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Abstract

Gram-positive bacteria contain a family of surface proteins that are covalently anchored to the cell wall of the organism.
These cell-wall anchored (CWA) proteins appear to play key roles in the interactions between pathogenic organisms and the
host. A subfamily of the CWA has a common structural organization with multiple domains adopting characteristic IgG-like
folds. The identified microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) belong to this
subfamily, as does SdrC from S. aureus. However, an interactive host ligand for the putative MSCRAMM SdrC was not
previously identified. We have screened a phage display peptide library and identified a peptide sequence found in b-
neurexin that binds SdrC. A synthetic peptide corresponding to the identified sequence as well as a recombinant form of
the b-neurexin 1 exodomain binds SdrC with high affinity and specificity. Furthermore, expression of SdrC on bacteria
greatly enhances microbial adherence to cultured mammalian cells expressing b-neurexin on their surface. Taken together,
our experimental results demonstrate that b-neurexin is a ligand for SdrC. This interaction involves a specific sequence
located in the N-terminal region of the mammalian protein and the N2N3 domain of the MSCRAMM. The fact that these two
proteins interact when expressed on the appropriate cells demonstrates the functionality of the interaction. Possible
implications of this interaction are discussed.
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Introduction

The Gram-positive opportunistic pathogen Staphylococcus aureus

can cause a spectrum of infections in humans and animals that

differ in severity. Some relatively minor skin infections, such as

folliculitis, impetigo and cellulitis, can progress to life threatening

diseases like sepsis, endocardatis, osteomylitis and pneumonia [1].

The molecular pathogenic mechanisms of different staphylo-

coccal infections are incompletely understood but studies suggest-

ed that a critical factor for the pathogenic success of this organism

depends on its ability to adhere effectively to multiple host tissues

[2,3,4]. The adhesins mediating staphylococcal adherence and

colonization often target the extracellular matrix of the host and

hence belong to the MSCRAMM family [4]. In Gram-positive

bacteria, many MSCRAMMs are cell-wall-anchored (CWA)

proteins [5,6] with a similar structural organization [7]. These

proteins contain an amino terminal signal sequence followed by an

A-region that often harbors the ligand-binding sites. The A-region

is comprised of sub-domains (called N-domains) adopting an

immunoglobulin G-like (IgG-like) fold [8]. Sometimes the A-

region is followed by a B-region containing repeated b-sandwich

modules of unknown function. In the case of the Sdr-subfamily of

staphylococcal MSCRAMMs, the B-region is accompanied by a

repeat (R) domain composed of multiple Ser-Asp dipeptide repeats

(SD-repeat or Sdr) (reviewed in [9]).

The ligand-binding activity of SdrG, a fibrinogen (Fg)-binding

MSCRAMM of Staphylococcus epidermidis [10], was shown to proceed

via a ‘‘dock, lock and latch’’ mechanism [7,11]. A crystal structure of

a Fg-based peptide in complex with the SdrGN2N3 domain

suggested that the peptide ‘‘docks’’ into the groove formed between

the N2 and N3 domain. Upon binding the C-terminal extension of

the N3 domain is redirected to cover and ‘‘lock’’ the ligand peptide

in place and further stabilizes the complex by complementing a b-

sheet in the N2 domain, thus functionally serving as a ‘‘latch’’ [11].

The back of the latching trench contains a motif, TYTFTDYVD,

conserved in several other staphylococcal MSCRAMMs. Genome-

based bioinformatics of five Gram-positive bacterial strains revealed

that all organisms contain proteins with predicted IgG-like folded

domains, an LPXTG-motif and a TYTFTDYVD-motif. Therefore,

the ‘‘dock, lock and latch’’ mechanism was proposed as a common

ligand binding strategy among these proteins.

In the current study, we used SdrC as bait for screening a phage

library displaying 12-mer linear peptides (New England Biolabs

Ph.D.TM -12 Phage Display Peptide Library). The sdrC gene is the

first gene in a bi- or tri-partite gene cluster that also contains either

sdrD or sdrD and sdrE. The predicted domain organization of SdrC
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is similar to that of SdrG with the N2 and N3 sub-domains of the

A-region adopting an IgG-like fold [12,13].

The phage display strategy, used in this study, identified beta (b)

neurexin as a ligand for the orphan MSCRAMM SdrC.

Subsequent biochemical and cell biology experiments confirmed

that b-neurexin is a ligand for SdrC.

Neurexins are neuronal cell adhesion molecules that interact

with neuroligins and appear to play an important role in synapse

function (reviewed in [14]). Previously, the neurexins were

discovered as the receptor for the neurotoxin a-latrotoxin of the

black-widow spider [15].

Results

Validation of the phage display method to identify
MSCRAMM ligands

Analysis of peptides or protein segments displaced on the

surface of phage is a useful method to identify partners in protein-

protein interaction systems [16,17,18,19]. To determine if this

method can be used to identify ligands for MSCRAMMs from

Gram-positive bacteria, we performed a validation experiment

using SdrGN2N3 as bait in a screen of a commercially available 12-

mer linear library (New England Biolabs Ph.D.-12 Phage Display

Peptide Library). We carried out three successive rounds of

panning against immobilized SdrGN2N3. To confirm that the

enrichment of the phage clones between panning rounds was the

result of specific interactions, the phage pool before and after each

step of amplification was also tested for binding to BSA. We found

that the number of phage binding to SdrG increased relative to the

number of phage binding to BSA (Table 1) suggesting a specific

enrichment for SdrG. We then sequenced the DNA purified from

ten phage plaques obtained after the third round of panning.

Alignment of the inserted amino acid sequences revealed FSARG

as a consensus in the majority of the clones (Table 2). This result

was consistent with previous results from our laboratory

identifying FFSARG as the binding motif in Fg for SdrG [7].

The successful identification of the SdrG binding sequence

suggested that phage display of peptide libraries could be used

to find binding partners for orphan MSCRAMMs.

Identification of the putative ligand-binding domain of
SdrC

Sequence alignments between the A-region of SdrC (SdrCA or

SdrC52-496) and previously identified staphylococcal MSCRAMMs

revealed a modest identity (less than 20%). In contrast, a com-

parison of the predicted structure of SdrCA with the determined

structures of the crystallized staphylococcal MSCRAMMs ClfA

and SdrG pointed to close structural similarities [7,20,21]. A sub-

segment of the SdrC A-region corresponding to residues 178–496

was predicted by PHYRE (http://www.sbg.bio.ic.ac.uk/phyre/)

to adopt a structure similar to those determined for the N2N3

sub-domain of the Fg-binding MSCRAMMs ClfA (PHYRE

e = 3.1610232) and SdrG (PHYRE e = 9.6 10232). Similar to the

N2N3 domains of ClfA and SdrG, SdrC178–496 likely contains two

IgG-like folded domains and has a TYTFTDYVD-like ‘‘latching

cleft’’ motif in the predicted N2 sub-domain. Therefore, we

designated SdrC178–496 as the N2N3 domain and SdrC52–177 as

the N1 domain.

Both SdrC52–496 (SdrCA) and SdrC178–496 (SdrCN2N3) were

expressed with an N-terminal His tag in E. coli (Fig. 1A). SDS-

PAGE analysis of purified recombinant proteins indicated

apparent molecular weights of 60 KDa (Fig. 1B) and 45 KDa,

respectively (Fig. 1C). Matrix-assisted laser desorption ionization

mass spectrometry suggested that the masses of the purified

recombinant proteins are close to the theoretical molecular masses

calculated from the primary amino acid sequences (51,194 KDa

compared to 50,924 KDa for SdrCA and 38,358 KDa compared

Table 1. Number of transducing units (TUs) obtained after
each panning against BSA and SdrGN2N3.

Panning* Ligand Total bound TUs

1 BSA 16104

SdrG 46105

2 BSA 16102

SdrG 36107

3 BSA 10

SdrG 26108

*Number of input phage was 1.561011 for each panning.
doi:10.1371/journal.ppat.1000726.t001

Table 2. Peptide motifs binding to SdrGN2N3.

Peptide sequence

VYPTLHFFSARGSG

QSQWPVLFFFSARG

SNIPFQFFSARGPG

SENLQFFSARGPGG

HMEGSELSFFSARG

AHQDETLAFFSARG

NHPFNALSFFSSRRG

YADLLAQFFSSKSG

YLPSQISSAIGGRAG

NPVIRYASSRSHSG

*consensus sequence shown in bold.
doi:10.1371/journal.ppat.1000726.t002

Author Summary

Staphylococcus aureus is an opportunistic pathogen,
distinguished by its potential to cause serious and life-
threatening infections in animals and humans. The ability
of this bacterium to adhere to host tissues is considered an
early, essential event in the disease process and contrib-
utes to the success of the organism as a pathogen.
Adherence to host tissues is mediated by a subfamily of
cell-wall anchored proteins named MSCRAMMs (microbial
surface component recognizing adhesive matrix mole-
cules). Work in our laboratory suggested that many of
these proteins share a common ligand binding mechanism
targeting linear amino acid sequences. Based on these
observations, we hypothesized that screening a phage
display library of random peptides may identify receptors
for MSCRAMMs. Using this method, we demonstrate that
the putative MSCRAMM SdrC recognizes a sequence in the
neuronal protein b-neurexin. Furthermore, we show that
intact b-neurexin 1 is a functional ligand for the S.
aureus MSCRAMM SdrC. Successful implementation of this
approach may open avenues for the identification of
additional host ligands and the design of anti-staphylo-
coccal therapeutics able to inhibit these interactions.

b-Neurexin Is a Ligand for SdrC of S. aureus
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to 38,340 KDa for SdrCN2N3). Thus, the recombinant SdrC

proteins migrate aberrantly on SDS-PAGE. Aberrant migration

on SDS-PAGE is common for the recombinant A-region of

MSCRAMMs and thought to be due to their hydrophilic index

[10,12,22]. The recombinant A-region was quickly degraded to a

single proteolytically stable segment with an apparent molecular

mass of 45 KDa. The N-terminal fragment released was

apparently further degraded and was rarely detected on SDS-

PAGE. N-terminal sequence analysis of the truncated, resistant

segment revealed that cleavage had occurred between Ala177 and

Ala178. Mass spectrometry indicated a molecular weight of

38,358 KDa compared with 38,340 KDa calculated from the

predicted amino acid sequence of the stable fragment suggesting

that the cleavage event occurred only at the N-terminus of the

A-region. Cleavage of the N-terminal sub-segment (N1) of the

A-region has also been observed with other recombinant

MSCRAMMs (ClfA, ClfB, SdrG) and may be explained by

disordered segments in the N1 sub-domains as well as the pre-

sence of minute amounts of contaminating proteases in the

MSCRAMM preparations [7,23,24]. The proteolysis resistant

fragment of SdrCA corresponds to the tandem IgG-like domains

(N2N3) as predicted by PHYRE (http://www.sbg.bio.ic.ac.uk/

phyre/).

Identification of b-neurexin as a potential binding
partner for SdrCN2N3 using phage display

We screened the New England Biolabs Ph.D.-12 Phage Display

Peptide Library using immobilized recombinant SdrCN2N3 as bait.

After the 3rd round of panning, fifty randomly picked plaques were

selected and the corresponding phages were screened again for

binding to SdrCN2N3, to SdrGN2N3 and to BSA as controls. All

clones bound to SdrC, however, phage from eight clones displayed

significantly higher binding to SdrCN2N3 compared to SdrGN2N3

and BSA (Fig. 2A). The clone inserts were sequenced and

an alignment of the deduced amino acid sequences is shown in

Table 3. From these sequences we could identify a degenerate

consensus sequence (P,T,A)HH(I,M)HHFH(G,R,S,Q,T,A) which

was then used for a pattern search of the human protein database

employing an algorithm allowing for zero, one or two residue

mismatches. Zero mismatches returned only neurexin 1b, one

mismatch returned neurexin 1b and neurexin 2b and two

mismatches returned neurexin 1b, neurexin 2b, neurexin 3b and

a T-type voltage-dependent calcium channel (Table S1). All

proteins returned by the search were screened for the presence of

the consensus sequence within the extracellular domain of the

protein. As shown in Fig. 2B, an alignment of the N-terminal

extracellular segments of the b-neurexin isoforms revealed vari-

ations of the consensus sequence identified by phage display. In

addition, the peptide sequence displayed by phage number one

confirms a sequence found in neurexin 1b and the sequenced

displayed by phage eight is very similar to a sequence found in

neurexin 3b [25].

The amino-terminal segments of the b-neurexins contain an

unusually long signal sequence (,50 aa), a neuroligin binding site

and a glycosylation site in close proximity to the transmembrane

domain. The C-terminal cytoplasmic segment contains a PDZ

domain presumably involved in intracellular signaling [25]. The

putative SdrC binding site identified by phage display corresponds

to amino acid residues 10 to 16 and maps in the neuroligin-

binding domain exposed on the cell surface.

Recombinant SdrCN2N3 binds recombinant neurexin 1b
(Nrx1b)

The phage display library screening identified beta neurexins as

potential binding partners for SdrC. To explore a possible

interaction between the recombinant forms of SdrCN2N3 and the

exodomain of Nrx1b we expressed in E. coli two recombinant

Nrx1b fragments with a C-terminal GST tag (Fig. 3A). The

fragment designated Nrx47-255 corresponds to the first 208 amino

acids residues of Nrx1b protein which contains the putative

Figure 1. Structural organization of SdrC and recombinant proteins. (A) Schematic representation of SdrC domain structure. S, signal
sequence; A region underlined composed of N1, N2 and N3, B1 and B2, B repeats, R, serine-aspartic acid repeat region; W, wall-spanning fragment; M,
transmembrane domain; C, cytoplasmic tail; LPETG, cell wall anchoring motif; VAAPQ, cleavage site; the arrow indicated the cleavage position. Also
shown, are the His-tag recombinant SdrC proteins used in this study. (B), Coomassie-stained SDS-PAGE gel of pure recombinant SdrCA. (C)
Coomassie-stained SDS-PAGE gel of the recombinant SdrCA after 2 weeks storage at 4uC.
doi:10.1371/journal.ppat.1000726.g001

b-Neurexin Is a Ligand for SdrC of S. aureus
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SdrC-binding site identified by phage display (amino acid residues

57 through 63). Nrx70-255 is a truncated version of the segment

described above in which the putative SdrC-binding site was

deleted (Fig. 3B). Both recombinant Nrx1b-GST proteins were

immobilized on 96-multiwell plates and used in a solid phase

binding assay. SdrCA bound the immobilized Nrx47-255 in a

concentration dependent manner but did not bind to either

Nrx70-255 or the purified fusion partner GST (Fig. 3C). Similar

results were obtained when the intact SdrCN2N3 region (Fig. 3D)

or the proteolytically resistant sub-segment released from the

recombinant SdrCA (data not shown) were used as probes.

To further demonstrate that HHIHHFH is the specific binding

site in Nrx1b for SdrC, we used a synthetic peptide (sp) with a

sequence corresponding to the N-terminus of Nrx1b, SLGAH-

HIHHFHGSSKHHS (spNrxwt), in attempts to inhibit the binding

between SdrCN2N3 and Nrx47–255. As a control we used a peptide

with the same residues but where the sequence was scrambled to

HSHIKLHSHGHSFGHA (spNrxscr). Recombinant SdrCN2N3

(0.5 mM) was incubated with increasing concentration of either

peptide prior to being added to the Nrx coated plate. spNrxwt

inhibited the interaction between SdrCN2N3 and Nrx47–255 in a

concentration dependent manner. We did not observe an

inhibition of the MSCRAMM-b-neurexin interaction when

spNrxscr was used in the assay (Fig. 3E). The observed biding of

recombinant SdrC to Nrx1b and the subsequent synthetic peptide

inhibition assay suggests that the interaction between these

proteins is specific and that the sequence motif identified in the

phage display experiment represents the ligand-binding site in

Nrx1b for SdrC.

SdrC binds the Nrxwt peptide with high affinity
We used fluorescence polarization to determine the dissociation

constant for the SdrCN2N3-Nrx1b peptide interaction. spNrxwt

and spNrxscr were labeled with fluorescein and incubated with

increasing concentrations of recombinant MSCRAMM. SdrCN2N3

bound spNrxwt in a concentration dependent, saturable manner

with a KD of 2.560.5610-7 M. We did not detect a significant

binding of SdrCN2N3 to the fluorescein-labeled spNrxscr. A control

MSCRAMM, ClfBN2N3, did not bind to the fluorescein-labeled

spNrxwt (Fig. 4A).

To eliminate the possibility that the binding was dependent of the

fluorescein label introduced in the wild-type peptide, we tested the

ability of unlabeled spNrxwt and spNrxscr to inhibit the binding of

SdrCN2N3 to fluorescein-labeled spNrxwt. Increasing concentrations

of unlabeled peptides were incubated with SdrCN2N3 for three hours

at room temperature before the fluorescent polarization experiment

Figure 2. Identification of b-neurexins as the potential SdrC-binding partner. (A), Phage obtained after the third panning round bound
specifically to SdrCN2N3. Fifty random phage clones obtained after the 3rd round of panning were incubated with immobilized SdrCN2N3, SdrGN2N3 and
BSA. Shown are the eight phage clones with the highest binding affinity (*p,0.001) for SdrCN2N3 in comparison with SdrGN2N3, BSA or fd-tet
(insertless phage). (B), Consensus sequence search. Pattern searches with the degenerated consensus (P,T,A)HH(I,M)HHFH(G,R,S,Q,T,A) against a
human protein database returned b-neurexin isoforms as SdrC-ligands. Consistent residues of the consensus are highlighted in bold, variable residues
are highlighted in gray.
doi:10.1371/journal.ppat.1000726.g002

Table 3. Peptide motifs binding to SdrCN2N3.

Peptide sequence*

Peptide 1 HWRTHHHIHHFHQG

Peptide 2 MSPHHHMHHSHHGHG

Peptide 3 AKLAHHHIHHFHGG

Peptide 4 WVPHHHIHHFHRAG

Peptide 5 YTHHHHHSWRLHTG

Peptide 6 AHHHPHAWRHSHKG

Peptide 7 STFFHFHTHKARHG

Peptide 8 HSQHHHRFHHTYPG

*consensus sequence shown in bold.
doi:10.1371/journal.ppat.1000726.t003

b-Neurexin Is a Ligand for SdrC of S. aureus
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was performed. Fig. 4B shows that the unlabeled spNrxwt but not

the spNrxscr inhibited the binding between SdrCN2N3 and the

fluorescein-labeled spNrxwt. These results demonstrated that SdrC

binds with relatively high affinity to the identified amino acid

sequence motif in b-neurexin.

SdrC mediates bacterial attachment to cells expressing
Nrx1b

Next we sought to determine if common clinical strains express

SdrC and if the SdrC displayed by these isolates are capable of

binding Nrx1b. Western blotting analysis of cell wall extractions

from USA300, MW2 and MRSA252 display SdrC on their

surface during exponential phase of growth in BHI (Fig. 5A1) and

RPMI 10% FBS media, and when grown on TSB sheep blood

agar (data not shown). SdrC was not found in cell wall extractions

from cells in stationary phase of growth (Fig. 5A2). We reasoned

that SdrC absence from the cell wall extractions in the late stages

of growth might be due to transcription cessation and proteolytical

release from the cell wall. Western blotting analysis of concen-

trated culture supernatants revealed that SdrC was not detected in

the supernatant during exponential growth but that all strains

tested released SdrC fragments during late stationary growth

phase (Fig. 5B1 and Fig. 5B2). SdrC fragments released in the

supernatant migrated slower than recombinant SdrCN2N3 on the

SDS-PAGE gels suggesting that a larger fragment of the protein is

released from the cell wall. Immunoblotting analysis demonstrated

that these fragments were recognized by antibodies raised against

recombinant N2N3 domains and B-repeats (Fig. 5B3). USA300,

Figure 3. Structural organization of b-neurexins. (A) A cartoon representation of b-neurexin domain structure. S, signal sequence; NL,
neuroligin-binding domain; Glyc, glycosylation domain; TM, transmembrane domain; PDZ, intracellular signaling domain. Also shown, are the
recombinant proteins used in this study. (B) Coomassie-stained SDS-PAGE gel of GST-tagged neurexin 1b domains recombinant proteins. Increasing
concentrations of SdrCA (C) and SdrCN2N3 (D) were incubated with immobilized Nrx47-255 (black square), Nrx70–255 (black triangle) or GST (black circle)
for 1 hour at room temperature. The apparent KD (concentrations required for half maximum binding) values were 1.8560.9461027 M for SdrCA and
1.2660.2861027 M for SdrCN2N3. (E) SdrC178–496 (0.5 mM) was incubated with increasing concentrations of spNrxwt peptide (black square) or spNrxscr

peptide (black triangle) at room temperature. After 2 hours, the mixture was incubated with immobilized Nrx47–255. The values represented here are
the mean6SD of triplicates from three experiments.
doi:10.1371/journal.ppat.1000726.g003

b-Neurexin Is a Ligand for SdrC of S. aureus
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MW2 and Newman display and release similar SdrC segments

whereas MRSA252 expresses different SdrC species. One possible

explanation for this difference may lie in the differences between

their amino acid sequences (Fig. S5). These fragments were probed

in ligand affinity western blots with recombinant Nrx47–255

protein. Our data indicated that all strains tested release an active

form of the SdrC protein capable to interact with Nrx1b (Fig. 5B4).

A control membrane not probed with Nrx47–255, did not indicate

cross reactivity of anti-GST serum with SdrC fragments released

into the supernant (Fig. 5B5).

We next tested whether cell wall anchored SdrC mediates

bacterial adherence to Nrx1b-expressing eukaryotic cells. We chose

to express both proteins in heterologous systems that do not display

any know interaction proteins. The full-length sdrC gene was cloned

in pNZ8037 under a nisin inducible promoter. The plasmid was

introduced in L. lactis for protein expression. Expression of SdrC on

the bacterial cell surface was determined using immunofluorescence

microscopy (data not shown).The full length Nrx1b gene was cloned

in pCMV5 to obtain the translational fusion Nrx1b mCherry [26]

and a mutant FLAG Nrx1b-mCherry where the SdrC binding site

was replaced with a FLAG tag. These vectors were transfected into

CHOK1 cells which were allowed to grow for 36 hours to ensure

protein expression. Transiently transfected cells were incubated

with L. lactis transformed with the vector alone, L. lactis expressing

SdrC, S. aureus Newman, S. aureus Newman sdrC::Emr (DU 5988),

USA300, MW2, or MRSA252 and bacterial attachment to the

cultured mammalian cells were followed. Our results indicated that

ten to twenty percent of the microorganisms expressing SdrC

adhere to CHOK1 cells expressing wild-type Nrx1b. In contrast, we

did not detect attachment when bacteria were incubated with

untransfected cells or cells transiently transfected with the inactive

FLAG Nrx1b-mCherry or when Nrx1-mCherry expressing cells

were incubated with the S. aureus mutant DU5988 or L. lactis

transformed with an empty vector (Fig. 5C). Fluorescence

micrographs revealed that bacteria colocalize with Nrx1b (Fig. S4).

Discussion

The success of S. aureus as a pathogen partly depends on the

organism ability to effectively colonize different tissues in the host

[9,27], evade host defense systems [28] and resist antibiotic

therapy [29]. The molecular mechanisms involved in the

development of different staphylococcal infections are incomplete-

ly understood but likely involve a large set of virulence factors.

Many of these virulence factors interact with and manipulate

specific molecular targets in the host. To interact with host targets

most virulence factors are either secreted or exposed on the surface

of the bacteria. Gram-positive bacteria express a family of surface

proteins that are covalently anchored to the cell wall at their C-

terminus. The amino acid sequences of these CWA proteins vary

dramatically from one organism to another. Nevertheless,

structural predictions identify a subgroup of CWA proteins with

a common structural organization. This subgroup includes the

known staphylococcal MSCRAMMs but also several proteins with

unknown function. We hypothesize that the latter also act as

adhesins and interact with molecules in the host [7,9]. In our

search for ligands for these orphan adhesins, we here report that

screening a phage display library of linear peptides is a useful

strategy to indentify host targets for orphan MSCRAMMs. To

demonstrate the validity of this approach we first used SdrGN2N3

to pan a commercially available library of 12 amino acids inserts in

the P3 phage protein. The consensus sequence identified from this

analysis overlapped with the previously determined SdrG binding

site located in the N-terminus of the Fg b chain. We subsequently

predicted a N2N3 domain in SdrC and used a recombinant form

of this segment as a target in panning the peptide library. A

pattern search using the degenerate consensus sequence returned

by the phage display experiment against the whole human

proteome identified b-neurexin isoforms as the putative binding

partners for SdrC. The human proteome contains three b-

neurexin proteins, which share approximately 60% identity with

each other [14]. Each b-neurexin isoform contains a variant of the

peptide sequence identified by phage display located close to the

amino-terminal end of the protein, which is exposed on the surface

Figure 4. Determination of equilibrium constant of binding. (A)
SdrCN2N3 binds specifically to b-neurexin 1. Increasing concentrations of
SdrCN2N3 or ClfBN2N3 (black circle) were incubated with 10 nM
fluorescein-labelled spNrxwt peptide (black square) or spNrxscr peptide
(black triangle) for 3 hours at room temperature in the dark. Equation
DP =DPmax [protein]/(KD + [protein]) was used to calculate the equilib-
rium constant. The values from three experiments returned a
KD = 2.5060.4961027 M. (B) SdrCN2N3 (0.5 mM) (black triangle) was
incubated with increasing concentration of unlabelled spNrxwt peptide
(white circle) or spNrxscr peptide (black circle) at room temperature.
After 3 hours, the mixture was incubated for another 3 hours at room
temperature in the dark with 10 nM fluorescein labeled spNrxwt

peptide. Fluorescence polarization was determined as described above.
The values represented here are the mean6SD of triplicates from three
experiments.
doi:10.1371/journal.ppat.1000726.g004

b-Neurexin Is a Ligand for SdrC of S. aureus

PLoS Pathogens | www.plospathogens.org 6 January 2010 | Volume 6 | Issue 1 | e1000726



of the eukaryotic cell and therefore is accessible for binding.

Moreover, this sequence starts nine residues after the first amino

acid of b-neurexin, which is particularly interesting because the

SdrGN2N3 binding site in Fg also maps nine residues from the N-

terminus of the b chain polypeptide.

Next, we demonstrated that both the SdrCN2N3 and the SdrCA

fragments bind with high affinity to the amino-terminal segment of

Nrx1b, only when the polypeptide contains the amino acid

sequence identified by phage display. The interaction does not

promote bacterial internalization (Fig. S1), the Kd of interaction is

not influenced by the amount of protein coated on the plates (Fig.

S2) and it is not influenced by metal ions (Fig. S3). We further

demonstrated that a synthetic peptide corresponding to the

binding site in b-neurexin effectively inhibits the binding of SdrC

to Nrx1b. These data indicated that recombinant SdrCN2N3 is able

to bind recombinant Nrx1b and that the binding site is the amino

acid sequence identified by phage display. In this study, we have

also shown that the binding of SdrC to Nrxwt peptide exhibits a

KD of 2.561027, which is comparable to those recorded for high

affinity CWA protein/host protein interactions. Further, we

showed that S. aureus Newman, USA300, MW2 and MRSA252

release a fragment of SdrC capable of binding Nrx1b. Heterol-

ogous expression of SdrC on the surface of L. lactis mediates

bacterial attachment to Nrx1b transiently expressed on CHOK1

Figure 5. SdrC mediates S. aureus clinical isolates adherence to Nrxb expressing cells. (A) Western immunobloting to detect SdrC
expression on the surface of different bacterial strains. S. aureus Newman, DU5988 and clinical strains USA300, MW2, MRSA252 were grown to
exponential phase (A1) or stationary phase (A2) in BHI. CWA proteins extracted as described in material and methods were separated on 4–15%
gradient SDS-PAGE gradient gels, transferred to nitrocellulose and probed with anti-SdrC serum. (B) Culture supernatants from the above mentioned
strains grown to exponential (B1) or stationary phase (B2) were concentrated and separated on 4–15% gradient SDS-PAGE gradient gels after protein
A removal. After gel separation the proteins were transferred to nitrocellulose and probed with anti-SdrC serum (B1 and B2). The nitrocellulose blot
corresponding to the stationary phase supernatants was stripped and re-probed with anti-SdrC B-repeats antibody (B3). The same blot was stripped
again and probed with Nrx47-255. The binding of Nrx1b was detected with anti-GST serum (B4). A second membrane (B5) was not incubated with
Nrx47-255 and therefore served as control for the primary and secondary sera. (C) L. lactis empty vector, L. lactis SdrC, S. aureus Newman, DU5988 (S.
aureus Newman sdrC::Emr), USA300, MW2 or MRSA252 were incubated with CHOK1 transiently transfected with Nrx1b-mCherry or FLAG Nrx1b-
mCherry grown in 24 well plates. Attachment of bacteria was reported as a percentage of total bacteria at the end of incubation. Values shown
represent mean6SD of three experiments (*p#0.001).
doi:10.1371/journal.ppat.1000726.g005
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cells. Similarly, clinical strains expressing SdrC adhere to wild-type

Nrx1b heterologously expressed in CHOK1. This experiment

demonstrates that SdrC can interact with Nrx1b when the two

proteins are appropriately expressed on bacteria and mammalian

cells, respectively.

The biological significance of the SdrC-Nrx1b interaction is

unclear. mRNA for b-neurexins is found in many tissues [30] but

the protein was only detected in neuronal tissues. It is possible that

Nrx1b protein expression occurs in non-neuronal cells or tissues

that have not yet been examined and/or that protein expression in

non-neuronal tissues is induced under certain conditions. SdrC

may serve as an adhesin mediating bacterial attachment to Nrx1b
in staphylococcal infections of neuronal tissues or where the target

protein is expressed. It is also possible that during the course of the

infection biologically active fragments could be released from the

bacteria during proteolytic processing of CWA proteins. SdrCN2N3

fragments which are released and resistant to further proteolylic

degradation could interact with Nrx1b at tissues distant from the

primary infection site. In this scenario it would be interesting to

examine if SdrC fragments can induce intracellular signaling

through its interaction with Nrx1b or interfere with the neurexin-

neuroligin interaction.

A review of the literature reveals that staphylococcal

endocarditis and sepsis have been associated with polyneuropathy

and in several rare cases even with reversible acute tetraplegia.

Studies suggest that polyneuropathy may often follow after sepsis

[31,32,33]. Before recent advances in medicine, such as life

support in the ICUs, septic death likely occurred before the

neuromuscular signs could be observed. The most common

manifestations of polyneuropathy are difficulty in weaning from

the ventilator and limb weakness. Electrophysiologic and

histopathologic investigations demonstrated axonal degeneration

of motor and sensory fibers that is different from autoimmune

syndromes that can develop during infection. The etiology of

sepsis-associated polyneuropathy is unclear. It was thought to be

caused by neuromuscular blocking agents used to ease mechan-

ical ventilation, antibiotic toxicity, corticosteroids, microanoxia,

nutritional deficiency, and high levels of inflammatory mediators.

However, the cause of the disease remains unclear and is likely

due to a combination of the above-mentioned factors (reviewed in

[31]). Moreover, the molecular mechanism of axonal degenera-

tion in sepsis-associated polyneuropathy is unknown. On the

other hand, studies investigating neurotransmission, revealed that

inhibition of Nrx1b-Nlg interaction led to late-onset neuromus-

cular deterioration [34]. These observations raise the possibility

that SdrC interaction with Nrx1b may contribute to sepsis-

associated polyneuropathy. Future studies will investigate in detail

the ability of SdrC to interfere with neurexin biology in vitro and

in vivo.

Materials and Methods

Media and growth conditions
E. coli was cultured in LB medium (Sigma, St. Louis, MO)

containing ampicillin (100 mg/ml) at 37uC with shaking at

250 rpm. S. aureus was cultured in tryptic soy broth at 37uC with

shaking at 250 rpm. L. lactis was cultured in GM17 (Oxoid, LTD,

Hampshire, UK) containing 0.5% glucose and chloramphenicol

(10 mg/ml) (Sigma, St. Louis, MO) at 30uC without shaking. To

express SdrC in L. lactis, overnight cultures were diluted 1:100,

grown for another 3 hours and induced with nisin (1.6 ng/ml)

overnight, unless otherwise mentioned. CHOK1 cells were grown

in CD CHO media (GIBCO, Grand Island, NY) at 37uC in a

humidified chamber with 5% CO2.

Bacterial strains used for adhesion
S. aureus strains MW2, USA300 and MRSA were from NARSA

or previously described [35]. The sdrC null mutant (sdrC::pG+Host)

of S.aureus Newman (DU5988) was described previously [36]. The

sdrC gene was cloned into the nisin-inducible expression vector

pNZ8037 [37] and transferred into L.lactis NZ9800 by previously

described procedures [38].

Molecular modeling
Modeling of SdrC was performed using PHYRE Protein

Homology/analogY Recognition Engine Version 2.0 (http://

www.sbg.bio.ic.ac.uk/phyre/html/index.html)

Plasmid construction
DNA manipulation was performed using standard methods.

DNA modification and restriction enzymes were purchased from

New England Biolabs, Inc. (Ipswick, MA) or Promega (Madison,

WI) and used according to the manufacturer protocol. Fragments

encoding different domains of SdrC or Nrx1b were amplified by

PCR from S. aureus genomic DNA, plasmids pCMV5 Nrx1b-Fc or

pCMV5 FLAG-Nrx1b-mCherry [26] and oligonucleotide primers

listed in Table 4. The PCR products were analyzed by agarose gel

electrophoresis and purified using a QIAquick gel extraction kit

(Qiagen, Sciences, MD). To construct SdrC expression plasmids, a

BamHI-HindIII fragment containing the appropriate gene segment

was cloned into pQE30 (Qiagen, Sciences, MD). To construct the

Nrx1b-mCherry translational fusion, we first amplified the N-

terminal 765 nt of Nrx1b from pCMV5 Nrx1b-Fc to obtain a

PCR product corresponding to the first 255 aa of neurexin protein

(including the signal sequence). Second, we amplified the Nrx1b
255-mCherry from plasmid pCMV5 FLAG-Nrx1b-mCherry to

obtain the translational fusion of the 39 end fragment of neurexin

gene with mCherry from Discosoma sp. The newly synthesized PCR

fragments were used as a template for an overlapping PCR to

obtain full length neurexin 1b-mCherry as a translational fusion. A

BglII-XbaI fragment containing the overlapping PCR was cloned

into pCMV5.

To obtain GST-tagged expression proteins we amplified

Nrx47–255 (aa) or Nrx70–255 (aa) from pCMV5 Nrx1b-Fc using

primers described in Table 1. After purification we cloned these

Table 4. Oligonucleotide primers used to amplify gene
fragments.

Expression construct Primer sequence

SdrC52–496 (SdrCA) 59 CGCAGGATCCGCAGAACATACGAATGGAG

59 CGCAAAGCTTACTTTTGGTCGCCATTAGCAG

SdrC178–496 (SdrCN2N3) 59CCCGGATCCGGAACAAATGTTAATGATAAAGTACAT

59CCCAAGCTTTTATTTCTTTTGGTCGCCATTAG

Nrx47–255 59CACCATGGCATCCAGTTTGGGAGCGC

59TTTCACATTTCCCACTATGGCGATG

Nrx70–255 59CACCATGAGTTTGGGAGCGCACCACA

59TTTCACATTTCCCACTATGGCGATG

Nrx1–255 59CCGCAGATCTATGTACCAGAGGATGCTCCGGT

59TTTCACATTTCCCACTATGGCGATG

Nrx255-mCherry 59CATCGCCATAGTGGGAAATGTGAT

59GCGCTCTAGATTACTTGTACAGCTCGTCCATGCCG

The enzyme restriction sites are underlined.
doi:10.1371/journal.ppat.1000726.t004
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fragments in the E. coli expression system with Gateway

Technology (Invitrogen, Inc, Carlsbad, CA) according to the

manufacturer’s instructions. All plasmid constructs were se-

quenced to ensure the integrity of the amplified fragments (Baylor

College of Medicine DNA Sequencing Core Facility).

Protein expression and purification
Plasmids pQE30-SdrC52–496 and pQE30-SdrC178–496 were

transformed into E. coli Topp 3. Overnight starter cultures were

diluted 1:50 in LB containing ampicillin (100 mg/ml) and

incubated with shaking until the culture reached OD600 0.6–0.8.

Protein expression was induced by adding 0.1 mM IPTG (final

concentration) and continuing the incubation for 4 hours.

Bacterial cells were harvested by centrifugation, resuspended in

PBS and frozen at 280uC. Plasmids pDEST Nrx47–255 and

pDEST Nrx70–255 were transformed into BL21-AI (Invitrogen,

Inc, Carlsbad, CA). Cultures were induced with 0.1% arabinose

for 16 h at room temperature. Bacterial cells were harvested by

centrifugation, resuspended in PBS containing EDTA-free Com-

plete Protease Inhibitor (Roche Diagnostics, Mannheim, Ger-

many) and frozen at 280uC.

To purify SdrC52–496 and SdrC178–496, cells containing

recombinant protein fragments were passed through a French

press (1100 p.s.i.). Cellular debris was removed by centrifugation

at 40,000 rpm for 20 minutes followed by filtration through a

0.45 mM membrane. The filtered bacterial lysate were applied at

2 ml/min on a 5 ml nickel-charged HiTrap Chelating column

(GE Healthcare, Uppsala, Sweden) equilibrated with 10 mM Tris

HCl, 100 mM NaCl pH 7.9. The column was washed with 40

volumes of 10 mM Tris HCl, 100 mM NaCl, 20 mM imidazole.

Bound protein was eluted with a linear gradient of imidazole (10

to 200 mM, total volume 200 ml) yielding proteins that were

.95% pure.

Fractions containing the SdrC 52–496 recombinant protein

were dialyzed overnight in 4 L of 25 mM Tris-Cl pH 7.9

containing 10 mM EDTA and 1 mM 1,10 O-phenantroline.

The dialysed sample was applied at 2 ml/minute to a MonoQ

anion exchange column equilibrated with 25 mM Tris-Cl pH 7.9

for further purification. Recombinant protein of interest was

collected from the flow through and dialyzed against PBS pH 7.4.

Sample was reapplied on a nickel-charged HiTrap Chelating

column. Pure protein was dialyzed against 50 mM EDTA to

remove excess nickel and then in HBS (10 mM HEPES pH 7.4,

150 mM NaCl, 3 mM EDTA) to remove excess EDTA.

Fractions containing the SdrC178-499 recombinant protein were

dialyzed overnight in 25 mM Tris-Cl pH 8.7. Dialyzed sample

was applied at 2 ml/minute to a MonoQ anion exchange column

equilibrated with 25 mM Tris-Cl pH 8.7. Bound protein was

eluted with a linear gradient of NaCl (0–1 M NaCl, 160 ml).

Fractions containing pure protein were dialyzed against 50 mM

EDTA to remove excess nickel and then against HBS to remove

excess EDTA.

To purify neurexin GST-tagged fragments, cells were passed

through a French press (1100 p.s.i.) in the presence of Complete

protease inhibitor tablets (Roche Molecular Biochemicals).

Cellular debris was removed as described above. Clear cell lysate

was applied to a glutathione-Sepharose column (Sigma, St. Louis,

MO). Bound protein was eluted with 10 nM glutathione pH 8.

Recombinant protein was concentrated and applied to a S-75

Sephadex (GE Healthcare, Uppsala, Sweden). Proteins were

eluted with PBS pH 7.4.

Mass spectrometry analysis and N-terminal sequencing were

performed at Tufts Protein Core Facility, Tufts University.

SDS-PAGE and Western
Recombinant proteins were analyzed by SDS-PAGE using

standard procedure [39] on 12% acrylamide gels. Gels were

stained with Coomassie Blue. CWA proteins from cells grown to

exponential (OD600 = 8) or stationary phase (10 h) were harvested,

washed 3 times with PBS and concentrated to OD600 = 50. CWA

proteins were solubilized with 200 mg/ml lysostaphin in a buffer

designed to minimize bacterial lysis composed of 30% sucrose,

50 mM Tris/Base pH 8, 20 mM MgCl2 and 50 mg/ml protease

inhibitor (Roche) for 30 min at 37uC. Cell wall fractions were then

incubated with 100 ml Sepharore-IgG for 3 h at 4uC to remove

protein A. Culture supernatants were concentrated to OD600 = 10

after the addition of 100 mg/ml protease inhibitor (Roche). Protein

A was removed by incubating with 100 ml Sepharore-IgG.

Extracts or supernatants were separated on 4–15% SDS-PAGE

gels. For Western blotting, proteins were transferred electropho-

retically to nitrocellulose or polyvinylidene difluoride membranes

(Bio-Rad, Hercules, CA) using the semi-dry system (Bio-Rad,

Hercules, CA) in Tris (0.02 M)-Glycine (0.15 M)-methanol (20%)

buffer. Membranes were blocked in 10% milk and incubated with

the appropriate serum. Briefly, membranes A1, A2, B1 and B2

were incubated with rabbit anti-SdrCN2N3 serum (H.T.I. BioPro-

ducts, Inc) and the appropriate secondary serum, which is listed

below. B2 membrane was stripped (Restore western blot stripping

Buffer, Pierce, Rockford, IL) for 10 minutes at room temperature

and then re-probed with a rabbit anti-SdrC B-repeats serum

(H.T.I. BioProducts, Inc) (B3). The membrane was stripped a

second time and incubated for 1 hour at room temperature with

Nrx47–255 recombinant protein, followed by goat anti-GST serum.

(Invitrogen, Carlsbad, CA) (B4). A control membrane identical

with B2 was probed with the same sera but was not incubated with

Nrx47–255 recombinant protein (B5). HRP-labeled goat antibody

(1:5000) or HRP-labeled goat anti-mouse or HRP-labeled rabbit

anti-goat (BioRad, Hercules, CA) were used to detect bound

primary antibody by incubating for 1 hour at room temperature.

Membranes were developed with ECL reagent (Pierce, Rockford,

IL), exposed to Kodak X-ray film.

Phage display
NEB Ph.D.12-mer random library was incubated with immo-

bilized SdrC N2N3, SdrG N2N3 or BSA at 1 mg/well. The input

was 1.561011 transducing units with a complexity of 2.76109

electroporated sequences. The assay was performed according to

the manufacturer’s instructions. The output phage plaques were

104 transducing units. Wells were washed with 0.5% Tween in

TBS buffer, blocked with 10% BSA and incubated with 16108

transducing units of each amplified phage or insertless phage

(fd-tet). To remove unbound phage, wells were washed 10 times

with 0.5% Tween in TBS. Bound phage was detected with anti-

M13-HRP antibody (GE Healthcare, Buckinghamshire, UK).

Solid phase binding assay
Each well of Immulon 4BH plates was coated with 1 mg of

recombinant Nrx47–255-GST, Nrx70–255-GSTor GST overnight at

4uC. Coated wells were blocked for 1 hour at room temperature

with 2% BSA in 0.05% Tween-TBS buffer. Increasing concen-

trations of SdrCN2N3 or A-region were added to the wells and

incubated for 1 hour at room temperature. Bound protein was

detected with a polyclonal antibody (1:3000) against SdrCN2N3

(H.T.I. BioProducts) followed by an anti-rabbit HRP-labeled

antibody (1:5000) (Bio-Rad Labs, Hercules, CA). Color develop-

ment was performed using SigmaFast OPD (Sigma, St. Louis,

MO) and the binding was measured using a microtiter plate reader

(Molecular Devices) at 450 nm. For inhibition assays, 0.5 mM
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SdrC178-496 protein was incubated with increasing concentrations

of peptides prior to the solid phase binding assay. Data presented

represent the mean6SD of three independent experiments

performed in triplicate. The binding was analyzed by non-linear

regression for one binding site (GraphPad Prism).

Fluorescence polarization
Nrxwt and Nrxscr peptides were labeled with fluorescein as

described previously [10]. Increasing concentrations of SdrC178-

496 were incubated with 10 nM labeled peptide for 3 hours in the

dark at room temperature. Polarization was measured using

Luminescence Spectrometer LB50B (Perkin Elmer). The data

were analyzed by non-linear regression for one binding site. The

equilibrium dissociation constant was calculated using the

equation DP =DPmax x [protein])/(KD + [protein]) (Eq.1) where

DP is the change in fluorescence polarization, DPmax is the

maximum change in fluorescence polarization and KD is the

equilibrium dissociation constant of the interaction.

For inhibition assays, 0.5 mM SdrC178–496 was first incubated with

increasing concentrations of unlabeled Nrxwt or unlabeled Nrxscr for

3 hours at room temperature. The mixture was then incubated for

3 hours with fluorescein-labeled Nrxwt. The results presented

represent the mean6SD of three independent experiments.

Adherence assay
CHOK1 cells were grown in 24-well tissue culture plates to

approximately 80% confluence. Cells were transfected with either

pCMV5 Nrx1b-mCherry or pCMV5 FLAG-Nrx1b-mCherry

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according

to the manufacturer’s instructions and grown for 36 hours to allow

for protein expression. For attachment assays, bacteria were

washed 2 times in PBS, resuspended in CD CHO media and

incubated for 1 h with CHOK1 cells at an MOI of 10. To remove

unattached bacteria, cells were washed 4 times with PBS. To

determine the number of attached bacteria, CHOK1 cells were

lysed with sterile water and serial dilutions plated on the

appropriate media. The number of attached bacteria was reported

as a percent of total bacteria at the end of the incubation period.

Each experiment was performed in triplicate wells and repeated

three times. Statistical analysis was performed using the Student’s

t-test.

Protein accession numbers (UniProt) SdrC
S. aureus Newman - O86487; S. aureus USA300 - A8YZQ9; S.

aureus MW2 - Q8NXX7; S. aureus MRSA252 - Q6GJA7.

Neurexin1b: P58400.

Supporting Information

Table S1 Pattern search results

Found at: doi:10.1371/journal.ppat.1000726.s001 (0.06 MB PDF)

Figure S1 Thirty-six hours prior to infection, CHOK1 cells

where transfected with Nrx1b-mCherry. Bacteria were added to

each well at MOI of 10 and incubated for 3 hours in a humidified

incubation chamber at 37uC with 5% CO2. To remove unbound

bacteria, wells were washed 3 times with PBS. After washing, cells

were incubated in DMEM containing gentamicin (100 mg/ml) for

1 h. Cells were washed 3 times in PBS, lysed with water and

dilution plated. Internalized bacteria where represented as percent

of total bacteria at the end of the incubation period.

Found at: doi:10.1371/journal.ppat.1000726.s002 (0.10 MB PDF)

Figure S2 The solid phase binding assay was performed as

described in Materials and Methods. The wells were coated with

0.5 mg/well Nrx47–255.

Found at: doi:10.1371/journal.ppat.1000726.s003 (0.10 MB PDF)

Figure S3 The solid phase binding assay was performed as

described in Materials and Methods. The wells were coated with

1 mg/well Nrx47–255. EDTA, [Ca2+], [Mg2+], [Mn2+] were

added to 1 mM SdrCN2N3 prior incubation with Nrx1b at a final

concentration of 10 mM.

Found at: doi:10.1371/journal.ppat.1000726.s004 (0.10 MB PDF)

Figure S4 CHOK1 cells transiently transfected with Nrx1b-

mCherry or FLAG Nrx1b-mCherry and grown on glass coverslips

were incubated with either L. lactis empty vector, L. lactis SdrC, S.

aureus Newman or DU5988 (S. aureus Newman sdrC::Emr) Nrx1b
expression was monitored by the red fluorescence due to mCherry.

Bacterial cells were detected with anti-SdrC antibodies and FITC-

labeled secondary antibodies (green). CHOK1 nuclei were stained

with DAPI (blue). Attachment of bacteria to Nrx1b-expressing

CHOK1 cells is shown (merged).

Found at: doi:10.1371/journal.ppat.1000726.s005 (2.28 MB PDF)
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