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Review
Giving the Genes a Shuffle: Using Natural
Variation to Understand Host Genetic
Contributions to Viral Infections
Sarah R. Leist 1,*,@ and Ralph S. Baric1,2,3
Highlights
Viral infections are complex traits that
are influenced by viral and environ-
mental as well as host factors.

Complete knockouts of genes are rare
in humans whereas natural variation at
the nucleotide level is abundant. Thus,
successful translation from mice to
humans is more likely working with
natural variation in mouse populations.

The Collaborative Cross is a mouse
genetic reference population that is
well suited to be utilized to identify net-
The laboratory mouse has proved an invaluable model to identify host factors
that regulate the progression and outcome of virus-induced disease. The
paradigm is to use single-gene knockouts in inbred mouse strains or genetic
mapping studies using biparental mouse populations. However, genetic varia-
tion among these mouse strains is limited compared with the diversity seen in
human populations. To address this disconnect, a multiparental mouse popu-
lation has been developed to specifically dissect the multigenetic regulation of
complex disease traits. The Collaborative Cross (CC) population of recombi-
nant inbred mouse strains is a well-suited systems-genetics tool to identify
susceptibility alleles that control viral and microbial infection outcomes and
immune responses and to test the promise of personalized medicine.
works of host genetics key players that
influence complex traits such as viral
infections.

Indefinitely reproducible mouse strains
with fully sequenced genomes offer
the chance for wide collaborations
across pathogens. Additionally, it
offers the ability to identify cross-
pathogen susceptibility or resistance
alleles.
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Viral Disease Is a Complex Trait
Viral infections pose a major threat to human and animal health, causing significant
morbidity and mortality every year. During the past decades, the emergence of several
highly pathogenic zoonotic viruses has demonstrated the fragility of the species barrier in
protecting human and farm animal populations from pathogens that exist in the animal
kingdom. While basic virological research offers the possibility to detect viral strains that are
‘poised’ for emergence and identify mutations that might promote pathogen emergence,
accurate prognoses are confounded by our inability to predict disease severity and viru-
lence. Importantly, viruses with identical genome sequences do not always cause the same
set of clinical manifestations in humans. Moreover, the complex interplay between envi-
ronmental, viral, and host genetic factors drives differences in interindividual disease
progression, severity, and outcome. These factors change over the course of a lifetime
and some, like individual health status, comorbidities, and environmental factors [1,2], are
difficult if not impossible to control. However, perhaps one of the most important key
players in the fragile balance of microbial pathogenesis centers around host genetic
susceptibility alleles that dramatically influence the course of disease in different individuals.
In humans, a growing number of genetic factors like entry receptors, receptor-modifying
enzymes, and innate and adaptive immune-related proteins that regulate influenza virus,
norovirus, rotavirus, respiratory syncytial virus (RSV), HIV, hepatitis B and C viruses, herpes
virus, and other acute and chronic virus disease outcomes have been identified (Table 1;
more detailed list in [3]).

Accordingly, research on host genetics is a promising tool for understanding susceptibility and
virulence patterns in human populations and refining pandemic-preparedness efforts. Further-
more, the discovery of innovative prophylactic or diagnostic and therapeutic treatment options
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Glossary
Causal gene variant: the genetic
variant that influences a certain trait
and explains most of the identified
genotype–phenotype association.
Clustered regularly interspaced
short palindromic repeats
(CRISPR)/CRISPR-associated
protein 9 (Cas9): used to introduce
mutations at specific genomic
locations (higher cleavage efficiency
and versatility).
Diallel: a defined set of parental
strains is bred in every possible
combination of mating pairs.
F2 cross: parental strains are
crossed to obtain an F1 (first filial)
generation whose offspring is defined
as F2 (second filial) generation.
Forward genetics: unbiased
approaches utilizing natural variation
in the mouse species for which no
prior knowledge of the causative
gene is needed.
Gene flow: introduction of new
genetic material from one population
to another population, enhancing the
overall genetic diversity.
Gene of major effect: causal gene
of a certain trait (e.g., Mendelian
traits, monogenic diseases).
Genetic blind spots: genome
regions with extremely low or no
genetic diversity, causing difficulties
in studies of natural populations and
complex traits.
Genetic mapping: approach in
which molecular markers are used to
identify the location of one gene or
the distances between genes.
Genome-wide association study
(GWAS): study that seeks to find
significant correlations between
genetic variants and particular traits.
Mouse genetic reference
populations: a collection of mice
with fixed and known genetic
architecture.
Natural variation: random DNA
mutations that are caused by
mistakes during replication.
Quantitative trait locus (QTL):
chromosomal region (locus) of
variable size that is associated with a
certain phenotype (quantitative trait).
Recombination breakpoint:
Genomic locations where
chromosomes break before they
reattach.
Reverse genetics: comprises
techniques of for the introduction of
wanted mutations into the mouse

Table 1. Genes with Significant Associations with Viral Disease in Humans

Pathogen Phenotype Causal gene Refs

Dengue virus (DENV) DENV shock syndrome MICB, PLCE1 [73]

Epstein–Barr virus (EBV) EBNA-1 IgG titer HLA-DRB1, HLA-DQB1 [74]

Hepatitis B virus (HBV) Chronic infection HLA-DPA1, HLA-DPB1 [75]

Persistence INST10 [76]

Hepatitis C virus (HCV) Spontaneous clearance IL28B [77]

Development of hepatocellular carcinoma TLL1 [78]

Progression to hepatocellular carcinoma DEPDC5 [79]

HIV-1 Viral load HLA-B, HLA-C [80]

Viral load control HCP5 [81]

Influenza A virus (IAV) Reduced restriction of viral replication IFITM3 [82]

Increased incidence and increased
risk of viral pneumonia

TNF [83]

Norwalk virus (NoV) Resistance FUT2 [84]

Respiratory syncytial virus (RSV) Bronchiolitis SFPA/D [85,86]

West Nile virus (WNV) Resistance CCR5 [87]
for viral disease that can be leveraged across different host genetic susceptibility patterns can
lead to improved personalized medicine.

In this review we discuss historic and new platform strategies designed to unravel the interplay
between the complex host and viral genetic determinants that regulate disease severity.
Moreover, we discuss recent developments in the field of complex genetics designed to
resolve quantitative trait loci (QTLs) (see Glossary) and rapidly identify single candidate
genes and alleles that regulate microbial pathogenesis.

The Laboratory Mouse in Viral Disease Research
Animal models offer a strategy to reduce system-wide complexity through standardizing
environmental influences without losing the integrity of a functional biological system. By
far, most in vivo viral pathogenesis studies are conducted in inbred mouse models. Not only
are the husbandry and breeding ofmice cost-efficient, but genome sequences, as well asmany
species-specific immunologic, molecular, and biochemical reagents, are available to the
research community. However, disease spectra in inbredmouse models are narrow compared
with the diverse spectra noted in outbred populations like humans. For respiratory viral
infections, additional phenotypic variations must also be considered, as mice do not sneeze,
cough, or develop fever following infection. Rather, they exhibit loss of body weight, reduced
respiratory function, and decreased locomotive activity. As human pathogens often replicate
less efficiently in mice, it is frequently necessary to use mouse-adapted viral strains selected for
increased replication and disease in inbred mouse strains, which may or may not replicate
disease symptoms seen in humans [4]. The most commonly used parameters for viral infection
intensity in mice are changes in body weight and survival rate. Detailed analysis of disease
progression can be undertaken utilizing time-course experiments during which samples of
interest are collected and disease kinetics revealed. Most recently,mouse genetic reference
populationswith diverse genetic backgrounds have been developed that replicate the genetic
and disease outcome variability found in outbred populations like humans. These new plat-
forms are further supported by technologies that allow targeted genetic modifications, enabling
researchers to study how complex traits regulate microbial pathogenesis.
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genome. For this hypothesis-driven
approach, prior knowledge about the
gene of interest is essential.
Signature gene: a gene or a set of
genes that occurs as a result of a
specific biological process.
Transcription activator-like
effector nucleases (TALENs):
Transcription activator-like effector
nucleases are used to introduce
mutations at specific genomic
locations (higher precision).
Genetic Manipulation of the Mouse Genome
Using themouse as amodel organism offers two distinct types of genetic approaches: reverse
and forward genetic studies. The most commonly used application in reverse genetic
approaches involves the specific ablation of a single gene, either by deleting parts of or the
entire gene or by replacing coding exons. Gene trapping by comparison offers the possibility to
insert reporter genes into the gene of interest, disrupting its function. Both techniques require
the DNA construct of choice to be transfected into mouse embryonic stem cells (mESCs),
injection of screened mESC clones into a blastocyst, and transfer of this blastocyst into the
uterus of the host animal. Most recently, innovative techniques like transcription activator-
like effector nucleases (TALENs) [5] and clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [6] are accelerating the
process of targeted genome editing, including the introduction of susceptibility alleles that
improve virus replication and pathogenesis in the mouse [7].

Genetically engineered mouse strains have represented the gold standard to investigate the
role of specific host genes in regulating disease and immune outcomes following virus
infections (e.g. [8,9]). Furthermore, genetically modified strains can be used [10] to understand
human monogenic diseases like cystic fibrosis, polycystic kidney disease, and sickle cell
disease. Although complete (biallelic) knockout of genes in humans is a relatively rare event,
a recent study showed that healthy people have about 100 loss-of-function variants and 20
completely inactivated genes [11]. Consequently, the majority of human diseases are complex
traits whose disease outcomes are influenced by multiple genetic factors.

Human genomes are characterized by extensive natural variation, which has accumulated over
time through, for example, mutation events (external damage to DNA or internal errors during
replication), gene flow, and sexual reproduction, which drives phenotypic interindividual
differences across populations. Differences in DNA sequence canmodify transcript and protein
levels by altering their functional properties, timing, level, and site of expression [12]. Natural
variation can be used in forward genetic studies to identify novel genes involved in a variety of
quantitative traits and diseases [13].

The occurrence of spontaneous mutations in laboratory mouse strains was the first platform
employed for forward genetic approaches [14]. There are various methods to increase the
likelihood of mutations by treating male mice with mutagens such as N-ethyl-N-nitrosourea
(ENU) [15] or chlorambucil [16,17], by irradiation [18,19], and by utilizing transposons such as
the sleeping beauty [20] or piggyback [21] system, named according to their transposases, to
insert specific DNA sequences. Breeding of those mutated mice allows selection of those with
an altered phenotype in the trait of interest. This approach mimics natural genetic variation in
humans in the controlled setting of the mouse model and has the power to reveal genomic
variation and networks of genes influencing a phenotype rather than analyzing the effect of the
absence of a single-gene product, making the translation from mouse to human more likely.

Geneticmapping studies are undertaken to identify the genomic region that causes the altered
phenotype of interest. Commonly, QTL analysis is used to reveal genotype–phenotype asso-
ciations [22]. F2 crosses between an inbred strain carrying the aberrant phenotype of interest
and another inbredmouse strain lacking this particular phenotype have been widely performed.
The identified chromosomal regions can be large, containing several hundreds of genes. The
size of the chromosomal region exclusively depends on the number of recombination
breakpoints in the cross and the genetic complexity of the region. Chromosomal locations
can be narrowed using consomic, conplastic, congenic, recombinant inbred (RI), or recombi-
nant congenic mouse strains [23] (Figure 1).
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Figure 1. Various Genetic Mouse Model Approaches to Narrow Quantitative Trait Locus (QTL) Regions. (A) Congenic mouse strains are produced by
transferring a genomic region from an inbred donor strain to an inbred recipient strain through repeated backcrossing. (B) Consomic mouse strains contain an entire
chromosome from a donor strain and are generated via backcrossing to the recipient strain. (C) In conplastic mouse strains, the entire mitochondrial DNA is derived from
a donor strain and is generated through backcrossing of females from the donor strain to males from the recipient strain. (D) Recombinant inbred mouse strains are
generated by crossing two inbred strains to obtain an F1 generation. These F1mice are crossed to create an F2 generation, which is brother–sister mated for at least 20
generations to achieve mice with a fixed genetic background and equal contributions of the two parental strains. (E) Recombinant congenic strains are produced by
crossing two inbred mouse strains. The resulting F1 generation is backcrossed twice (BC1 and BC2) before they are brother–sister mated for an additional 14
generations. The genome composition of the final strains is skewed towards one parental strain in a 7:8 ratio.
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The alternative to dealing with large chromosomal regions and the narrowing process is to
use mouse genetic reference populations (GRPs). RI stains of mice are popular due to their
long-term genetic stability, which helps in integrating data collected in different settings and
reproducibility over a long time. The most extensively used mouse GRP is the BXD family of
recombinant inbred strains. They are derived from a cross between C57BL/6J and DBA/2J
mice [24]. To obtain an F1 generation, C57BL/6J and DBA/2J mice were crossed. The
resulting F1 generation is mated to achieve the F2 generation, which is subsequently brother–
sister mated for at least 20 generations to generate inbred mouse strains with a fixed genetic
architecture. Completely inbred strains are then called BXD strains, which are genotyped
once (one animal per line, not every individual) and can be phenotyped indefinitely for every
trait of interest. Currently, there are 156 BXD strains available [25]. For decades, recombinant
inbred strains such as the BXD family have been used extensively as tools for genetic
mapping of Mendelian and quantitative traits. To identify single genes that are responsible
for the observed phenotype fine mapping, sequence analysis, expression profiling, and
functional studies are typically performed [26]. However, the identification of causal gene
variants remains challenging due to the large size and the number of genes under the
identified QTL region, coupled with the fact that the parental strains were identical by descent
resulting in so-called ‘blind spots’ for genetic mapping. Wild-derived strains other than Mus
musculus domesticus need to be employed to cover those spots and increase genetic
variation [23]. Various resources have been established to address this issue, among them
the heterogeneous stock (HS), which is derived from eight founder strains (A/J, AKR/J,
BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J, and LP/J) and maintained through random
mating. No inbred mouse lines are created and therefore each mouse exhibits a unique
combination of alleles with the goal of containing random variation similar to the human
population [27]. The caveat of this mouse population is that every individual mouse needs to
be genotyped, which might be too expensive for some researchers. However, genotyping
technologies are evolving constantly and costs are decreasing rapidly.

The Collaborative Cross
Another mouse GRP that includes other M. musculus subspecies is the CC Mouse Resource
(Figure 2), which has already been used to successfully identify highly promising candidate
genes that are influencing susceptibility or resistance to viral infections (Table 2).

To expand genetic variation in GRPs, an innovative strategy for a multiparent population
(MPP) of mice was conceptualized in the early 21st century and developed over the next
decade [28]. Use of an octoparental crossing scheme between genetically distinct mouse
strains was proposed and modifications through the research community were integrated.
Breeding of this novel GRP specifically designed for complex genetics started in 2002 [28].
The eight founder strains of the CC include three classical laboratory strains (A/J, C57BL/6J,
and 129S1/SvImJ), which have been used extensively in biological research and build the
genetic backbone on which most of the knockout mouse strains are generated. Moreover,
two mouse models for common human diseases were included (NOD/ShiLtJ for type 1
diabetes and NZO/HlLtJ for obesity) to address research questions of comorbidities. The
addition of three wild-derived mouse strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) not only
increased the genetic diversity by adding new alleles that are not present among the classical
inbred and disease model strains, but also covered different phylogenetic origins of the mouse
species (CAST/EiJ – Mus musculus castaneous, PWK/PhJ – Mus musculus musculus) to
encompass 90% of genetic variation present in the M. musculus species [23]. Accordingly,
the CC population reaches a level of genetic diversity comparable with the diversity found in the
human population.
Trends in Genetics, October 2018, Vol. 34, No. 10 781
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Figure 2. Generation of the Collaborative Cross Resource. (A) The Collaborative Cross panel of recombinant inbred mouse strains is a multiparental population
that is derived from eight founder strains. Among these founder strains are classical laboratory mouse strains (A/J, C57BL/B6, 129S1/SvImJ), mousemodels for human
diseases (NOD/ShiLtJ – type 1 diabetes, NZO/HlLtJ – obesity), and wild-derived mouse strains (CAST/EiJ, PWK/PhJ, WSB/EiJ). Every mouse strain was assigned a
letter (A–H) and a particular color that are used by the entire research community. (B) Breeding-funnel design of the Collaborative Cross that guarantees equal
distribution of founder alleles to the resulting CC strain. Depicted is the specific breeding funnel for chromosome 19 of the CC strain CC001. (C) Genome architecture of
CC001 with founder contributions displayed in their respective colors. Photograph: Klaus Schughart.
To guarantee equal contributions of all eight founder strains to each of the resulting CC strains,
a specific breeding funnel was elaborated with around 135 unique recombination events and
segregating polymorphisms every 100–200 bp [28]. In this way susceptibility alleles are
scrambled in new ways, allowing novel allelic combinations leading to an extension of pheno-
typic range beyond the scope observed in the parental strains. Breeding was performed at
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Table 2. QTLs of CC Studies Using Different Viruses

Pathogen Phenotype QTL region % Variation Number of genes under QTL Refs

SARS-CoV Vascular cuffing HrS1: Chr. 3: 18286790–26668414 26% 26 [narrowed to one (Trim55)] [40]

Viral titer HrS2: Chr. 16: 31583769–36719997 22% 92 (narrowed to 48)

Eosinophil infiltration HrS3: Chr. 15: 72103120–75803414 26% 63 (narrowed to 25 – functional
change only in Bai1)

Vascular cuffing HrS4: Chr. 13: 52822984–54946286 21% 30 (narrowed to nine – Cdhr2)

D3% weight HrS5: Chr. 18: 27108062 – 58694005 6.6% 158 [narrowed to one (Ticam2)] [61]

D4% weight HrS5: Chr. 18: 27108062–58694005 8.5%

Log titer HrS5: Chr. 18: 27108062–58694005 12.9%

Hemorrhage HrS5: Chr. 18: 24762824–7829634 6%

D3% weight HrS6: Chr. 9: 116476207–telomere 7% –

Log titer HrS7: Chr. 7: 55169841–11722358 12.3% –

Log titer HrS8: Chr. 12: 81649471–108529109 5.4% –

Hemorrhage HrS9: Chr. 15: centromere–64.430001 9.1% –

WNV Frequency of CD73+ Tregs HI1: Chr. X: 166 Mb–telomere – 43 (narrowed to 22) [88]

Decreased frequency of CXCR3+ Tregs,
CXCR3+ CD4+, and CD8+ T cells

HI2: Chr. X: 100–106 Mb – 42 (narrowed to 26)

Increased frequency of ICOS+ Tregs in spleen HI3: Chr. X: 140–145 Mb – 18 (narrowed to 11)

IAV D4 weight, log titer, IHC score, D3 clinical,
airway inflammation, airway damage

HrI1: Chr. 16: 97.5 Mb–98.2 Mb 41.67% Ten (including Mx1) [39]

D4 weight HrI2: Chr. 7: 89.1 Mb–96.7 Mb 9.7% 69

Pulmonary edema HrI3: Chr. 1: 21.7 Mb–29 Mb 29.73% 24

Airway neutrophils HrI4: Chr. 15: 77.4 Mb–86.6 Mb 22.7% 206
three different locations: Oak Ridge National Laboratory in Oak Ridge, TN, which moved to the
University of North Carolina at Chapel Hill [29]; the International Livestock Research Institute in
Nairobi, Kenya, which moved to the Tel Aviv University in Tel Aviv, Israel [30]; and the Western
Australian Institute for Medical Research/Geniad Ltd in Perth, Australia [31]. Although the
theoretical plan was perfectly elaborated, hundreds of CC strains became extinct, almost half
from problems in male infertility [32].

Prior to the development of the final CC resource, incipient CC lines that were not fully inbred yet
(pre-CC lines) were used in genetic mapping studies to provide proof of concept and to show
the potential of this newly designed GRP (Box 1). Candidate genes for various phenotypes,
such as susceptibility to Aspergillus fumigatus infections [33], energy balance traits [34],
differences in hematological parameters [35], susceptibility to Klebsiella pneumoniae [36],
and neutrophilic inflammation due to house dust mite-induced asthma [37], were successfully
identified. Moreover, mapping efforts revealed expression QTLs for extreme host responses to
influenza A virus (IAV) infections [38], host response QTLs to IAV [39], and severe acute
respiratory syndrome coronavirus (SARS-CoV) pathogenesis [40]. A common observation
in all of the studies was that pre-CC lines exhibit an enhanced phenotypic range compared
with the variation observed in the eight founder strains or other classical inbred strains and that
it was possible to dissect traits that were thought to be inseparably entwined.

Highlighting another powerful characteristic of the CC, completely new mouse models for
spontaneous colitis [41], Ebola-associated hemorrhagic fever [42], novel neurological
Trends in Genetics, October 2018, Vol. 34, No. 10 783



Box 1. Ticam2 Plays a Major Role in SARS-CoV Pathogenesis

As an expansion to their first paper identifying QTLs for SARS pathogenesis in pre-CC mice, the authors utilized an
alternative genetic approach to understand host genetic contributions to the course and outcome of SARS-CoV
infection [61]. Two pre-CC lines with divergent outcome after SARS-CoV infection were identified. CC003/Unc is
resistant to SARS-CoV whereas CC053/Unc is highly susceptible. To dissect host genetic factors that lead to the
different outcomes, these two strains were bred and 264 F2 animals generated. Loss of body weight, viral titer in lungs,
pulmonary hemorrhage, and histopathological changes were analyzed at multiple time points after infection. Overall, F2
mice exhibited a broader phenotypic range than the parental strains. Five significant QTLs across all analyzed
phenotypes were identified, one of which affected multiple SARS-CoV response phenotypes. This QTL (HrS5) on
chromosome 18 (27.1–58.6 Mb) was selected for follow-up studies. Integration of different bioinformatics and database
approaches led to the identification of Ticam2 as a highly promising candidate gene. Ticam2 is a toll-like receptor (TLR)
adapter protein that had not been shown to play an important role in SARS-CoV pathogenesis. Utilizing another tool
from the geneticist’s toolbox, Ticam2 knockout mice (Ticam2�/�) were employed to investigate its effect on disease
progression and outcome. Ticam2�/� mice exhibited significantly more weight loss, similar viral load in lungs on day 4
after infection (however, significantly higher titers on day 2 after infection were reported previously [8]), and similar
histopathological findings but significantly increased pulmonary hemorrhage on day 4 after infection. Thus, the authors
successfully showed that a screening approach in CCmice in combination with an F2 follow-up study can lead to single
candidate genes that can be confirmed using reverse genetic tools. It remains to be determined whether allele swaps
can be used to identify the allele driving this disease phenotype.
responses to Theiler’s murine encephalomyelitis virus (TMEV) [43], and persistent West Nile
virus (WNV) infection in the brain [44] were discovered, a harbinger of new model systems that
may emerge over time.

The Diversity Outbred (DO) population of mice is a GRP complementary to the CC derived from
the same set of founder strains. Instead of inbreeding, an outbred population is maintained
through random mating, which enhances the mapping resolution even further through the
acquisition of even more recombination sites [45]. Early studies utilizing DO mice led to the
identification of a specific isoform of Apobec1 contribution to atherosclerosis [46] and sulfo-
transferases as candidate genes for benzene-induced genotoxicity [47].

Designed specifically for the analysis of complex traits, the CC and DO populations of
genetically highly diverse mice provide the first true systems-genetic platform for cumulative
and integrated data collection [48]. Systems genetics, as an innovative strategy to investigate
the role of host genetics that encompasses diverse molecular omics data [49], also catalyzed
the development of a variety of analytic and informatics tools and methods [50–53] and
provides state-of-the-art tools for genetic mapping and candidate gene identification and
an opportunity to test the promise of predictive genomic medicine.

From Complex Screens to Candidate Genes: A Recipe for Complex Genetic
Studies
There is increasing evidence for host genetic regulation of viral and microbial pathogenesis in
humans (Table 1). Althoughclassical approaches like cell culture experiments or knockoutmouse
studies have been successfully used to understand infectious disease pathogenesis, the contri-
bution of variation in host genetics can no longer be omitted because it more accurately pheno-
copies the human condition and is critical to pave theway to personalizedmedicine. The hurdles
for most researchers who are not using complex genetics until now are the lack of expertise in
designing complex genetic studies and the inevitable bioinformatics barriers until now. However,
complex genetic approaches become exponentially more valuable as data is accumulated and
compared across experimental setups and pathogens and combined to gain deeper knowledge.
In this review,weprovideanexperimental framework for the rapid implementationofcomplex-trait
genetic strategies in the laboratory setting, including design of the overall study, best utilization of
784 Trends in Genetics, October 2018, Vol. 34, No. 10
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Figure 3. Schematic of Experimental Approach for Complex Genetic Studies of Viral Infections. eQTL,
expression QTL; QTL, quantitative trait loci.
the CC resource, and ways to narrow down QTLs to pinpoint single candidate genes influencing
the trait of interest (reviewed in [54]) (Figure 3).

The classic CC hypothesis is that ‘my disease phenotype’ is a complex oligogenic trait
regulated by multiple genetic polymorphisms in different genes, which interact to regulate
disease outcomes in natural populations. In a second step, the breadth and duration of disease-
associated phenotypes is selected andmeasured in a subset of mouse strains, which typically is
either a randomselectionofCCstrainsor theeightCC founderstrains (RSV–Buntzman2016, IAV
[55]). Analyses of phenotypic baselines are crucial to be able to distinguish between phenotypes
that are caused by differences in genome architecture or those that are related to viral pathogen-
esis. Additionally, multiple sample collection is advised to maximize phenotypic comparisons
across the final population. This is important as it is impossible to predict phenotypic outcome as
different gene variants segregate in the final population and traits that are closely linkedmight be
brokenapart. Another important factor thatmight complicate experimental design is the impact of
knowngenesofmajor effect, likeMx1 for IAV [39] orOas1b for flaviviruses [56]. Selection ofCC
strains that carry a variation at that locus or even a null allele might help to uncover rather small
effects by other modulating genes. Utilizing up to eight different alleles at any given locus in
the genome allows the discovery of gene of major effect-dependent and -independent
processes (IAV [55], WNV [57]). There is a risk that genetic mapping might exclusively
identify the gene of major effect if no attention is paid to these genes while selecting CC
strains for the respective study. Genetic mapping offers the possibility to add covariates like
batch effects to the calculation and randomization should be achieved whenever possible.
Sample collection should anticipate that the CC model is likely to identify CC strains that
progress to different stages in disease severity, replicating phenotypes seen in human
populations and allowing the identification of susceptibility alleles that regulate disease
progression from mild to severe to chronic infections in vivo. This is important as it has been
shown that novel disease phenotypes might be discovered in the CC (severe neuroinvasive
disease and chronic WNV infection [44]). New models for diseases that are completely
unrelated (spontaneous colitis [41], human leukocyte adhesion and recruitment deficiencies
[55]) or related to the study design (SARS-CoV [40], Ebola [42]) will generate a panel of
variable disease-state mouse models that capture the different phases of disease seen in
human populations.
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After all phenotype measurements are obtained, genetic mapping is utilized to calculate the
likelihood of every position in the genome being associated with the analyzed phenotype, and
regions with the highest logarithm of the odds (LOD) score are identified as QTLs. Zooming into
the QTL region, bioinformatics tools can be employed to generate allele-effect plots, which
show the contribution of each of the eight possible alleles to the QTL. Analyses of allele effects
are a good way to determine which parental alleles are driving high and low responses.
Afterwards, variations that are unique to the identified strain can be analyzed utilizing the
Sanger SNP browseri. Additionally, other resources, like BioGPSii or the gene browser included
in Pubmediii, are of great use to gain information on known expression patterns and biological
functions. In the line of a systems-genetics approach, transcriptional analyses can be used to
identify differentially expressed genes or respective pathways influenced by a particular QTL
(WNV [58]). However, these downstream analyses should only be performed on a subset of
extreme phenotype samples, as this approach is highly informative and inexpensive. Using
different pathogens for the same type of analysis can lead to the discovery of common or
unique features across different viral species (IAV and SARS-CoV [59]). Additional tools of the
complex genetic toolkit such as diallels of the CC founders and their reciprocal F1 hybrids
allow the identification of different types of heritable effects (IAV [60]). Alternatively, once a highly
promising candidate gene is identified the use of knockout mouse strains to validate the
contribution of this particular gene to the observed phenotype can be used (SARS-CoV
[40,61]). The International Knockout Mouse Consortium (IKMC) will soon achieve its goal of
having amousemutant or a targetedmESC for every gene (http://www.mousephenotype.org),
providing a crucial resource for functional annotation and validation of candidate genes.
Importantly, it has been shown that the genetic background on which the knockout is created
plays an important role [62,63] and with recent advances of CRISPR/Cas9 technology the
development of the identical knockout on different mouse backgrounds may be achievable in a
time- and cost-efficient manner. Additionally, CRISPR/Cas9-generated allele swaps between
mouse strains offer enhanced specificity, applicability, and translatability compared with
complete knockout of genes. Translational aspects can be addressed by comparing identi-
fied SNPs with human SNP and gene databases or conserved structural elements and
functional motifsiv,v,vi.

Concluding Remarks and Future Directions
The contribution of host genetic factors to the progression and outcome of viral infections has
not only been proved but represents a powerful new tool to reveal the complex interplay
between novel genes and their polymorphisms and disease severity. Although critical voices
were raised in the scientific community [64] as well as in the media, it has been shown that data
collected during viral infections in mice and in humans are highly correlated. For example,
comparing signature genes derived from transcriptome analyses of IAV-infected CC founder
strains, but not classic inbredmouse strains, with infected human volunteers revealed that gene
expression in the blood of infected CC mice reproduces much more representative human
signature profiles [65].

Human genetic studies are conducted using either candidate-gene approaches or genome-
wide association studies (GWASs) [66]. Depending on the research question, both study
designs have their own advantages, disadvantages, and limitations. Nevertheless, GWASs
revealed many loci that are associated with human diseasevii. However, small numbers of
participants, limited sample size, and technical differences in sample collection, and the inability
to validate candidate gene–disease associations, make cross-study comparison challenging
and reproducibility difficult. Additionally, the low number of accessible human samples often
results in lack of statistical significance and/or reproducibility [67,68]. Recommendations on
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Outstanding Questions
Is direct translation of identified causal
genes into humans possible or will it
rather be a molecular pathway that is
identified in mice to which the homolog
in humans needs to be found?

Will it be possible to find treatment
options that will have a major effect
on disease progression and outcome
in humans for a complex network of
causal gene variants?

Can interdisciplinary approaches lead
to interdisciplinary candidate genes?

Will technology development catch up
with the speed and amount of data
collection and reveal findings that are
already present but not accessible
now?

Will it be possible to find panviral sus-
ceptibility genes that can be translated
into prophylactic or therapeutic treat-
ment options for humans?
how to enhance the transparency of human GWASs [Strengthening the Reporting of Genetic
Association Studies (STREGA)] have been published [69].

However, although human genetic factors influencing infectious disease susceptibility and
outcome have been identified, significant difficulties remain in the verification of these factors in
humans, mostly due to small effect sizes.Moreover, there are phenotypic traits, especially in the
infectious disease context, that are difficult or even impossible to investigate in humans. The
only way to unravel the effect of alleles associated with diseases that influence a specific
molecular process is to investigate those alleles in controlled experimental settings either
individually or in combination [12]. The mouse as the model organism of choice is currently
the only mammalian systematic platform that offers not only the resources but also the
technology to identify susceptibility and resistance loci for viral infections.

The CC population recombinant inbred mouse panel represents a paradigm shift for microbial
pathogenesis studies, immunology, and studies of the role of complex genetic traits in
disease. It offers increased mapping resolution compared with classical mouse GRPs and
has already been successfully used in the field of infectious diseases, suggesting that an even
greater impact exists for the field of immunology [70]. Systems-biology approaches in which a
plethora of genetic and genomic (omics) data for the identical experimental condition is
collected allows integration of data and offers the possibility of complex modeling and,
ultimately, the identification of key factors driving differences in disease progression and
outcome [71]. Being a relatively young and novel platform for systems genetics, the CC and
its complementary resources have accelerated not only the identification of QTLs from a wide
range of phenotypes but also pushed the development of genotyping and databases as well
as bioinformatics tools [72]. We would like to highlight that the more that incipient lines of the
CC are used in different fields to explore different phenotypes and answer different question,
the more valuable the resource itself becomes (see Outstanding Questions). Data generated
by laboratories from different fields might be of use for others, shortening their way to obtain
results and saving money along the way. In summary, GWASs in mice can help to derive
working hypotheses and direct human studies and, accordingly, studies in the two species
are highly complementary.

Resources
iwww.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1303
iihttp://biogps.org/#goto=welcome
iiiwww.ncbi.nlm.nih.gov/gene/
ivwww.ncbi.nlm.nih.gov/
vwww.rcsb.org/
viwww.omim.org/
viiwww.ebi.ac.uk/gwas/(see catalog)

Supplemental Information
Supplemental information associated with this article can be found online at https://doi.org/10.1016/j.tig.2018.07.005.
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