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Objective: Several population pharmacokinetic (popPK) models have been developed to
determine the sources of methotrexate (MTX) PK variability. It remains unknown if these
published models are precise enough for use or if a new model needs to be built. The aims
of this study were to 1) assess the predictability of published models and 2) analyze the
potential risk factors for delayed MTX elimination.

Methods: A total of 1458MTX plasma concentrations, including 377 courses (1–17 per
patient), were collected from 77 patients who were receiving high-dose MTX for the treatment
of primary central nervous system lymphoma in Huashan Hospital. PopPK analysis was
performed using theNONMEM® software package. Previously published popPKmodelswere
selected and rebuilt. A new popPKmodel was then constructed to screen potential covariates
using a stepwise approach. The covariates were included based on the combination of
theoretical mechanisms and data properties. Goodness-of-fit plots, bootstrap, and prediction-
and simulation-based diagnostics were used to determine the stability and predictive
performance of both the published and newly built models. Monte Carlo simulations were
conducted to qualify the influence of risk factors on the incidence of delayed elimination.

Results: Among the eight evaluated publishedmodels, none presented acceptable values
of bias or inaccuracy. A two-compartment model was employed in the newly built model to
describe the PK of MTX. The estimated mean clearance (CL/F) was 4.91 L h−1 (relative
standard error: 3.7%). Creatinine clearance, albumin, and age were identified as covariates
ofMTXCL/F. Themedian andmedian absolute prediction errors of the final model were -10.2
and 36.4%, respectively. Results of goodness-of-fit plots, bootstrap, and prediction-
corrected visual predictive checks indicated the high predictability of the final model.

Conclusions: Current published models are not sufficiently reliable for cross-center use.
The elderly patients and those with renal dysfunction, hypoalbuminemia are at higher risk of
delayed elimination.
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1 INTRODUCTION

High-dose methotrexate (HD-MTX, ≥ 1 g m−2) is the base
therapy for the treatment of various lymphoid malignancies,
such as acute lymphoblastic leukemia (Sakura et al., 2018) and
non-Hodgkin’s lymphoma (Reiter et al., 1999), especially for
treating primary or secondary central nervous system
lymphoma (Plotkin et al., 2004; Zhu et al., 2009). As an
antifolate inhibitor of dihydrofolate reductase, MTX may cause
the depletion of purines and thymidylate, which inhibits DNA
synthesis, leading to cell death (Baram et al., 1987).

Following intravenous infusion, approximately 60% of MTX
binds to plasma protein (Maia et al., 1996). As a small polar
molecule, MTX elimination is highly correlated with renal
function. Approximately only 10% of MTX is excreted as
unchanged drug in the bile, whereas the majority is eliminated
as unchanged drug through the kidneys within 24 h (Csordas
et al., 2013).

Both the pharmacokinetic (PK) of MTX, which exhibit wide
inter-individual variability (IIV), and its exposure are directly
related to efficacy and toxicity (Evans et al., 1986; Evans et al.,
1998). Patients experiencing delayed MTX elimination have been
reported to be at an elevated risk of toxicity, such as
nephrotoxicity, myelotoxicity, mucositis, neurological
complications, and other adverse effects, which may lead to
significant morbidity and delays in treatment (Howard et al.,
2016). To prevent this systemic toxicity, supportive care, such as
fluid hydration, urine alkalinization, and leucovorin rescue, is
conducted as HD-MTX is administered (Widemann and
Adamson, 2006). Post-dose therapeutic drug monitoring is
routinely performed to maintain MTX plasma concentrations
within the cytotoxic range for leukemic cells and, below those
associated with toxicity (Wall et al., 2000; Paci et al., 2014).

Delayed MTX elimination is defined as plasma MTX
concentrations above 50 μmol L−1 at 24 h, above 5 μmol L−1 at
48 h, or above 0.2 μmol L−1 at 72 h (Hospira, 2017). As MTX-
induced nephrotoxicity correlates with clearance (CL), delayed
elimination is closely related to acute kidney injury (Huang et al.,
2020). Thus, if patients with delayed MTX CL can be identified,
allowing for the implementation of a personalized dosage
regimen before chemotherapy, concentration-related toxicity
may be avoided (Ramsey et al., 2018). Although some
oncology guidelines recommend MTX dosage based on the
patient’s body size (i.e., body surface area or actual body
weight) (Gurney and Shaw, 2007; Griggs et al., 2012), this
strategy is not always suitable for clinical practice, particularly
for obese patients (Gallais et al., 2020; Pai et al., 2020). Therefore,
determining the risk factors for delayed MTX elimination is
essential.

Compared to conventional PK analysis, population
pharmacokinetics (popPK) is a superior approach in
facilitating the understanding and quantification of PK
variability (Ette and Williams, 2004). PopPK models combined
with maximum posterior Bayesian estimation can be used to
guide dosing regimen individualization.

A few popPK models have been constructed to assess the
sources of MTX PK variability. However, whether these popPK

models can be extrapolated to other clinical centers remains
unknown. In addition, inconsistencies and differences in study
design, research purpose, and population properties have been
noted in some of the published popPK models with regard to
model structure, parameter estimates, selected covariates, and
their functional forms on PK parameters (Mao et al., 2018;
Cheng et al., 2020). As the published models were developed
based on specific populations, selecting an appropriate
model to guide precision dosing in clinical practice is
challenging.

Whether the published models are sufficiently precise for use
in patients with primary central nervous system lymphoma, or
whether a new popPK model based on our center is needed,
remains unknown. Therefore, we summarized and assessed the
predictability of published HD-MTX popPK models in adult
patients with lymphoid malignancies. In addition, a new popPK
model was constructed to investigate the effects of physic-
pathological parameters on the distribution and elimination
of MTX. The predictability of this model was also compared
with previously published models. Finally, the most suitable
model was applied to identify the population with delayed
elimination.

2 MATERIALS AND METHODS

2.1 Patient Data Collection
Data from 77 adults (49 men and 28 women) who were diagnosed
with primary central nervous system lymphoma and received
HD-MTX (>1 g m−2) for treatment between June 2011 and
November 2016 were retrospectively collected.

To protect against MTX-induced renal dysfunction, hydration
and alkalization (urine pH > 7) were achieved 12 h prior to
initiating MTX therapy (Hospira, 2017). Serial plasma MTX
levels were measured at 24, 48, and 72 h until the plasma
concentration was ≤0.2 μmol L−1 (Dupuis et al., 2008). The
leucovorin rescue was initiated and repeated every 6 h after
24 h from the MTX infusion until the MTX concentration was
lower than ≤0.2 μmol L−1.

MTX concentrations in plasma were determined using a well-
validated enzyme-multiplied immunoassay (EMIT) using the
SYVA Viva-Emit 2000 Kit (Siemens Healthcare Diagnostics,
Newark, DE, United States). The limit of detection was
0.3 μmol L−1, and the calibration concentrations ranged from
0.3 μmol L−1–2,600 μmol L−1.

Demographic covariates, including age, sex, weight, body
surface area (BSA), and concomitant medication with
benzimidazoles and corticoids, were included in the
database. Clinical covariates, such as serum creatinine (SCr)
levels, were recorded before each MTX infusion and in tandem
with MTX plasma samples. According to the standard of ‘drug
interaction score’ (Benz-de Bretagne et al., 2014),
benzimidazoles and corticoids were assigned scores of 2
and 1, respectively.

The Ethics Committee of Huashan Hospital approved the
study protocols. Written informed consent was obtained from all
volunteers.
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2.2 Population Pharmacokinetic Models
Our study consisted of the following steps:

Step 1: PopPK models of HD-MTX in adult patients with
lymphoid malignancies were selected and reviewed.
Step 2: A new popPK model was constructed based on our
dataset.
Step 3: The predictability of published popPK models and that
of the newly built model was evaluated.
Step 4: The most suitable model was applied to identify the
population with delayed elimination.

2.2.1 Review of Published popPK Studies on HD-MTX
A systematic review of popPK studies on HD-MTX published in
English before 31 December 2020 was performed using PubMed,
Web of Science, and Embase. According to the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
statement, the relevant identification, screening, and
assessment were conducted (Moher et al., 2015).

The inclusion criteria for published studies were as follows: 1)
studied population: adult patients with lymphoid malignancies;
2) treatment: HD-MTX; 3) PK analysis using NONMEM®
software package; and 4) language: English. Studies were
excluded if they 1) lacked the required details for external
evaluation and re-estimate or 2) overlapped with other data or
cohorts. Reference lists of the identified reports were also
screened.

The demographic characteristics and following popPK
parameters were collected from each identified study: apparent
clearance (CL/F), apparent volume of distribution (V/F), and
corresponding between-subject variability and residual
variability.

2.2.2 Development of a Model Based on Our Dataset
NONMEM® software package (version 7.4; ICON Development
Solutions, Ellicott City, MD, United States) with Pirana® 2.9 as an
interface for Perl Speaks NONMEM (PsN; version 4.9.0) was used
for popPK analysis (Keizer et al., 2013). R software (version 3.5.0,
http://www.r-project.org/) was used to construct the
visualizations for output and model evaluations.

Based on a literature review and visual data inspection, the
concentration-time profile of MTX was described by two-
compartment models. Model variability and random effects
were classified as one of three types of errors: between-subject
variability (BSV), inter-occasion variability (IOV), and residual
unexplained variability (RUV). BSV was assumed to be log-
normally distributed and an estimate for all parameters. IOV
was assumed to be the same for all occasions (Karlsson and
Sheiner, 1993). RUV was described by testing proportional and
combined proportional as well as additive structures. The first-
order conditional estimation method including η-ε interaction
(FOCE-I) was used for the model (Beal et al., 1989).

The evaluated covariates included demographic and
pathophysiological data, as well as concomitant medications
(Table 1). Age, body size, hematocrit (HCT), albumin (ALB),
creatinine clearance (CrCL), and concomitant medications were
evaluated as possible covariates of MTX PK. CrCL was estimated
using the Cockcroft-Gault equation (Cockcroft and Gault, 1976).

As the most frequently identified covariate, the effect of CrCL on
MTX PK CL/F was tested first. The other covariates were
screened according to a previous study and their clinical
relevance (Mao et al., 2018). Each co-administered drug was
assigned a “drug interaction score (DIS)” list (Supplementary
Table S1), as presented previously (Benz-de Bretagne et al., 2014),
and was considered individually by testing its effect on PK
parameters as categorical variable.

The influence of continuous covariates was explored using the
linear, exponential, and power function models, whereas that of
categorical variables was described using a shift model. After
considering the most frequently identified covariates in the
model, the remaining covariates were screened using a
stepwise approach primarily based on objective function value
(OFV) (Beal et al., 1989), and parameter precision. Error
estimates were also considered.

The likelihood ratio tests at a significance level of p < 0.05
(ΔOFV >3.84) and p < 0.001 (ΔOFV >10.83) were performed in
forward inclusion and backward elimination procedures,
respectively. Moreover, the clinical meaning of parameters with a
significant reduction of model variability in covariate selection was
also considered. In the modeling process, the condition numbers
were calculated to avoid over-parameterization, accepting no more
than 1,000 as the criterion (Owen and Fiedler-Kelly, 2014).

2.2.3 Implementation of Published Models
Published models were rebuilt and fixed parameters were
reported in each study. Prediction- and simulation-based

TABLE 1 | Patient characteristics used to develop and evaluate population model.

Characteristics Number or mean ± SD Median (range)

No. of patients (Male/Female)a 77 (49/28) /
No. of Samplesb 1,458 /
Age (years) 54.6 ± 9.2 56 (28–76)
Height (cm) 169 ± 7 170 (150–185)
Weight (kg) 67.8 ± 10.7 69.0 (41.0–94.0)
Body surface area (m2) 1.60 ± 0.30 1.61 (0.85–2.32)
Methotrexate dose (g) 4.7 ± 1.9 4.0 (2.0–15.8)
Methotrexate dose (g m−2) 3.0 ± 1.3 2.8 (1.1–10.2)
Dosing time (h) 3.9 ± 3.7 3 (1–28.25)
Occasions (n) 4.9 ± 3.6 4 (1–17)
Samples per individual (n) 19.0 ± 13.7 16 (3–67)
Hematocrit (%) 36.0 ± 4.5 36.1 (15.7–48.4)
Total Bilirubin (μmol L−1) 9.8 ± 3.9 9.5 (3.1–36.1)
Alanine aminotransferase (U L−1) 38.2 ± 39.5 28.0 (4.0–420.0)
Aspartate transferase (U L−1) 24.7 ± 22.0 20.0 (5.0–559.0)
Albumin (g L−1) 38.7 ± 4.3 39.0 (24.0–50.0)
Total protein (g L−1) 64.2 ± 6.3 64.0 (41.0–82.0)
Serum Creatinine (μmol L−1) 70.5 ± 28.7 66.0 (22.0–480.0)
Creatinine Clearance (ml min−1)c 104.2 ± 34.2 98 (15.1–326.5)
Concomitant medicationsb

Omeprazole 214 /
Esomeprazole 19 /
Lanzoprazole 969 /
Pantoprazole 58 /
Dexamethasone 1,122 /

aData are expressed as number of patients.
bData are xpressed as number of samples.
cCalculate following the Cockcroft-Gault formula: CrCL = [(140-Age (year)) ×WT (kg)]/
(0.818×Scr (μmol L−1)) × (0.85 for female).
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diagnostics were then used to evaluate the predictive performance
of the published models (Zhao et al., 2016; Mao et al., 2018). If
specific continuous covariates were missing, the median of the
dataset or the model population was imputed. The data were
assumed to be in the negative category (e.g., not receiving
concomitant omeprazole) if categorical covariates were not
available.

2.3 Model Evaluation
The predictability of published popPKmodels and the newly built
model was evaluated by prediction- and simulation-based
diagnostics. To compare the accuracy and precision of model
predictive performance, prediction-based prediction error (PE,
Eq. 1), median prediction error (MDPE), and median absolute
prediction error (MAPE) were calculated and estimated (Sheiner
and Beal, 1981).

PE (%) � (PRED − OBS
OBS

) × 100 (1)

The percentages of PE within 20% (F20) and 30% (F30) were used
as the combination index of both the accuracy and precision.

The goodness-of-fit plots were examined for model evaluation.
The model stability and precision of parameter estimates were
assessed using the bootstrap method (Ette et al., 2003). By random
sampling with replacement in Perl modules, 2000 bootstrap
datasets were generated (Ette, 1997). The final popPK model
was compared with each of the bootstrap datasets to obtain
95% confidence intervals (CI) for all model parameters.

The predictability of the candidate model was evaluated using
prediction-corrected visual predictive checks (pcVPCs) with 2000
simulations (Bergstrand et al., 2011). The 95% CI for the median,
and the 5th and 95th percentiles of the simulations were calculated
and compared with the observations, binning automatically.

2.4 Model Application
Using parameter estimates from the most suitable model, Monte
Carlo simulations were performed. The objective of this study was
to determine the influence of covariates on the incidence of delayed
MTX elimination. The proportion of patients with MTX
concentrations ≤0.2 μmol L−1 at 72 h was analyzed, as 3 g m−2

was administered for standard patients (with BSA 1.6 m2) with
different covariate levels (2.5th percentile, median, and 97.5th
percentile). After simulating 1,000 hypothetical individuals, the
time-concentration profiles were obtained in each scenario.

3 RESULTS

3.1 Patients and Data Collection
Patient demographic and physical characteristics are presented in
Table 1. Data from 77 patients, covering 377 courses (1–17 per
patient), and 1458 MTX plasma concentrations were available for
analysis. The doses administered to patients ranged from 2 to
15.8 g. MTX dosage was transformed into molar equivalents by
dividing them by themolecular weight (MTX: 222 g mol−1, http://
chem.nlm.nih.gov/chemidplus/). For 92.3% of the treatment
cycles, patients had short infusions, ranging from 1 to 4 h,

whereas the remaining patients had long infusions, ranging up
to 28.25 h.

In total, 567 concentrations were below the limit of
quantification (LOQ), among which 236 were the second
samples below the LOQ in the same treatment cycle. The M6
method was used to handle samples below the LOQ of
0.3 μmol L−1 as Gallais et al. done previously (Beal, 2001;
Gallais et al., 2020). For concentrations under the lower LOQ
(LLOQ), the first measurement in each continuous series was set
to LLOQ/2, with the following measurements being treated as
missing values. More complex approaches such as the M3/M4
method (likelihood estimation) did not improve model
predictability, and thus were not evaluated further. The
description of the sampling points and samples below the
LOQ is provided in Supplementary Table S2.

3.2 Population Pharmacokinetic Models
3.2.1 Review of Published popPK Studies on HD-MTX
Eight eligible popPK studies (Faltaos et al., 2006; Min et al., 2009;
Simon et al., 2013; Benz-de Bretagne et al., 2014; Nader et al.,
2017; Mei et al., 2018; Gallais et al., 2020; Yang et al., 2020) were
identified during the literature review for further analysis. The
screening process is presented in Text S1. The details of each
study are summarized in Table 2. Among them, seven were
single-center studies, whereas one was conducted at two centers
(Benz-de Bretagne et al., 2014). Additionally, four studies were
primarily conducted in France (Faltaos et al., 2006; Simon et al.,
2013; Benz-de Bretagne et al., 2014; Gallais et al., 2020), three in
China (Min et al., 2009; Mei et al., 2018; Yang et al., 2020), and
one in Qatar (Nader et al., 2017). Furthermore, seven studies in
the analysis had a small sample size of less than 1,000
concentrations (Faltaos et al., 2006; Min et al., 2009; Simon
et al., 2013; Benz-de Bretagne et al., 2014; Nader et al., 2017;
Mei et al., 2018; Yang et al., 2020). Four bioassay methods, HPLC,
EMIT, TDx, and HEI, were used in seven studies (Table 2).
Bioassay information was not provided in one study (Nader et al.,
2017).

The covariates of the published final CL/F models included
age, SCr, CrCL, HCT, BSA, change in basal urinary
coproporphyrin I/coproporphyrin I + III ratio value at the
time of hospital discharge (MTX pre-administration [DP3]),
co-administration with at least one drug of score 2 (SCO2),
and ABCB2 genotype. SCr, CrCL, and age were the most
frequently identified covariates in the final models and were
reported in three, two, and two studies, respectively
(Supplementary Table S3 and Supplementary Table S4).
Body size was screened in all studies, and three included it in
the volume of distribution, whereas one included it in CL/F and
Q/F. Moreover, ABCC2 polymorphisms were screened in two
studies, and it was included in the final model in one study
(Simon et al., 2013).

3.2.2 Population Pharmacokinetic Model
Development
Data was described using a two-compartment PK structural
model (ADVAN3, TRANS4 subroutine) with linear
elimination. The exponential model provided the best result
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TABLE 2 | Summary of published population pharmacokinetic studies of HD-MTX in adult patients with lymphoid malignancy.

Study
(publication
year)

Country
(single/
multiple
sites)

Number
of samples/
Patients
(M/F)

Dosage
regimen

Sampling
schedule

Bio-
assay

PK parameters
and formula

BSV%
(IOV%)

Residual
error

Evaluation

Faltaos et al.
(2006)

France
(Single)

496/51 (28/23) 1–8 g/m2, C24/C48 and other two samplesa EMIT CL/F 7.1×(AGE/62)−0.22 ×(SCR/67)−0.43 22.0
(16.5)

46.0% GOF, Bootstrap,
MPE,RMSE

1–6 h, i.v. Vc/F 25.1 22.5 0.015 μmol/L
Q/F 0.15 51.0
Vp/F 2.7 64.0

Min et al.
(2009)

China
(Single)

400/82 (60/22) 1.5–9 g, 24 h, i.v. Before and 6,12,18,24,30,36,44,50,56,68,74,80,92 h
after infusion

TDx CL/F 7.45×[1 + 0.224×(0.89-SCR/100)] 50.6 42.3% GOF,
Vc/F 25.9×[1–0.00937×(66-WT)] 22.5 0.039 μmol/L MPE,RMSE,
Q/F 0.333 70.4 Cross-over

validationVp/F 9.23 97.8
Simon et al.
(2013)

France
(Single)

496/50 (27/23) 1–8 g/m2,
1–6 h, i.v.

At the end of infusion and 8–12,24,48, 72 h until
<0.03 μmol/L

EMIT CL/F 3.99×(1.63, if ABCC2 CT or TT) +
1.91×(CrCL/89)

28.7d 44.4% GOF,

V1/F 19.0×(1.63, if ABCC2 CT or TT) 36.7d Bootstrap,
Q2/F 0.1 / VPC
V2/F
Q3/F

1.58 /

V3/F 0.021 /
1.99 /

Bretagne et al.
(2014)

France
(Multiple)

363/81 (46/35) 1–8 g/m2, C24/C48/C72, then q24 h until <0.2 μmol/L EMIT
(Paris)

CL/F 7.05×(CrCL/91.6)0.27×(DP3/0.6)
0.16

–0.93×SCO2
23.0 41.7% GOF, Bootstrap,

NPDE
3–24 h, i.v. TDx

(Tours)
Vc/F 23.5 34.0
Q/F 0.13 /
Vp/F 3.01 32.1

Nader et al.
(2017)

Qatar
(Single)

530/37 (31/6) 0.5–7 g/m2, q12 h or q24 h until <0.05 μmol/L NA CL/F 15.7×(HCT/32)0.85 34.9
(47.4)b

(31.1)b

33.4% GOF,

4–6 h or 24 h, i.v. Vc/F 79.2×(WT/69)1.29 / VPC
Q/F 0.97 /
Vp/F 51.4 63.2

Mei et al.
(2018)

China
(Single)

701/98 (53/45) 0.9–5.4 g/m2

1.3–8.2 h, i.v.
C24/C48/C72/C96 HPLC CL/F 6.67×(SCR/68.1)−0.48×(BSA/

1.75)1.17
40.0 3.02 μmol/L GOF,

Vc/F 24.46×(AGE/57.16)0.81 42.7 Bootstrap,
Q/F 0.047 25.1 VPC
Vp/F 1.32 63.0

Yang et al.
(2020)

China
(Single)

852/91 (64/27) 1–3 g/m2, i.v. NA HPLC CL/F 6.03×(CrCL/115.1)0.414 51.6
(15.4)

0.32 μmol/L GOF,

Vc/F 20.7 48.3 Bootstrap,
Q/F 0.074×(BSA/1.65)1.43 65.6 VPC
Vp/F 3.76 /

Gallais et al.
(2020)

France
(Single)

1,179/328
(180/133)c

1–8 g/m2,
0.5–36 h, i.v.

C36/C48, then q24 h until <0.2 μmol/L HEI CL/F 8.3×(AGE/50)−0.317 23.0
(22.0)

34.0% GOF

HPLC Vc/F 27.4 /
Q/F 0.15 (fixed) /
Vp/F 3.1×(WT/70)0.453 38.0

ABCC2, -24C>TSNP (rs717620) in 5′-UTof theATP-bindingcassette transporter; BSA,body surfacearea (m2); BSV, between subject variability;CL/F, apparent clearance (l h−1); Cn, concentrationatnhourspost-dose;CrCL, creatinine clearance (mlmin−1); DP3,
the change of basal value of urinary coproporphyrin I/coproporphyrin I + III ratio at the time of hospital discharge refer to theMTX pre-administration; EMIT, enzymemultiplied immunoassay technique; F, female; FPIA, fluorescence polarization immunoassay; GOF,
goodness-of-fit plots; HCT, hematocrit (%); HD-MTX, high dose-methotrexate; HEI, homogeneous enzyme immunoassay; IOV, inter-occasion variability; LC/MS, liquid chromatography/mass; M: male; MPE, median prediction error; NPDE, normalized prediction
distribution error; PCNSL, primary central nervous system lymphoma;Q/F, apparent inter-compartmental clearance (l h−1); RMSE, rootmean square error; SCO2, co-administeredwith at least one drug of score 2; SCR, serumcreatinine (μmol L−1); TDx, FPIA using
TDx

®
analysers; Vc/F, apparent volume of distribution of central compartment (l); Vp/F, apparent volume of distribution peripheral compartment (l); VPC, visual predictive check; WT, bodyweight (kg).

aTwo supplementary samples: at the end of infusion and between 8 and 12 h from the beginning of the infusion. Eventual follow up plasma level determination was done at 72 h, 96 h or more.
bIOV of 47.4 and 31.1% on MTX CL, for the second and third dosing occasions.
c15 patients not included owing to missing toxicity information.
dCorrelation is CL ~ VC, 0.78.
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for the residual variability from the results of the OFVs and the
distribution of residuals in the diagnostic plots. The parameter
estimates and associated precisions of the base model are
presented in Table 3.

Mechanistic plausibility was mainly considered as a potential
covariate incorporated into the base model. As MTX is primarily
eliminated unchanged by renal excretion, the effect of CrCL on
MTX PK CL/F was tested first. The OFV substantially declined
when CrCL was included exponentially (ΔOFV -97.6, p < 0.001),
indicating a significant improvement in the model. A decrease
(18.0%) in CL/F was observed as the CrCL decreased from
90 ml min−1 to 60 ml min−1.

The pathophysiological factors influencing MTX protein
binding were then investigated empirically. ALB and HCT
were included in the model to assess which was more suitable
for describing the change in protein binding in the MTX PK
process (ΔOFV -59.9 vs. -14.8, p < 0.001), and ALB was included
in the final model. As 24.6% of patients were above 60 years old,
age was also investigated by separating patients into two groups
(i.e., older, or younger than 60 years). The CL/F of elderly patients
(age >60) was 11.0% lower than that of the younger patients
(ΔOFV -13.3, p < 0.001).

Moreover, the influence of morphological characteristics, such
as body weight, BSA, and body mass index (BMI), on PK
disposition parameters was tested based on allometric scaling
theory (West et al., 1997; Anderson andHolford, 2009). However,
no significant differences were observed. The presence of DIS ≥2
was added to the CL/F to test the influence of drug-drug
interaction factors on the MTX PK process. However, the
drop in the OFV was 3.6 and no significant differences were
observed. The step-by-step covariate screening procedure is
shown in Supplementary Table S5 and the correlation
between BSVs is presented in Supplementary Figure S1.

The additional estimation of the IOV for CL, which was
estimated to be 24.7%, significantly improved model
predictions (ΔOFV -679.9, p < 0.001), which suggests that
elimination parameters vary across MTX courses.

The parameters of the final model are listed in Table 3. The
final model with CL/F covariates was described as follows.

CL/F � 4.91×(CrCL/98)0.49×(ALB/40)0.35×(0.89, if age > 60)
In the final model, all retained covariates caused a significant

increase in OFV upon removal. The condition number of the final
model was 83.6. Shrinkage analysis for CL showed a mean η-CL
shrinkage of 25.5% and ε-shrinkage of 24.9%.

3.3 Model Evaluation
The predictive performance of published models was evaluated in
the evaluation population dataset using the prediction- and

TABLE 3 | Parameter estimates for the base model, final model and bootstrap procedure.

Parameters Base model Final model Bootstrap of final model

Estimate RSE (%) Estimate RSE (%) Shrinkage (%) Median 95% CI

Objective function value 4306.6 / 3455.9 / / / /
CL/F (L h−1) 4.8 4.3 4.91 3.7 / 4.97 4.37–5.44
Vc/F (L) 20.9 5.6 18.4 3.8 / 18.0 16.5–20.3
Q/F (L h−1) 0.09 14.0 0.063 9.8 / 0.073 0.022–0.10
Vp/F (L) 5.9 26.3 2.18 14.1 / 2.17 1.59–2.77

Covariate effect on CL/F
CrCL / / 0.49 22.6 / 0.50 0.29–0.69
ALB / / 0.35 50.6 / 0.35 0.031–0.72
AGE / / 0.89 9.4 / 0.90 0.72–1.06

Between-subject variability
CL/F (%) 39.2 24.9 20.9 25.5 25.5 20.3 1.5–29.5
Vc/F (%) 36.9 40.4 19.6 26.9 20.9 20.4 17.3–32.8
Q/F (%) 62.3 18.3 40.6 18.1 19.4 36.7 18.7–54.3
Vp/F (%) 44.2 14.4 30.4 17.5 47.7 29.2 13.8–40.7

Inter-occasion variability
IOV on CL / / 24.7 20.4 43.8 24.2 5.6–35.4

Residual variability
Proportional (%) 58.3 6.5 40.1 6.3 11.5 39.6 34.9–44.9

ALB, albumin; CI, percentile confidence intervals; CL/F, apparent clearance; CrCL, creatinine clearance; F, the bioavailability relative to 1; IOV, inter-occasion variability; Q/F, inter-
compartmental clearance; RSE, relative standard error; Vc/F, apparent central volume of distribution; Vp/F, apparent peripheral volume of distribution; RSE, relative standard error.

TABLE 4 | Results of the prediction-based metrics.

Models MDPE MAPE F20 F30

Published models
Faltaos et al.(2006) −35.4 47.7 18.5 27.4
Min et al. (2009) −29.9 43.0 20.4 31.7
Simon et al. (2013) −53.1 54.2 15.6 25.1
Bretagne et al. (2014) −27.9 40.2 23.5 36.5
Nader et al. (2017) −68.4 70.6 11.0 17.0
Mei et al. (2018) −32.7 50.5 19.2 29.9
Yang et al. (2020) −28.8 37.0 26.3 41.3
Gallais et al. (2020) −45.7 47.6 16.0 28.3

Newly built model
Final model −10.2 36.4 29.7 42.3

F20, the percentages of prediction errors within 20%; F30, the percentages of prediction
errors within 30%; MAPE, median absolute prediction error; MDPE, median
prediction error.
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simulation-based diagnostics described above. Supplementary
Figure S2 shows the goodness-of-fit plots for all published
models. The values of bias and inaccuracies of the published
models are presented in Table 4. All models presented an
underestimation of concentrations with large inaccuracies. The
predictive performance of the predicted HD-MTX concentration-
time profiles, as revealed by the pcVPC of the published models,
was highly variable (Supplementary Figure S3). None of the
models presented acceptable bias or inaccuracy values.

The goodness-of-fit plots for the newly built model are
presented in Figure 1 showing no structural bias. The pcVPCs
of the final model are depicted in Figure 2. The data below the
LOQ were included in the model evaluation to assess the
capability of the final model to describe these points. The
simulated data corresponded well with the observed data,
except for data below the LOQ around 24 h and more than
100 h after the dose. However, as only 18 samples and 10 samples
below the LOQ in these periods were included in our study, there
were no significant model misspecifications. Model stability was
also confirmed with consistent bootstrapped parameter estimates
differing by no more than 15% from its corresponding estimate in
the final model (Table 3). The MDPE and MAPE were -10.2%
and 36.4%, respectively. The relatively low values of MDPE and

MAPE further confirmed the high prediction accuracy of the
final model.

3.4 Model Application
The characteristics of the involved covariates in the simulation
are listed in Supplementary Table S6. The results of the Monte
Carlo simulation are presented in Supplementary Table S7. The
predicted time course ofMTX concentration in the scenarios with
median covariate levels is presented in Figure 3. Based on the
simulation, elderly patients with renal dysfunction and
hypoalbuminemia have a higher incidence of delayed MTX
elimination. The percentage decreased from 64.7% to 27.6%
when the CrCL decreased from 98 ml min−1 to 46.3 ml min−1,
and the percentage decreased from 64.7% to 54.8% when ALB
decreased from 39 g L−1 to 29 g L−1.

4 DISCUSSION

To the best of our knowledge, this is the first comprehensive
analysis of the predictability of published HD-MTX popPK
models. Prediction-based metrics and simulation-based
diagnostics were applied to assess the accuracy and precision

FIGURE 1 | Diagnostic goodness-of-fit plots for the final model. (A)Observations versus population predictions; (B) observations versus individual predictions; (C)
conditional weighted residuals (CWRES) versus population predictions; (D)CWRES versus time after dose. (A–D) The locally weighted regression line (red dashed lines).
(A,B) the line of unity (black solid lines), and (C,D) y = 0 (solid lines) are shown.
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of the published models. According to our results, the published
models were insufficient for cross-center use. Thus, constructing
a new popPKmodel based on an independent dataset is a priority.

Whether the assumed description of the popPK model is in
agreement with the population it is intended to treat, depends on
two aspects: a well-developed model with reliable a priori PK
parameter distribution (mixed and random) and center-related
factors that may result in unexplained inter-study variability
(Laporte-Simitsidis et al., 2000). The center-related factors, such
as study design, ethnic differences, assay methods, and modeling
strategies, may influence model predictability (Mao et al., 2018;
Mao et al., 2020). In this study, the inclusion of older patients with
primary central nervous system lymphoma, as well as
inconsistencies in the assay methods, may be the primary
causes of the poor cross-center predictability observed.

Although the published models were inadequate for cross-
center use, the information included in these models can be
utilized to guide the building of new models. In previous studies,
we found that theory-based modeling is helpful to improve model
predictability (Mao et al., 2020; Mao et al., 2021). Unlike
empirical stepwise covariate selection, theory-based covariate
selection allows the incorporation of relationships linking
parameters and covariates based on a fundamental
understanding of PK processes rather than only on the
available data, and may improve model predictability (Danhof

et al., 2008). Therefore, we conducted modeling based on the
combination of theoretical mechanisms and data properties in
this study.

According to published studies, CrCL was the most frequently
identified covariate. This was consistent with the PK
characteristics of MTX. MTX and its major metabolite, 7-OH-
MTX, are mainly eliminated by glomerular filtration and active
secretion (Shitara et al., 2006). After analyzing HD-MTX serum
samples and urine samples, it was revealed thatMTX renal clearance
is 83% of the total clearance and CrCL, as an index of glomerular
filtration rate, has a great effect on renal clearance but not on non-
renal clearance (Fukuhara et al., 2008). In the present study, as no
urine samples were included, the influence of CrCLwas added to the
total clearance. As the CrCL doubling decreased from 120ml min−1

to 60 ml min−1, the CL/F decreased by 28.8%, which is consistent
with the results obtained using published models (17.1%–50%), and
in patients with CrCL increase from 120mlmin−1–180mlmin−1,
the CL/F increased by 22.0%, which is close to the results obtained
using published models (11.6%–19.6%) (Simon et al., 2013; Benz-de
Bretagne et al., 2014; Yang et al., 2020).

Alterations in HCT or hemoglobin may affect MTX binding
and thus influence the PK process. Hypoalbuminemia is
reportedly associated with a significantly increased time for
MTX clearance (Reiss et al., 2016). Therefore, the reduction of
ALB is a risk factor for delayed MTX elimination in HD-MTX

FIGURE 2 | Visual predictive checks (VPCs) for the final model, based on 2000 simulations. (A) The red solid line connects median observed values per bin, the red
dashed lines connect the 5th and 95th percentiles of the observations. The blue areas represent the 95% confidence interval of the 5th and 95th percentiles. The green
area indicates the confidence interval of themedian. The Y-axis is shown in a logarithmic scale. (B)Open circles represent the observed fraction of censored data, and the
shaded area represents the 95% confidence interval of the simulated fraction of censored data.
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monotherapy (Kataoka et al., 2021). In the final model, a
reduction in ALB from 50.0 g L−1 to 24.0 g L−1 may result in a
22.7% decrease in MTX CL/F. The change in MTX CL/F may
have clinical effects on MTX exposure and treatment response.

Moreover, malignant cachexia or liver metastases induced by
hypoalbuminemia may increase the half-life of MTX PK, which
may be associated with unanticipated toxicity (Li and Gwilt,
2002).

FIGURE 3 | Simulated time-concentration profiles of MTX under conditions involving different covariate levels. (A,B) For patients ≤60 years old; (C,D) for patients
>60 years old.
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The CL/F was decreased by 11.0% in elderly patients, which may
also be a risk factor for delayed elimination. The incidence of delayed
clearance ofMTX is higher in older patients and during the first cycle
of treatment (Bacci et al., 2003). After comparing the PK of total and
free MTX in rheumatoid arthritis patients, it has been shown that
elderly patients have a longer elimination half-life of free and total
MTX (Bressolle et al., 1997). For elderly patients, altered metabolic
functions are a result of the complex processes of aging-related
physiological changes in the functional reserve of multiple systems
and organs. Furthermore, renal excretion is reduced (up to 50%) in
approximately two-thirds of elderly patients, which can potentially
cause the delayed elimination of MTX (Klotz, 2009).

The estimated PK parameters in our final model were
consistent with those in previous reports, except that the CL/F
was lower than that in published studies. This phenomenonmay be
owing to the influence of drug-drug interactions. In our study, the
proportion of samples with DIS ≥2 was more than 85.4%. Co-
administration, such as that of non-steroidal anti-inflammatory
drugs, β-lactamins, and proton pump inhibitors, has been reported
to be an important factor that influences MTX elimination (Iven
and Brasch, 1990; Suzuki et al., 2009; Kawase et al., 2016), and may
inhibit the excretion of MTX. A reduction in CL/F, by 0.929, as at
least one score 2 drug was used (Benz-de Bretagne et al., 2014).

Previous studies have demonstrated that variability exists
between MTX therapy cycles (Fukuhara et al., 2008; Min
et al., 2009; Kim et al., 2012; Mei et al., 2018). In this study,
we estimated course-to-course variability with the inclusion of
IOV terms in the random effects model. IOV may arise from
variable renal function owing to repeated chemotherapy, drug-
drug interactions, or other environmental factors (Breedveld
et al., 2004; El-Sheikh et al., 2007; Leveque et al., 2011).

No gene information was available for analysis in this study.
The influence of polymorphisms in genes encoding transporters
or enzymes during theMTX PK process was inconsistent between
different studies, which may partly be accounted for by the
different types of patients. The sample size did not have
sufficient power to detect a significant association between the
target single nucleotide polymorphisms (SNPs) and the MTX PK
properties, and the different frequencies of SNPs owing to racial
differences (Simon et al., 2013; Lui et al., 2018; Yang et al., 2020).
We will consider this point in a future study.

In relative terms, body size and composition were less influential
in the model of MTX CL (Pai et al., 2020). A statistically significant
reduction in the IIV of CL in only 15% of anticancer drugs is
associated with BSA. Moreover, the relative reduction in the
variability of CL is between 15% and 35% (Baker et al., 2002).
Among the eight published models, only one model included the
influence of body size on CL. It is also worth mentioning that body
size does not take into account abnormal body habitus such as
cachexia or morbid obesity (Gurney and Shaw, 2007; Gallais et al.,
2020). In our study, only two patients had a BMI ≥30. Therefore,
body size was not a risk factor identified in this study.

Certain limitations were noted in our study. First, this study
relied on routine MTX monitoring data that was retrospectively
collected and did not include information regarding aspects of
supportive care, such as fluid hydration and urine pH, which may
have impacted MTX CL and influenced model predictability.

Second, MTX concentrations were measured using multiple
analytical methods between studies. No conversion of
immunoassays may introduce uncertainty into the external
evaluation results. Third, no information on MTX metabolites
was available for this study. The inclusion of MTX metabolite
information in the popPK model could provide more insights into
MTX disposal. Therefore, this should be the focus of future studies.

Identifying ways to obviate MTX delays could facilitate toxicity
prediction, rational dose adjustments, and theoretically improve
treatment outcomes (Crews et al., 2004). According to our results,
the currently published models are not sufficiently reliable for cross-
center use; the newly built model provides better predictability. The
elderly patients and those with renal dysfunction, hypoalbuminemia
are at higher risk of delayed elimination.
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