of using four datasets
(Wisconsin Cancer, Forest Fire, Wine Quality, and Bike Sharing) show that more input
features do not guarantee obtaining higher performance because more features add more
complexity to the model.

There are ten features (nine features from PEMS and acceleration derived from GPS
speed) that were selected for the NOx model and nine features (eight features from PEMS
and acceleration derived from GPS speed) for the CO2 model. The rank and score of feature
importance were generated by permutation techniques. This was written in python code by
importing the permutation_importance from sklearn library directly. The results showed
their relative predictive power to the model. The process is used to break the input feature
values by randomly shuffling. This step might decrease the model performance. If the
decrease is small, it means the performance of the model is pretty good. Furthermore, if
the decrease is large, there is a large impact on predictions.

3.5. Gradient Boosting Regression Model

Python is an interactive, object-oriented programming language. It has hundreds
of excellent libraries for developers to use. Python offers a programming language that
is stable, flexible, and has tools available. Therefore, there are lots of Python AI appli-
cations today. The GBR model was built in Python code. The coding process includes
preprocessing, data-loading, model-defining, and model-fitting.

In this study, the data are divided into two subsets, the training set and the testing
set for building the GBR model. The percentage of each data set is listed in Table 5. In
general, the train–test split procedure is used to estimate the performance of the model. In
this study, the training data are 75%, and the testing data are 25%.

Table 5. Training and test sets.

Driving Pattern NOx CO2

% Instances % Instances

urban Training
Test

75
25

27,052
9018

75
25

27,052
9018

suburbs Training
Test

75
25

4337
1446

75
25

4337
1446

highways Training
Test

75
25

7059
2353

75
25

7059
2353

In building the GRB model, several parameters should be assigned in the beginning.
The main parameters for the NOx model are listed in Table 6. The parameters of the GBR
model include the following: N_estimators denote the number of trees used for boosting,
and the default value is 100. Its value was set at 500 in this model. More estimators may
obtain better model performance but require more calculation cost. Max_depth denotes
the maximum depth of the tree, and the default value is 3. It was set at 12 in this code.
Min_samples_split denotes the minimum number of samples needed to split an internal
node, and it was set to 10. Max_features denote the number of features to consider when
finding the best split, and the number is the square root of total features. The subsample
denotes the fraction of samples that can be used to fit the individual base learners, and the
default value is 1.0. Its value was set at 0.8 in this model. Learning_rate denotes a learning
rate that determines the step size at each iteration while moving toward a minimum of a
loss function and the value was set at 0.1. Loss denotes the loss function. Ls was selected
in this code and meant the least square loss function. There is another loss function that
can be selected such as lad (least absolute deviation), huber (combination of ls and lad).
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Table 6. GBR model parameters.

N_Estimators: 500

Max_depth: 12
Min_samples_split: 10

Max_features: sqrt
Subsample: 0.8

Learning_rate: 0.1
Loss: ls

During the training process of the GBR model, the ensemble was imported from
Python module sklearn (SciKit-Learn) and using the gradient boosting regressor defined
with an ensemble. The GBR model was defined with the above parameters and was used
to fit the experimental data. Figure 5 shows the flowchart of the proposed method for
emissions prediction. The first step is collecting data from PEMS records. Then, feature
extraction is conducted that uses the features selection method to determine the appropriate
features for model input. It is noted that acceleration is not the raw data collected by PEMS
directly. It needs to be calculated from the GPS speed. The third step is loading the data and
splitting them into training and testing sub-datasets by fraction. Then starts the process
of training and testing for the model. The fifth step is finishing the compile process and
obtaining the model. Finally, the model is used to predict the emissions in the second route.
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The model performance is examined by using mean absolute error (MAE), root means
square error (RMSE), and the coefficient of determination R2. The statistical equations are
given in Equations (3)–(5), respectively, where Pi is the predicted value obtained with the
model and Ti is the measured value from PEMS. Pi is the average of the predicted value
for the whole dataset.

MAE =
1
n

n

∑
i=1
|Ti − Pi| (3)

RMSE =

√
1
n

n

∑
i=1

(Ti − Pi)
2 (4)

R2 = 1− ∑n
i=1(Pi − Ti)

2

∑n
i=1
(
Pi − Ti

)2 (5)

4. Results
4.1. Features Importance Analysis

The detailed scores ranking of feature importance for NOx models in the urban,
suburb, and highway driving patterns are shown in Figure 6. It is noted that the top three
features of NOx models are the same for urban, suburban, and highways. They are mass air
flow rate, exhaust flow rate, and the concentration of CO2. It is not surprising that mass air
flow rate is the most important feature because it is closely related to engine load, and NOx
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formation is known to be dominantly determined by engine load. The second important
feature is exhaust flow rate, which is actually the sum of mass air flow rate and mass fuel
flow rate. Air–fuel ratio is also known to be an important factor to determine the formation
of NOx. No wonder it is the second important feature. The third important feature is the
concentration of CO2 in the exhaust flow. CO2 is one of the products of combustion, just as
NOx. However, unlike the gasoline engine in which CO2 concentration in the exhaust flow
is almost a constant value, the concentration of CO2 in diesel engines reflects the air–fuel
ratio as well as the engine load. As a result, the CO2 concentration is also a good feature
for the NOx model.
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The fourth important feature in the urban, suburb and highway patterns is not the
same for all. It is interesting to note that engine speed is important in urban and suburbs
driving, while acceleration is important on the highways. Engine speed is related to vehicle
speed. We can see that vehicle speed varies a lot in both urban and suburbs driving,
as shown in Figure 6. However, the vehicle speed is almost fixed in a narrow range on
highways. That is the reason engine speed is not so important on highways.

All of the other features are not important relative to the first four features. The order
of importance of the last six features in urban, suburb, and highways patterns are not the
same either. Since the importance of the last six features is much lower than the first four,
the order of these features is actually not to be discussed in this study.

Table 7 shows the ranking of all features in urban, suburbs, and highways driving
again for a clear comparison. It is noted that even though the actual order of the last six
features is not exactly the same, the trend of descending of the order is quite similar. It
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could be concluded that the relative importance of the features of the NOx model in urban,
suburban, and highways driving are quite close to each other.

Table 7. Feature importance rank of NOx model in urban, suburbs, and highway.

Feature
Rank

Urban Suburbs Highway

Mass Air Flow Rate 1 1 2
Exhaust Flow Rate 2 2 1

CO2 3 3 3
Engine Speed 4 4 6
Acceleration 5 9 4

Tailpipe Exhaust Temp 6 5 7
GPS Speed 7 6 5

Ambient Humidity 8 8 9
Ambient Temp 9 10 10
GPS Altitude 10 7 8

The number of features is nine for the CO2 model. All of the features are the same as
the NOx model, except that CO2 is excluded. The ranking of feature importance of CO2
models for urban, suburbs, and highways patterns are shown in Figure 7. It is noted that the
top two features of CO2 models are the same for urban, suburban, and highways driving.
They are mass air flow rate and exhaust flow rate. This is reasonable because these two
features are closely related to engine load and air–fuel ratio, and the CO2 concentration is
determined by air–fuel ratio, while the CO2 production rate is determined by engine load.

Int. J. Environ. Res. Public Health 2021, 18, x  14 of 30 
 

 

Ambient Humidity 8 8 9 
Ambient Temp 9 10 10 
GPS Altitude 10 7 8 

The number of features is nine for the CO2 model. All of the features are the same as 
the NOx model, except that CO2 is excluded. The ranking of feature importance of CO2 
models for urban, suburbs, and highways patterns are shown in Figure 7. It is noted that 
the top two features of CO2 models are the same for urban, suburban, and highways driv-
ing. They are mass air flow rate and exhaust flow rate. This is reasonable because these 
two features are closely related to engine load and air–fuel ratio, and the CO2 concentra-
tion is determined by air–fuel ratio, while the CO2 production rate is determined by engine 
load. 

The third important features in urban, suburbs and highways are not the same. It is 
interesting to note that engine speed is important in urban and suburbs driving, while 
acceleration is important in highways, just as was the case in the NOx model. The reason 
is also the same. Vehicle speed varies a lot in both urban and suburbs driving, but it is 
almost fixed in a narrow range in highways driving. That is the reason engine speed is not 
so important on highways. 

Nine input features were considered in the CO2 model. However, not every feature 
is important for prediction. According to our calculation, the importance of each feature 
is ranked in Table 8. It is noted that the order of relative importance is not the same in the 
urban, suburbs, and highways driving patterns. Table 8 shows the ranking of all features 
in urban, suburbs, and highways again for a clear comparison. The first three features 
contribute the most (above 70%) importance from Figure 7. This also means the other six 
features contribute to a lesser extent. It is noted that even though the actual order of the 
last six features is not exactly the same, the trend of descending of the order is quite simi-
lar. It could be concluded that the relative importance of the features of the CO2 model in 
urban, suburbs, and highways driving are quite close to each other. 

  
(a) (b) 

Int. J. Environ. Res. Public Health 2021, 18, x  15 of 30 
 

 

 

 

(c)  

Figure 7. Feature importance detailed scores of CO2 model (a) Urban; (b) Suburbs; (c) Highway. 

Table 8. Feature importance rank of urban, suburbs, and highway CO2 model. 

Feature 
Rank 

Urban Suburbs Highway 
Exh. Flow Rate  1 1 2 

Mass Air Flow Rate 2 2 1 
Engine Speed  3 3 6 
Acceleration 4 8 3 
GPS Speed 5 7 4 

Tailpipe Exh. Temp 6 5 5 
Ambient Humidity 7 6 7 

GPS Altitude  8 4 8 
Ambient Temp 9 9 9 

4.2. Model Performance 
In this study, ten input features and nine input features were selected for NOx and 

CO2 models, respectively, and the targets were NOx emission gram per second (g/s) and 
CO2 emission gram per second (g/s). The statistics of model performance for NOx and CO2 
in the three parts of route 1 are listed in Tables 9 and 10. The R2 value is an important 
index to determine how well the model fits the raw data. The feature importance rank 
shown in Tables 7 and 8 is used to check the fitting of the model. It is noted that the feature 
importance rank of urban driving was selected as the base, and the same order was used 
in suburbs and highways. It is found that for the NOx model, the R2 values of train data 
are all very close to 1.0 in all three parts of route 1. As for the test data, the R2 values of the 
urban part increase from 0.78 to 0.98 as the number of features increase from 3 to 10. The 
more input features we use, the higher value of R2 we have. It is a reasonable result since 
more features are used to model the raw data, it is expected that more characteristics of 
data can be captured. However, it is worthwhile to note that there is a big gap between 
three features and four features, and the R2 values vary very little as feature numbers in-
crease more. This implies that four features are the minimum number to totally grasp the 
characteristics of NOx in the urban area. In the suburbs part and the highways part, the 
same trends of R2 values occur. The gap between three features and four features is not so 
big as that in urban and in highways, but it is still obvious that four features are the min-
imum number to totally grasp the characteristics of NOx in the suburbs area and in the 
highways area. 

The performance of CO2 models is similar to that of NOx models. The R2 values of 
train data are all very close to 1.0 in all three parts of route 1, implying that the training 
process goes very well. As for the test data, the R2 values of the urban part increase from 

Figure 7. Feature importance detailed scores of CO2 model (a) Urban; (b) Suburbs; (c) Highway.



Int. J. Environ. Res. Public Health 2021, 18, 13044 14 of 28

The third important features in urban, suburbs and highways are not the same. It is
interesting to note that engine speed is important in urban and suburbs driving, while
acceleration is important in highways, just as was the case in the NOx model. The reason
is also the same. Vehicle speed varies a lot in both urban and suburbs driving, but it is
almost fixed in a narrow range in highways driving. That is the reason engine speed is not
so important on highways.

Nine input features were considered in the CO2 model. However, not every feature is
important for prediction. According to our calculation, the importance of each feature is
ranked in Table 8. It is noted that the order of relative importance is not the same in the
urban, suburbs, and highways driving patterns. Table 8 shows the ranking of all features
in urban, suburbs, and highways again for a clear comparison. The first three features
contribute the most (above 70%) importance from Figure 7. This also means the other six
features contribute to a lesser extent. It is noted that even though the actual order of the last
six features is not exactly the same, the trend of descending of the order is quite similar. It
could be concluded that the relative importance of the features of the CO2 model in urban,
suburbs, and highways driving are quite close to each other.

Table 8. Feature importance rank of urban, suburbs, and highway CO2 model.

Feature
Rank

Urban Suburbs Highway

Exh. Flow Rate 1 1 2
Mass Air Flow Rate 2 2 1

Engine Speed 3 3 6
Acceleration 4 8 3
GPS Speed 5 7 4

Tailpipe Exh. Temp 6 5 5
Ambient Humidity 7 6 7

GPS Altitude 8 4 8
Ambient Temp 9 9 9

4.2. Model Performance

In this study, ten input features and nine input features were selected for NOx and
CO2 models, respectively, and the targets were NOx emission gram per second (g/s) and
CO2 emission gram per second (g/s). The statistics of model performance for NOx and
CO2 in the three parts of route 1 are listed in Tables 9 and 10. The R2 value is an important
index to determine how well the model fits the raw data. The feature importance rank
shown in Tables 7 and 8 is used to check the fitting of the model. It is noted that the feature
importance rank of urban driving was selected as the base, and the same order was used in
suburbs and highways. It is found that for the NOx model, the R2 values of train data are
all very close to 1.0 in all three parts of route 1. As for the test data, the R2 values of the
urban part increase from 0.78 to 0.98 as the number of features increase from 3 to 10. The
more input features we use, the higher value of R2 we have. It is a reasonable result since
more features are used to model the raw data, it is expected that more characteristics of
data can be captured. However, it is worthwhile to note that there is a big gap between
three features and four features, and the R2 values vary very little as feature numbers
increase more. This implies that four features are the minimum number to totally grasp
the characteristics of NOx in the urban area. In the suburbs part and the highways part,
the same trends of R2 values occur. The gap between three features and four features is
not so big as that in urban and in highways, but it is still obvious that four features are the
minimum number to totally grasp the characteristics of NOx in the suburbs area and in the
highways area.
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Table 9. Performance R2 statistics results of NOx model.

Selected Features
Urban Suburbs Highway

R2 R2 R2

Train Test All Train Test All Train Test All

Top 3 features 0.99 0.78 0.94 0.99 0.93 0.98 0.99 0.98 0.99
Top 4 features 0.99 0.93 0.98 0.99 0.98 0.99 0.99 0.99 0.99
Top 5 features 0.99 0.93 0.98 0.99 0.98 0.99 0.99 0.99 0.99
Top 6 features 0.99 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99
Top 7 features 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Top 8 features 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Top 9 features 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 10. Performance R statistics results of CO2 model.

Selected Features
Urban Suburbs Highway

R2 R2 R2

Train Test All Train Test All Train Test All

Top 3 features 0.99 0.80 0.94 0.99 0.92 0.98 0.99 0.93 0.98
Top 4 features 0.99 0.83 0.95 0.99 0.91 0.98 0.99 0.92 0.98
Top 5 features 0.99 0.86 0.96 0.99 0.93 0.98 0.99 0.94 0.98
Top 6 features 0.99 0.91 0.98 0.99 0.95 0.99 0.99 0.96 0.99
Top 7 features 0.99 0.94 0.98 0.99 0.97 0.99 0.99 0.97 0.99
Top 8 features 0.99 0.95 0.98 0.99 0.97 0.99 0.99 0.98 0.99
Top 9 features 0.99 0.95 0.98 0.99 0.97 0.99 0.99 0.98 0.99

The performance of CO2 models is similar to that of NOx models. The R2 values of
train data are all very close to 1.0 in all three parts of route 1, implying that the training
process goes very well. As for the test data, the R2 values of the urban part increase from
0.80 to 0.95 as the number of features increase from three to nine. However, unlike the NOx
model where a big gap between three features and four features can be observed, the R2

values increase almost linearly with the number of features up to seven features where the
increase in the R2 value begins to slow down. In the suburbs part and the highways part,
the same trends of R2 values occur. The R2 values increase linearly with the number of
features up to six or seven features. It seems that the CO2 model needs more input features
to totally grasp the characteristics of raw data in all parts of the route.

In addition, Figure 8a,b show the performance statistics results of MAE and RMSE for
NOx models in route 1, respectively. They are other methods of performance evaluation
used to check the model accuracy. An opposite trend of the R2 value is found, that the
more features we use, the lower value of MAE we obtain. A lower value of MAE means
better accuracy by the definition of MAE in Equation (3). It is noted that the prediction
values are very close to the target values. In the meantime, the results for RMSE statistics
are very similar to those of MAE.

In Figure 8a, it is noted that the value of MAE decreases as the number of features
increases in urban, suburbs, and highways routes. Four features might be the best choice
for this case considering the computational cost and accuracy, but for reaching the best
performance, all features are the only option, even when using more calculation cost. It is
noted that the trend in Figure 8b is the same as MAE.

Figure 9 shows the MAE statistics for the CO2 model. Only the MAE statistics are
shown because the trend of RMSE statistics is also very similar to that of MAE, just as the
case of the NOx model. It is interesting to note that the trend of MAE in the urban part
is the same as that in the NOx model, i.e., the value of MAE decreases as the number of
features increases. However, in the suburbs and highways parts, different trends show that
three features input has a lower value of MAE than four features input. As a result, using
three features would be the best choice to obtain good performance and low computation
cost for urban, suburbs, and highways driving in route 1. Increasing the number of features
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can obtain better performance if computational cost needs are not to be considered. In that
case, eight features might be the best choice.
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In this study, the NOx and CO2 models obtained in route 1 were used to predict the
vehicle emissions driving in the urban, suburbs, and highways parts of the second route to
investigate the universality of the models. The results of NOx predictions in the second
route are listed in Table 11. It is noted that the R2 values in the urban part vary from 0.69
to 0.88. The R2 values of route 2 are lower than route 1, even for the same vehicle. This is
reasonable because the traffic flow, route conditions, and driver behaviors are different. The
average speed of these two routes is quite similar, as shown in Table 3, but the acceleration
of these two routes are different. The second route has wider acceleration ranges than
route 1, probably reflecting the characteristics of the drivers. Taking a close look at the
model performance, the lowest R2 value occurs when using the top three features for input
features. This is the same trend as for the route 1 urban NOx model. Unlike route 1’s urban
performance results, the maximum R2 values were found using six and seven features
for input, and the whole results show that the performance does not increase while the
number of features increases.

In the suburbs part of the second route, the range of R2 varies from 0.79 to 0.89 and
shows a different trend to the urban part. The maximum R2 value uses five features for
input, and then the R2 values drop after five features and reach the lowest value when
using all features for input. The R2 of the highways part varies from 0.93 to 0.96. All
of these values are higher than the urban and suburbs values. It is noted that the R2 of
highways is the best among the three driving patterns.
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Table 11. Performance statistics results of using NOx models to predict the second route NOx emission.

Selected Features
R2 R2 R2

Urban Model Suburbs Model Highway Model

Top 3 features 0.69 0.88 0.94
Top 4 features 0.87 0.88 0.96
Top 5 features 0.87 0.89 0.96
Top 6 features 0.88 0.80 0.94
Top 7 features 0.88 0.79 0.94
Top 8 features 0.83 0.80 0.93
Top 9 features 0.86 0.80 0.93

The performance results when using route 1 CO2 models to predict the second route
CO2 are listed in Table 12. The performance value increases while using three and four
input features and reaches the maximum value of using five features, then drops with an
increasing number of features for urban driving. The trend of R2 variations agrees with the
results of the CO2 models feature importance analysis shown in Figure 7a. It is noted that
the features importance influences the model performance a lot and reflects the same trend
of using this model to predict the second route.

Table 12. Performance statistics results of using CO2 models to predict the second route CO2 emission.

Selected Features
R2 R2 R2

Urban Model Suburbs Model Highway Model

Top 3 features 0.69 0.81 0.80
Top 4 features 0.75 0.82 0.82
Top 5 features 0.79 0.81 0.83
Top 6 features 0.74 0.76 0.78
Top 7 features 0.67 0.79 0.75
Top 8 features 0.63 0.76 0.73
Top 9 features 0.61 0.78 0.74

According to the above results, GBR models present excellent R2 values, representing
the model performance for NOx and CO2 prediction.

Table 12 shows that the R2 values of suburbs driving are higher than for urban. This is
the same result as using the route 1 NOx model to conduct prediction in the second route
due to the similar feature importance, such as mass air flow rate, exhaust flow rate, and
engine speed. It is interesting that the trend of R2 values of highway driving using three,
four and five features are similar to urban, but the R2 values of highway driving using six,
seven and eight features are similar to suburbs.

In summary, Figures 10–12 shows the comparisons of the R2 values of NOx and CO2
models for the training sub-dataset, the test sub-dataset, all data, and the prediction of
the second route using a different number of features in urban, suburbs, and highways
according to Tables 9–12. The criterion for the best model is to obtain the highest R2 value
in both route 1 and the second route. The best prediction is the highest R2 value of the
second route. For example, the best NOx model in urban driving, as shown in Figure 10a,
is the model with seven input features. However, the best prediction is the model with
six input features. Figure 10b shows the best model with eight input features and the best
prediction with five input features for the CO2 model in urban driving, according to the
same criterion. The statistics of the input number of features for the best model and best
prediction in urban, suburbs, and highways routes are listed in Table 13. It can be found
that the number of input features for the best prediction is less than that of the best model.



Int. J. Environ. Res. Public Health 2021, 18, 13044 18 of 28

Int. J. Environ. Res. Public Health 2021, 18, x  19 of 30 
 

 

criterion. The statistics of the input number of features for the best model and best predic-
tion in urban, suburbs, and highways routes are listed in Table 13. It can be found that the 
number of input features for the best prediction is less than that of the best model. 

  
(a) (b) 

Figure 10. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and 
the route 2 prediction in urban; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test sub-
dataset, all data, and the route 2 prediction in urban. 

  
(a) (b) 

Figure 11. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and 
the route 2 prediction in suburbs; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test sub-
dataset, all data, and the route 2 prediction in suburbs. 

  

Figure 10. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and the
route 2 prediction in urban; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test sub-dataset,
all data, and the route 2 prediction in urban.

Int. J. Environ. Res. Public Health 2021, 18, x  19 of 30 
 

 

criterion. The statistics of the input number of features for the best model and best predic-
tion in urban, suburbs, and highways routes are listed in Table 13. It can be found that the 
number of input features for the best prediction is less than that of the best model. 

  
(a) (b) 

Figure 10. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and 
the route 2 prediction in urban; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test sub-
dataset, all data, and the route 2 prediction in urban. 

  
(a) (b) 

Figure 11. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and 
the route 2 prediction in suburbs; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test sub-
dataset, all data, and the route 2 prediction in suburbs. 

  

Figure 11. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and
the route 2 prediction in suburbs; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test
sub-dataset, all data, and the route 2 prediction in suburbs.

Int. J. Environ. Res. Public Health 2021, 18, x  20 of 30 
 

 

 

  
(a) (b) 

Figure 12. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and 
the route 2 prediction in highway; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test 
sub-dataset, all data, and the route 2 prediction in highway. 

Table 13. Input number of features for best model and best prediction. 

 NOx CO2 
Urban Suburbs Highways Urban Suburbs Highways 

Best model 7 5 4 8 7 9 
Best prediction 6 5 4 5 4 5 

The models trained by GBR can not only predict the instantaneous emission produc-
tion on the road, as shown in previous figures, but also can be used to evaluate the emis-
sion factors of the vehicle driven on real roads. Table 14 and Figure 13 present the results 
of the calculation for the NOx emission factors with different input features. It is noted 
that the predicted emission factors are very close to the measured factors in the three parts 
of route 1 for all the cases of 3 input features to 10 input features. 

Table 14 and Figure 14 show the results of CO2 emission factors calculations. The 
results are as good as those for NOx predictions except in the suburbs part with six input 
features where the error between the predicted value and measured data is 0.4%, which 
is still very small. 

Table 14. Results of NOx and CO2 emission factor predictions. 

Selected Features 
Urban Suburbs Highway 

NOx 
Prediction 

CO2 
Prediction 

NOx 
Prediction 

CO2 
Prediction 

NOx 
Prediction 

CO2 
Prediction 

Top 3 features 0.78 154.24 0.62 105.77 0.95 142.76 
Top 4 features 0.78 154.05 0.62 105.83 0.95 142.72 
Top 5 features 0.78 154.01 0.62 105.94 0.95 142.63 
Top 6 features 0.78 153.91 0.62 108.79 0.95 142.76 
Top 7 features 0.78 153.95 0.62 105.70 0.95 142.77 
Top 8 features 0.78 153.97 0.62 105.72 0.95 142.70 
Top 9 features 0.78 153.97 0.62 105.72 0.95 142.60 

PEMS data 0.78 154.12 0.62 105.54 0.95 142.60 
 

Figure 12. (a) Comparisons of the R2 value of NOx models for the training sub-dataset, the test sub-dataset, all data, and
the route 2 prediction in highway; (b) Comparisons of the R2 value of CO2 models for the training sub-dataset, the test
sub-dataset, all data, and the route 2 prediction in highway.



Int. J. Environ. Res. Public Health 2021, 18, 13044 19 of 28

Table 13. Input number of features for best model and best prediction.

NOx CO2
Urban Suburbs Highways Urban Suburbs Highways

Best model 7 5 4 8 7 9
Best prediction 6 5 4 5 4 5

The models trained by GBR can not only predict the instantaneous emission produc-
tion on the road, as shown in previous figures, but also can be used to evaluate the emission
factors of the vehicle driven on real roads. Table 14 and Figure 13 present the results of the
calculation for the NOx emission factors with different input features. It is noted that the
predicted emission factors are very close to the measured factors in the three parts of route
1 for all the cases of 3 input features to 10 input features.

Table 14. Results of NOx and CO2 emission factor predictions.

Selected
Features

Urban Suburbs Highway
NOx

Prediction
CO2

Prediction
NOx

Prediction
CO2

Prediction
NOx

Prediction
CO2

Prediction

Top 3 features 0.78 154.24 0.62 105.77 0.95 142.76
Top 4 features 0.78 154.05 0.62 105.83 0.95 142.72
Top 5 features 0.78 154.01 0.62 105.94 0.95 142.63
Top 6 features 0.78 153.91 0.62 108.79 0.95 142.76
Top 7 features 0.78 153.95 0.62 105.70 0.95 142.77
Top 8 features 0.78 153.97 0.62 105.72 0.95 142.70
Top 9 features 0.78 153.97 0.62 105.72 0.95 142.60

PEMS data 0.78 154.12 0.62 105.54 0.95 142.60
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Table 14 and Figure 14 show the results of CO2 emission factors calculations. The results
are as good as those for NOx predictions except in the suburbs part with six input features where
the error between the predicted value and measured data is 0.4%, which is still very small.
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Table 15, and Figures 15 and 16 show that using route 1 NOx and CO2 models to
predict urban, suburbs, and highway emissions in the second route obtains the same
results as Tables 11 and 12 in terms of emissions gram per kilometer. It is clear that model
performance decides the error between measurement data and predictions. The best
performances of NOx and CO2 in the second route urban model use the top six features
and top five features, respectively. The best performance of NOx prediction in the second
route in the suburbs uses the top five features but CO2 prediction uses the top four features.
The best performance of the NOx prediction in the second route in the highway model
uses the top four features, and using the top five features to fit the model obtains the best
performance of CO2 prediction in the highway model.

Table 15. Second Route NOx and CO2 emission g/km predictions statistics results of using route 1 urbanmodels.

Selected
Features

Urban Suburbs Highway
NOx

Prediction
CO2

Prediction
NOx

Prediction
CO2

Prediction
NOx

Prediction
CO2

Prediction

Top 3 features 0.77 141.11 0.86 124.24 0.90 129.28
Top 4 features 0.82 142.21 0.90 123.73 0.92 130.39
Top 5 features 0.82 143.9 0.89 141.75 0.92 129.04
Top 6 features 0.76 145.44 1.09 129.67 0.95 129.20
Top 7 features 0.76 159.57 1.04 133.34 0.96 121.81
Top 8 features 0.81 172.54 1.14 122.44 0.96 136.55
Top 9 features 0.81 172.58 1.07 127.40 0.97 136.47

PEMS data 0.78 141.2 0.85 119.14 0.94 124.20
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Diesel is a volatile substance that consists of hydrocarbon. The diesel fuel chemical
formula is C16H30 with the density of 0.85 kg/L. The stoichiometric combustion reaction of
diesel fuel with air in a diesel engine is as following.

C16H30 + 23.5(O2 + 3.76N2)→ 16CO2 + 15H2O + 88.36N2 (6)

According to Equation (6), fuel consumption can be calculated by utilizing CO2 emis-
sion gram per kilometer, as obtained above. The results of fuel consumption calculations in
route 1 are shown in Table 16 and Figure 17. It is noted that the errors of fuel consumption
are very similar to the errors of CO2, as in Figure 12. This is very reasonable because the
fuel consumption in a diesel engine is closely related to CO2 production. The results of
fuel consumption predictions in the second route are shown in Table 16 and Figure 18. The
same trends of model errors can be observed as in Figure 16.
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Table 16. Fuel consumption km/L statistics results of route 1 and route 2.

Selected
Features

Urban Suburbs Highway

Route 1
Prediction

Route 2
Prediction

Route 1
Prediction

Route 2
Prediction

Route 1
Prediction

Route 2
Prediction

Top 3 features 17.48 19.10 25.48 21.70 18.89 20.85
Top 4 features 17.50 18.95 25.47 21.79 18.89 20.67
Top 5 features 17.50 18.73 25.44 19.02 18.90 20.89
Top 6 features 17.51 18.53 24.78 20.79 18.89 20.86
Top 7 features 17.51 16.89 25.50 20.22 18.89 22.13
Top 8 features 17.51 15.62 25.50 22.01 18.89 19.74
Top 9 features 17.51 15.62 25.50 21.16 18.90 19.75

PEMS data 17.49 19.09 25.54 22.62 18.89 21.70
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5. Discussion

According to Tables 9 and 10, the best model is built by selecting the top seven input
features for the NOx model and the top eight input features for the CO2 model in urban
driving. The R2 values of the NOx model and the CO2 model are 0.99 and 0.98, respectively.
These results are the best R2 values among the NOx and CO2 models when selecting
different input numbers of features. It is noted that the choice was based on the prediction
accuracy only, calculation cost was not considered. The prediction results of the best NOx
and CO2 models are plotted in Figure 19a,b, in which the red triangle represents the test
sub-dataset and the blue square represents the training sub-dataset. Since the R2 value
of the test sub-dataset for the best NOx model is 0.97, some small deviations between the
predictions and the measurements can still be observed in Figure 19a. Furthermore, the bar
chart located at the lower right corner shows the ground truth of the predictions. Ground
truth is an evaluation of the results of model accuracy against the targets. The distribution
of ground truth would concentrate on zero value for a perfect model. It can be seen for
the best NOx model the distribution of ground truth spreads a little bit around zero value,
indicating the existence of deviations. Figure 19b shows the predictions of the best CO2
model. The same deviations can be observed as those in the NOx model. However, since
the R2 value of the test sub-dataset for the best CO2 model is 0.95, more deviations can be
observed in Figure 19b. The bar chart of the ground truth also spreads more in the CO2
model. In general, both the NOx and CO2 models show pretty good accuracy, as shown in
Figure 19a,b.
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urban; (b) Deviations between the predictions and the measurements and ground truth plot of the best CO2 model in urban.

As for the suburbs part, the best models are built by using the top five features
for NOx and the top seven features for CO2 according to the results listed in Tables 9
and 10, respectively. The R2 values of both the NOx model and the CO2 model are 0.99.
Figure 20a,b shows the prediction results of the best NOx and CO2 models. The red triangle
represents the test sub-dataset, and the blue square represents the training sub-dataset. It
can be observed that deviations are very small in the NOx models because the R2 value
is close to 1. However, since the R2 value of the test sub-dataset for the best CO2 model
is 0.97, more deviations can be observed in Figure 20b. Taking a close look at the ground
truth distributions, they are very close to the zero value, indicating only little deviations
occur. Both the NOx and CO2 models show pretty good accuracy, as shown in Figure 20a,b.
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Figure 20. (a) Deviations between the predictions and the measurements and ground truth plot of the best NOx model
in suburbs; (b) Deviations between the predictions and the measurements and ground truth plot of the best CO2 model
in suburbs.

The model performance in the highways part is examined in the following. The best
model is built by using the top four features for NOx, and the top nine features are used
for the CO2 model according to the results listed in Tables 9 and 10, respectively. It is
noted that the R2 values of both the NOx model and the CO2 model are 0.99. The best
NOx and CO2 models prediction results of the test and training sub-datasets are plotted
in Figure 21a,b with a red triangle and blue square, respectively. Very few deviations can
be observed for the best NOx model in Figure 21a. More deviations can be found for the
best CO2 model in Figure 21b because the R2 value is 0.98. The bar charts located in the
lower right corner show the ground truth distributions of the predictions. Both models
show pretty good accuracy, with the distributions concentrating around zero value.
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Figure 21. (a) Deviations between the predictions and the measurements and ground truth plot of the best NOx model in
highways; (b) Deviations between the predictions and the measurements and ground truth plot of the best CO2 model
in highways.

Figure 22a shows the deviations between the predictions and the measurements by
using the top four features as input to build the NOx model in the urban part. Comparisons
between Figures 19a and 22a show that the deviations in Figure 22a are a little bit greater
than Figure 19a. This is reasonable since the best model has the highest performance R2

value. It is also noted that a similar result as the NOx model is found for the CO2 model in
the urban part shown in Figure 22b. Moreover, taking a look at the second route prediction
R2 values for the NOx model in the urban route would find that the R2 values of using the
top four features for input are close to the R2 value of the best prediction. This is similar to
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the CO2 model where the R2 values of using the top four features for input is 0.75, and the
best prediction has the R2 value of 0.79. As a result, selections of the NOx model and CO2
model that use the top four features could be the second choice for second route prediction.
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The purpose of this paper is to find a feasible way to build a predictive model for
diesel emissions. It was found that three parameters are good enough to build a model. A
lot of computational costs could be saved with the simplified model. The results of this
paper would be very useful for the modelers thereafter. The strategy of emission reduction
is not the purpose of this paper. However, according to the results of the emission model
developed in this paper, the most important features are exhaust flow rate, air–fuel ratio,
and engine speed. The implications of the findings are that reducing the engine load may
abate the emissions of a running vehicle.

The NOx emission factors calculation from Table 14 shows that the lowest value occurs
in the suburbs. It is observed from Table 14 that there is the same trend in the CO2 emission
factors calculation. The common reason might be acceleration and deceleration. It would
be helpful to remind drivers to control their speed to reduce air pollution.

6. Conclusions

The features importance analysis of NOx and CO2 models for urban, suburb, and
highways are built successfully. The top three features of urban, suburban, and highway
NOx models are airflow rate, exhaust flow rate, and CO2 concentrations, and the top three
features of urban and suburban CO2 models are exhaust flow rate, airflow rate, and engine
speed. The top three features of highway CO2 models are airflow rate, exhaust flow rate,
and acceleration.

In order to have an accurate prediction, generally, we need more input features. How-
ever, the accuracy is not proportional to the number of input features. More input features
do not guarantee more accurate predictions. The best models need 4~9 input features to
have the highest R2 value. The best predictions of the second route need 4~6 input features.
The choice of input features depends on the route characteristics and the emissions.

If the computational cost is a major concern, the model could be simplified to reduce
the number of input features. The R2 values of the simplified NOx models using the top
three and top four input features are very close to the best model. The difference in R2

values is as small as 0.01. The R2 values of the simplified CO2 models using the top three
and top four input features are also very close to the best model. The difference in R2

values is about 0.04.
The purpose of this paper is to find a feasible way to build a predictive model for

diesel emissions. It was found that three parameters are good enough to build a model. A
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lot of computational costs could be saved with the simplified model. The results of this
paper would be very useful for the modelers thereafter.

Moreover, the gradient boosting regression model is a very powerful tool in modeling
and prediction, and has been applied in many different fields. However, this model has
not been used in pollution predictions widely. The NOx and CO2 GBR models were built
successfully in this study to predict the emissions of diesel vehicles on real roads with
pretty good R2 values. The results show that the GBR is a practical approach to making
accurate predictions.

It is recommended that three or four input features are good enough to build an
accurate and fast model for the prediction of the NOx and CO2 emissions of diesel vehicles
running on real roads. However, the choice of input features is important. An inappropriate
choice of input feature may give poor results.
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