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Reflective tomography Lidar has been proved to be a new Lidar system with long distance and high resolution. The reflective tomography
Lidar image is prone to clutter and artifacts; thus, it is important for space target recognition to extract the target from the image. In this
study, we proposed image fusion algorithm combined with visual saliency could be applied to the target extraction of reflective to-
mography Lidar image, which can not only preserve the target information but also eliminate the clutter and artifacts in the image. The
efficiency of this algorithm is shown by simulation and the experiment of the reflective tomography Lidar system. Also, we analyzed the
main source of reflective tomography Lidar image artifacts and the reason why this algorithm could remove clutter and artifacts.

1. Introduction

Aerial and space target detection and identification have
gained wide attention with the rapid development of
aerospace science and technology. Reflective tomography
Lidar has been proved to be a new Lidar system with long
distance and high resolution [1], especially which is ap-
propriate for the detection of targets in the dark background.

Developed from computed tomography (CT), the con-
cept of laser reflective tomography (LRT) was firstly in-
troduced by Parker et al. [2] working in Lincoln Laboratory
in the United States in 1988. Knight et al. [3] further im-
proved the Lidar experimental system by using streak
cameras to increase the bandwidth of the detection circuit so
as to improve the imaging resolution. In addition, abundant
indoor imaging experiments have been carried out to verify
the application prospect of LRT [4-6]. On this basis, Maston
et al. [7] conducted a deep study of the theory of LRT and
applied it to the imaging detection of space targets, such as
satellites [8-10]; they also obtained reconstruction images of
the satellite from a ground base Lidar system [11, 12]. In

2010, Murray et al. [13] from Areté company combined the
reflective tomography Lidar with range compressed and
realized the imaging accuracy of 0.15m for the non-coop-
erative target with a size of 1m at a distance of 22.4km,
which further improved the imaging resolution of the re-
flective tomography Lidar.

It is important for space target recognition to extract the
target from reflective tomography Lidar image on account of
the process of image reconstruction and is easy to produce
clutter and artifacts. The traditional target extraction algo-
rithm is the threshold segmentation; it utilized the difference
between the gray value of the target and the background
from the image. Also, it classifies the pixels by setting the
threshold value so as to realize the separation of the target
and the background [14, 15]. This algorithm is not complex
in principle and is easy to operate, but the segmentation
effect mainly depends on the selection of segmentation
threshold, and it can easily fail to produce moderate seg-
mentation either insufficient or excessive. Iterative threshold
algorithm is the most commonly used image automatic
segmentation algorithm for the reflective tomography Lidar
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image at present. This algorithm is based on the closing
thought; the advantage is that the amount of computation is
not large; under certain conditions, the change of image
grayscale is little affected, and some real-time image pro-
cessing systems have been widely used [16]. However, the
disadvantage of this algorithm is that it only uses the gray
information of image pixels without considering the spatial
correlation information between pixels, so the anti-inter-
ference effect is poor and satisfactory segmentation effect
cannot be obtained.

Therefore, an algorithm that can automatically extract
the target from reflective tomography Lidar image is nec-
essary, and this algorithm is able to eliminate the clutter and
artifacts while preserving the target information as much as
possible. Basically, image fusion algorithm is focused to
combine two or more images into a new image [17]; the
fusion result can utilize the correlation of multiple images in
space-time and make the image obtained after fusion have a
more comprehensive and clear description of the scene
[18, 19], all of these processes above aim to improve the
utilization of image information and be more conducive to
target detection. In this study, we proposed an image fusion
algorithm combined with visual saliency, could use visual
saliency detection to locate the target area, filter the effects of
clutter and artifacts in the image, and generate the saliency
map. Finally, the target image could be obtained by fusing
the input image with the mean filtering of the saliency value
of the 2D distribution.

The rest of this paper is organized as follows. In Section 2,
we briefly review the principle of LRT. The whole process of
image fusion algorithm combined with visual saliency was
described in detail in Section 3. In Section 4, we built the system
and verify the effectiveness of this algorithm through experi-
ments. In Section 5, the main source of image artifacts and the
reason why this algorithm could remove clutter and artifacts
were analyzed by combination with the reflective tomography
Lidar image. Finally, we draw a conclusion in Section 6.

2. Review of LRT

The structure inversion of the target is detected by LRT on
obtaining the structure characteristic information of the
target from the multiangle reflective wave. The basic prin-
ciples of this method are to illuminate the object of laser at
multiple angles, collect the reflective wave of the target at
multiple angles, and reconstruct the 2D cross-sectional
image of the target according to the reflectance projection
distribution [20].

As shown in Figure 1(a), the parallel laser beams irra-
diate a 2D target, when the irradiation angle is ¢. The re-
flectance projection distribution of the target at angle ¢ is
defined as

png) = | s (1)

¢

where L, 4 is a straight line perpendicular to the direction of
light, with a function of r = x cos ¢ + y sin ¢, and f (x, y) is
the reflectance distribution of the target.
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An angle projection image is shown in Figure 1(b); the
parallel lines with arrows unfold in the laser beams’ irradiate
region, and the distance of the projection depends on the
depth of the region irradiated by the laser. It should be noted
that the reflectance projection distribution is actually
nonzero only on the surface, as laser beams cannot penetrate
the target. That is,

f(xy)=0,(x,y) ¢ D, (2)

where D is the set of points of the target surface. Therefore,
the actual projection can be represented as

P = | flnyds 3)

.

According to (3), we further deduced that the actual
projection of the 3D target can be expressed as

prnp= [ rexnads ()

e N

where S, is a plane perpendicular to the direction of light,
f (%, y,2) is the reflectance distribution of the target, and B
is the set of points of the 3D target surface.

3. Target Detection Method

3.1. Overview of General Process. Because the reflective to-
mography Lidar image is prone to clutter and artifacts, it is
important to extract the target from the image, especially
the artifacts reduction. Artifacts is the abnormal change of
the gray level in the image which is not consistent with the
target structure due to the imperfect measurement data or
the error projection data judgment caused by various
physical factor. Filtered backprojection (FBP) algorithm is
the universal method for LRT to reconstruct the 2D cross-
sectional image of the target, especially complete angle
reconstruction [21]. Therefore, artifacts affect not only local
areas but also the entire image. For example, a thin metal
wire creates a stripe artifacts that covers itself and a large
area around it.

Insufficient or excessive segmentation is likely to be
generated by the traditional segmentation algorithm for the
artifacts in the image [22]. To this end, we proposed an
image fusion algorithm combined with visual saliency and
applied it to the target extraction of reflective tomography
Lidar image; flowchart of this algorithm is shown in Figure 2.
Firstly, this algorithm uses visual saliency detection to locate
the target area, filters the effects of clutter and artifacts in the
image, and finally generates the saliency map. Specifically,
inputting the reconstructed image by FBP and the multiscale
low-level feature extraction are carried out to obtain the
intensity and orientations features at the first step; then, the
center-surround differences and spatial competition are
used to get the feature maps and the feature combinations
get the saliency map. Afterwards, the mean filter is applied to
the salient values of the 2D distribution to make the image
smooth. Finally, the target image is obtained by fusing the
input image with the mean filtering of the saliency value of
the 2D distribution.
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FiGure 1: Schematic of the principle of LRT. (a) Target projection. (b) Data backprojection.
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FIGURE 2: Flowchart of image fusion algorithm combined with visual saliency.

3.2. Visual Saliency Detection. Visual saliency detection
refers to the extraction of salient regions in images, that is,
areas of interest to human beings, by simulating human
visual characteristics through intelligent algorithms. The
visual attention model based on saliency was proposed by
ITTI in early 1998 [23] and further improved in Nature in
2001 [24], which is a classic bottom-up saliency detection
model based on bottom salient feature calculation. Its re-
alization process is roughly divided into Gaussian filtering,

calculation of the bottom space feature map and calculation
of the salient map.

Based on the ITTI model, we formed the general process
of visual saliency detection of LRT images. Firstly, Gaussian
pyramid of image intensity and orientations was constructed
by the Gaussian sampling method, and then, the intensity and
orientation feature maps were calculated by Gaussian pyra-
mid. Finally, the intensity and orientation saliency maps were
obtained by combining the feature maps of different scales,



and the final visual saliency map was obtained by adding them
together. This algorithm does not require training and
learning process, but can complete saliency map calculation
by pure mathematical methods. Comparing with the spatial
frequency content (SFC) model proposed by Reinagel et al. on
target detection, and the experimental results showed that the
ITTI model has sound robustness to noise, while the SFC
model does not. It should be pointed out that the input of the
algorithm in this paper is a static grayscale image with the size
of 2048x2048, and we will describe the detailed process of
each step in the following sections.

The construction of Gaussian pyramid includes intensity
and orientations. Intensity is to do Gaussian downsampling
on the grayscale image so as to obtain grayscale images
under nine scales to construct intensity Gaussian pyramid;
then, the Gabor filter is used to construct Gabor direction
pyramid. After obtaining the intensity and orientation
Gaussian pyramids mentioned above, the Center-Surround
method is used to calculate the corresponding feature im-
ages, in which Center (c) refers to fine scale and Surround (s)
refers to the coarse scale; the calculation method is as
follows:

I(c,s) =1I(c)el(s),

(5)
O(c,s,0) =10(c,0)00(s, 0)].

While, ¢ € {2,3,4}, 0 €0°,45°,90°,135°, and s =c + .
The © operation in the formula means that matrix sub-
traction is performed after adjusting the size of the two
images to the same size. I represents 6 intensity feature
maps, and O represents 24 orientation feature maps, so a
total of 30 feature maps are generated. Then, the following
formula is used to calculate the intensity saliency map and
orientation saliency map, respectively:

— 4 c+4
I=@o NI (c,s)),
c=2 s=c+3
_ 4 cid (6)
O- N( - ®3N(O(c,s,9)).
c=2 s=c+

0€0°,45°,90°,135°

The @ operation in the formula means that matrix ad-
dition performs after adjusting the size of the two images to
the same size. Then, the intensity and orientation saliency
maps are obtained, and the final saliency map are obtained

by
S = % (N (D) + N(0)). (7)

In fact, salient targets are often detected according to the
set threshold in target detection. As the set threshold
gradually decreases, the salient targets obtained gradually
increase and the detection time also increases. However, the
saliency map has the problem of blurring the boundary, so it
is not an ideal way to extract the target by using the saliency
map to segment the reflective tomography.

3.3. Image Fusion. As mentioned above, using the saliency
map is not the best way to extract the target and to segment
the reflective tomography Lidar image due to the problem of
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blurring the boundary of the salient map. Therefore, it is
necessary to propose an image fusion algorithm that can fuse
the salient map with an input image to obtain a new target
image. The image fusion algorithm requires two or more
images to be fused and should have been registered well, and
the pixel bit width is the same; otherwise, the fusion effect is
not expected [25, 26].

The saliency value of a region in the saliency map can
actually describe the degree of interest, that is to say, the
saliency value of 2D distribution can actually be considered
as the weight of each pixel of the input image. Also, the
fusion image obtained by directly multiplying the weight
with the input image can be used as a new segmented image.
However, the saliency value of the 2D distribution has a large
number of active peaks; thus, the disadvantage of this al-
gorithm is that the target area near the active peaks in the
image will be enhanced, while its surrounding area will be
suppressed; to solve this problem, we need to smooth the
saliency value data of 2D distribution. Mean filtering is a
typical linear filtering algorithm [27]; it means giving a
template to the target pixel on the image, which includes the
neighbouring pixels around it, and then replaces the original
pixel value with the average value of all the pixels in the
template. The calculation formula is as follows:

i=x+m j=y+m
gy=y Yy L® (8)

2
i=x-m j=y+m (2m+1)

While m is the window size and (2m+1)? is the total
number of pixels in the template including the current pixel,
and it can be fused with the input image using the following
formula:

IR' (i, j) = g (i, j) x IR (i, j). (9)

Furthermore, in order to remove the influence of the
noise base, we normalize the segmented image to a unified
range and then restore it to the grayscale range, as shown in
the following formula:

IR (i, j) — min[IR (i, j)]

IR =255 x max[IR (i, j)] - min[IR (i, j)]

(10)

4. Experiment and Result

An experimental system for LRT is constructed, and the
experimental setting is shown in Figure 3. The laser beam
passes through the beam splitter and then goes through the
adjustable attenuator and the beam expander to enlarge the
emitting laser beam so that the beam at the target can
completely cover the target surface within a certain distance.
At the signal receiving end, a C-mount industrial lens is used
as the receiving device for reflecting laser pulse signals, and
the detector adopts a high-sensitivity Si-based avalanche
photodiode (APD) single pixel detector to directly receive
the reflective wave. In addition, a reference signal is added
and received by a PIN diode, which is used to measure the
laser pulse amplitude to correct the reflective wave
amplitude.
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FIGURE 3: Experimental system of LRT.

The experimental system uses a 532nm Nd:YAG laser
with a pulse width of 1ns, a detection circuit bandwidth of
1.5GHz, and an oscilloscope sampling rate of 10 GSPs. The
target is a triprism model with a height of 1.0 m and a base
length of 0.8 m, 1.0 m, and 1.0 m. The three sides were sprayed
with green paint, black paint, and aluminum foil, respectively,
and used different reflectivity materials. The stepping angle of
the motor is set as 1 degree to carry out full angle detection
around the target in 360 degrees. A total of 360 groups of
reflective wave data of laser reflective from different angles of
the target are collected, and the distance between the signal
receiving device and the rotation center of the target is 39.7 m.

After the reflective waveform is registered by the ref-
erence screen method, the 2D cross-sectional image of the
target reconstructed by FBP, and this is shown in Figure 4(a).
It can be seen that there are clear triangular shapes, and the
brightness contrast of aluminum foil facade is much greater
than those of green paint facade and black paint facade.
However, this image has serious artifacts; the contour is
extreme fuzzy and exists high clutter base. The saliency map
obtained after saliency detection of the input image is shown
in Figure 4(b), and it is clear that the artifacts in the image
are significantly reduced, but the edges become more
blurred.

Figure 5(a) is the 3D display of this saliency map, and
Figure 5(b) is the 3D display of the salient map after mean
filtering. The image after the processing of the algorithm,
shown in Figure 4(c), can be obtained by fusing with the
input image. The threshold segmentation images obtained
by the typical threshold value show that the image obtained
by the high threshold value, as shown in Figure 4(d), loses
various target information, and the image obtained by the
low threshold value is shown in Figure 4(e). Although the
target information is retained, a large number of clutters and
artifacts are also retained.

The threshold segmentation image obtained by iterative
threshold algorithm is shown in Figure 4(f), which is the
most common method that used image automatic threshold

segmentation algorithm for the reflective tomography Lidar
image at present. Compared with the above threshold
segmentation image, the image after the processing of the
algorithm is shown in Figure 4(c); it can be found that the
threshold segmentation image which is shown in Figure 4(f)
of the black paint facade is lacking; a large number of ar-
tifacts emerge in the corresponding edge information and
the corresponding edges on both sides of the aluminum foil
facade, and the image processed by the algorithm in this
paper retains complete black paint facade on the edge of the
corresponding information. At the same time, the artifacts
are effectively eliminated. From the experimental results,
comparing Figure 4(c) with Figures 4(d)-4(f), it can be
found that the proposed algorithm not only retains the target
information but also removes clutter and artifacts better, and
the problem mentioned in the study that “traditional image
artifacts’ segmentation algorithms are prone to cause in-
sufficient or excessive segmentation® can be successfully
solved by the proposed algorithm.

5. Combination with the Reflective Tomography
Lidar Image

Furthermore, in order to verify the effectiveness of this
algorithm, the reflective waveform simulation system of the
reflective tomography Lidar is established, which is com-
bined with reflective tomography Lidar. 3DS Max is used to
generate a 1:1 3D model of the detection target aircraft, in
which the wingspan of the aircraft is about 13 meters, the
length is about 19 meters, and the fuselage height is about
2.8 meters. The distance between the Lidar and the target
coordinated origin is set at about 10 km, the elevation angle
of the laser beam center relative to the target scene is set at 0
degrees, and the divergence angle of the laser beam is set at
1 mrad.

As shown in Figure 6, the reconstructed image by FBP
has clutter and artifacts, and the low threshold image ob-
tained by the traditional threshold segmentation algorithm
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(d) () (f)

FIGURE 4: Target image. (a) Reconstructed image by FBP. (b) Saliency map. (c) The image after the processing of the algorithm; threshold
segmentation image. (d) High-threshold image. (e) Low-threshold image. (f) Obtained by iterative threshold algorithm.
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FIGURE 5: (a) 3D display of the salient map. (b) 3D display of the salient map after mean filtering.
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FIGURE 6: Target prototype drawn by 3DS Max. (a) Vertical view. (b) Upward view. (c) Reconstruction image by FBP; threshold seg-
mentation image. (d) Low-threshold images. (e) High-threshold images.

retains numerous artifacts, while the high threshold image
loses abundant target information. Furthermore, we carry
out mean filtering for the saliency value of 2D distribution,
as shown in Figure 7. It can be seen that the previous 3D
display of the salient map after mean filtering is much
smoother than the 3D display of the salient map, and the
activity peaks in the image are significantly suppressed.
Reflective tomography Lidar images at different sam-
pling intervals are shown Figure 8; it can be seen that, as the

sampling interval becomes larger, the target identification in
the image becomes worse, and numbers of artifacts become
more. However, the segmented images processed by the
algorithm are shown in Figure 8(d)-8(f), and the clutter and
artifacts are obviously removed.

Finally, the reasons why this algorithm can eliminate
clutter and artifacts are analyzed as follows. The Gaussian
sampling method is used in the image intensity of Gaussian
pyramid structure; each layer of the pyramid is composed of
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FiGgure 7: (a) 3D display of the salient map. (b) 3D display of the salient map after mean filtering.
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FIGURE 8: Reflective tomography Lidar image: the sampling interval is (a) 1 degree; (b) 2 degrees; (c) 4 degrees. Fusion image: the sampling
interval is (d) 1 degree; (e) 2 degrees; (f) 4 degrees.

a layer of the pyramid half downsampling, so the image of  algorithm can effectively filter clutter. The causes of artifacts
the clutter in the process of downsampling is affected by  in the reflective tomography Lidar are more complex and
average area around such weakening; as a result, this  need to be analyzed by reference to CT and photo acoustic
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tomography (PAT). We believe that the star fringe near the
structure is due to the undersampling of the projection [28],
that is to say, the limited projection data will cause the
computer to small targets with sharp edges and relevant
information from the registration error, including small
stripe seems to emanate from the edge of the dense structure,
as the simulation and experimental results are given. Since
the reflective waveform is registered by the reference screen
method, the motion artifacts [29] can be ignored. At the
same time, considering the difference in relative motion and
detection model between reflective tomography Lidar and
CT, the spiral artifacts [30] and cone-beam artifacts [31] are
completely absent. In addition, there is no significant dif-
ference among the reflectivity of the detected target surface,
so the partial volume effect artifacts [32] can be ignored. In
summary, the undersampling artifacts are the main source of
artifacts in the reflective tomography Lidar image, and the
main reason why the algorithm could remove the artifacts is
that four orientations parameters are selected by the Gabor
filter in the process of Gaussian sampling to generate ori-
entation features for filtering, so as to make the positioning
of feature points more accurate.

6. Conclusion

In conclusion, we proposed an image fusion algorithm
combined with visual saliency and applied it to the target
extraction of the reflective tomography Lidar image. Veri-
fication was proceeded in the simulation model and the
experimental system, and this algorithm is shown to work
well in extracting the target from the image. Compared with
the traditional threshold segmentation algorithm, this al-
gorithm could not only preserve the target information but
also eliminate the clutter and artifacts in the image. Besides,
the 3D model of the aircraft was detected by reflective to-
mography Lidar, and this algorithm has been proved to be
able to work effectively in eliminating the star artifacts of the
aerial target in the reflective tomography Lidar images at
different sampling intervals.

Furthermore, there would be a natural rationality to
expand and apply the algorithm to the detection and
recognition of space target. It should be pointed out that
the current experimental system has the problem of in-
sufficient detection range; however, the detection range
requires reaching at least 50 km in real space environment.
With this algorithm, reflective tomography Lidar could be
developed into an integrated detection and identification
for aerial target or space target approach. Detection of
complex space targets with inhomogeneous reflectivity
distribution and experiments on further range can be fo-
cused in future works.
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