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Abstract: Continuous cultures assure the invariability of environmental conditions and the metabolic
state of cultured microorganisms, whereas batch-cultured cells undergo constant changes in nutrients
availability. For that reason, continuous culture is sometimes employed in the whole transcriptome,
whole proteome, or whole metabolome studies. However, the typical method for establishing uniform
growth of a cell population, i.e., by limited chemostat, results in the enrichment of the cell population
gene pool with mutations adaptive for starvation conditions. These adaptive changes can skew the
results of large-scale studies. It is commonly assumed that these adaptations reflect changes in the
genome, and this assumption has been confirmed experimentally in rare cases. Here we show that in a
population of budding yeast cells grown for over 200 generations in continuous culture in non-limiting
minimal medium and therefore not subject to selection pressure, remodeling of transcriptome occurs,
but not as a result of the accumulation of adaptive mutations. The observed changes indicate a
shift in the metabolic balance towards catabolism, a decrease in ribosome biogenesis, a decrease
in general stress alertness, reorganization of the cell wall, and transactions occurring at the cell
periphery. These adaptive changes signify the acquisition of a new lifestyle in a stable nonstressful
environment. The absence of underlying adaptive mutations suggests these changes may be regulated
by another mechanism.

Keywords: transcriptome; stress alertness; Saccharomyces cerevisiae; epigenetic; adaptation;
transcription factor

1. Introduction

To obtain microbial biomass for downstream applications, microorganisms are grown either in
batch culture or in continuous culture, usually in a chemostat. Batch culture is easier to implement and
less costly and requires simpler instrumentation, and, in general, the time necessary to obtain a sufficient
quantity of biomass is determined only by the microorganism cell doubling time. On the other hand,
continuous culture is lengthier and more costly and requires dedicated instrumentation, yet allows
greater control of the growth conditions, long-term stability of cultured cell population physiological
and metabolic parameters, and run-to-run reproducibility of these parameters [1]. By minimizing the
experimental noise and the number of variables it is easier to expose those important for the given
study. These preponderances become particularly advantageous when whole transcriptome studies
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are performed [2], for which it is important to discern the anticipated transcriptome changes from
those pertaining to growth conditions and/or other factors escaping experimenter control. In batch
culture, cells experience constant changes in nutrient availability as well as the build-up of byproducts
and final metabolites. This is also true for the cells of budding yeast Saccharomyces cerevisiae, the model
organism in the studies described in this paper. When grown in a medium with glucose as a carbon
source its predominant way of obtaining energy is fermentation, which leads to the accumulation
of ethanol. The regulatory mechanism called glucose repression prevents budding yeast cells from
entering into respiratory metabolism despite the availability of oxygen until glucose is exhausted [3].
At this point, budding yeast cells undergo a diauxic shift from fermentation to oxidation of ethanol,
which reprograms the whole metabolism and affects the expression of hundreds of genes [4,5]. This is
an extreme example; however, growth phase-specific changes in the transcriptome constitute a common
source of artifacts often distorting the resulting data [2] and leading the experimenters astray.

Unquestionably, continuous culture also has limitations [6] and cultured cells do not preserve
constant features indefinitely. Indeed, prolonged continuous cultures, typically in limited chemostats
and exposed to some selection pressure are commonly employed when microevolution experiments
are performed. In these approaches, gradual adaptive changes in cell populations in response to
that selection are expected and desired [7,8] and cell cultures are maintained for hundreds or even
thousands of generations. On the other hand, in typical transcriptome studies, continuous culture
should not be carried out for too long to avoid admixture of adaptive-borne changes. To prevent this,
cells should be harvested soon after a culture reaches the steady-state and the number of generations
in the continuous culture should not exceed twenty [7].

The phenomenon of adaptation in a prolonged culture is well known. It has been demonstrated
in numerous microevolution studies that during the adaptive phase of continuous culture,
mutations accumulate in the cell population gene pool, and cells gaining fitness due to these mutations
dominate the population [9–12]. Adaptive changes in gene expression within the cell population have
also been observed in whole-transcriptome studies [7,13–15]. It seems obvious that those adaptive
transcriptome changes are a consequence of the enrichment of the cell population gene pool with
adaptive mutations. Nevertheless, very few studies confronted the transcriptome changes occurring
in the cell population during the adaptive phase of continuous culture with the genomic mutations
accumulated in the cell population gene pools [8,12].

Since adaptation is the response to the selection pressure of any kind it is tacitly assumed
that no changes should occur in cells grown continuously under constant, nonlimiting conditions
with no selection pressure applied to them. Yet is it true? This study aimed to get an insight into
this matter. In our experimental approach, wild-type W303 strain was grown continuously under
stable, nonselective conditions. The stability of culture parameters was assured by a constant flow
of nonlimiting growth medium and by maintaining a constant cell density equivalent to the late
exponential growth phase. Intriguingly, the transcriptomic analysis of the cell populations revealed
over four hundred genes whose expression changed during the steady-state phase of continuous
culture. Moreover, these changes were not the consequence of adaptive mutations. Functional analysis
of genes whose expression was affected suggested the gradual shift in metabolic balance, the reduction
of biosynthetic overcapacity, and the decrease in stress alertness indicating an adaptation to stable,
nonstressful growth conditions.

2. Materials and Methods

2.1. Strain and Media

The W303 (MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15) wild-type S. cerevisiae strain
was used in this study. The strain subjected to chemostat experiments was grown in a synthetic
minimal liquid medium containing 0.67% yeast nitrogen base (YNB), 2% glycerol, 0.1% yeast extract,
and 0.1% glucose and supplemented with the required amino acids and nucleotides. Ampicillin and
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streptomycin (25 µg/mL) were added to prevent bacterial contamination. For strain propagation and
precultures YPD medium (1% Bacto-yeast extract, 2% Bacto-peptone, and 2% glucose with 2% agar for
solid medium) was used.

2.2. Continuous Culture Conditions

Continuous cultures were conducted in homemade chemostats based on [16]. Briefly, the chambers,
containing 20 mL of a synthetic minimal medium, were constructed of 50 mL plastic Falcon tubes
each closed with a silicone stopper pierced with three needles of different lengths. The shortest needle
was used to add medium to the chamber. The longest needle, which reached the bottom of the tube,
provided filtered air (pumped with an aquarium pump) and allowed efficient mixing of cultures.
The third needle was used to determine the culture volume by removing effluent from the chamber to
the collection of bottles. To start the experiment, 15 mL of liquid YPD medium was inoculated with a
single colony and grown overnight at 30 ◦C. An aliquot of the overnight culture was inoculated to
OD600 = 0.1 into a chemostat chamber filled with 20 mL of synthetic minimal medium. When the cell
density reached approximately 5 × 107 cells per mL, the flow of medium was turned on at a dilution
rate of 0.17–0.18 volumes per hour, and the culture was continued for at least 240 generations at a
constant temperature of 30 ◦C. This dilution rate was selected as optimal for our study in the course of
trial yeast cell culture runs. Under these growth conditions, the cell culture density was maintained in
a stable state of 5.3 ± 0.3 × 107 cells per mL, the density equivalent to the late exponential phase of
batch culture in the same medium. To ensure the stability of the growth parameters, cell culture density
was monitored every day, and the medium flow rate was slightly adjusted as necessary. Cultures were
also tested for the absence of contamination. These conditions assured constant, unperturbed growth
of the cells. The selection of synthetic minimal medium with glycerol as a respiratory carbon source
increased the demand for the cells’ metabolic capacity, hence maximizing the number of genes that were
expressed in them. Moreover, the lack of selection pressure helped to avoid the gradual accumulation
and enrichment of adaptive mutations in the cultured cell populations and bias our results towards
adaptation to that pressure. Three such growth experiments were performed comprising independent
biological replicates. Cell culture samples (5 mL) were harvested at two time points: after 40 generations
(7 days), assumed arbitrarily as the early stage of the steady-state phase, and after 240 generations
(42 days), as the adaptation phase. Yeast cells were spun down, flash-frozen in liquid nitrogen,
and stored at −80 ◦C until use.

2.3. Preparation of the Total RNA and Microarray Analysis

Total RNA was prepared from deeply frozen yeast cell pellet samples using the hot acidic
phenol procedure [17]. The quantity and quality of the RNA preparations were tested with the
2100 Bioanalyzer expert assay RNA Nano (Agilent Technologies, Santa Clara, CA, USA). To identify
changes that accumulated throughout the adaptive phase of the continuous culture, comparative
microarray hybridizations were performed using the samples after 40 and after 240 generations.
Each comparison of the transcriptomes was performed in three biological replicates, each with two
technical replicates with a dye-swap. Yeast (v2) Gene Expression 8 × 15 K Microarray slides containing
oligonucleotides representing almost all known S. cerevisiae genes identified in the SGD were used
(Agilent Technologies). Cy3 or Cy5 fluorescently labeled cRNA probes were synthesized using the
Agilent Quick Amp Two-Color Labeling Kit according to the manufacturer’s protocol, with total RNA
samples as the templates. The probes were hybridized concurrently to microarrays, and the resulting
fluorescence images were scanned with the Axon GenePix 4000B (Molecular Devices, San Jose, CA, USA)
microarray scanner. Feature extraction was accomplished with GenePix Pro 6.1. Raw data were
normalized, averaged, and subjected to statistical analysis with Acuity 4.0 software. Additional data
manipulations were performed in Microsoft Excel. For every gene, the value of LogRatio expressing
over or underrepresentation of its transcript in cells grown for 240 generations relative to 40 generations
was calculated. A gene was considered to be differentially expressed between the evolved and original
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strains if its transcript level differed between the two strains by at least 1.87-fold (LogRatio ≥ 0.9),
and the probability of such a difference by chance was less than 0.05 (p < 0.05). The resulting lists of
differentially expressed genes (DEGs) (see also microarray analysis results in Table S3) were subjected
to further bioinformatics analysis. Complete transcriptome analysis data are deposited in Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number: GSE162203.

2.4. Bioinformatics Analysis

To classify the functions of the identified DEGs, Gene Ontology (GO) analysis was conducted
using Cytoscape (v3.8.0) [18] with the BiNGO (v3.0.3) plugin [19] and GO Slim Term Mapper
(https://www.yeastgenome.org/goSlimMapper). The raw BiNGO output was edited by removing
redundancies in GO terms to improve the clarity of the final list of functional categories overrepresented
within the selected gene sets.

To identify transcription factors (TFs) that potentially regulate the expression of selected genes,
the Yeastract+ [20] (http://www.yeastract.com) online database was used. We used the tool “Rank Genes
by TF” with the filter “Documented Regulations by DNA binding plus expression evidence”.
Two queries were performed separately for upregulated and downregulated genes. The resulting lists
contained almost 200 TFs, and, to make the list manageable, it was filtered by the statistical significance
of this analysis (p-value, set arbitrarily to be below 0.005) and by the Fraction number (set to be above
0.06 or 0.08 for up- or downregulated gene sets, respectively) calculated according to this equation:

GS(TF)
GT(TF)

(1)

as the proportion of genes in our set regulated by a given TF (GS(TF)) to the total number of genes in the
genome regulated by that TF (GT(TF)). In addition, we calculated the Overrepresentation parameter as
the ratio of the number of genes regulated by a given TF in our gene set (GS(TF)) to the total number of
genes in this set (GS) divided by the ratio of the number of genes regulated by a given TF in the whole
genome (GT(TF)) to the total number of genes in the genome (GT):

GS(TF)
GS

GT(TF)
GT

(2)

The resulting number is another measure of how much more the particular TF is involved in the
regulation of genes from our lists relative to the whole genome. Both Fraction and Overrepresentation
parameters detect similar events, but Fraction prefers TFs that appear in the Yeastract database as
regulating many, sometimes most, S. cerevisiae genes, whereas the Overrepresentation parameter
favors TFs that regulate a lower number of genes. The TF lists were further filtered by the Gene
count parameter (GS) by removing TFs that regulate fewer than 10 genes. Finally, we added the Rank
parameter, which is simply a result of multiplication of Fraction, Gene count, and Overrepresentation.

2.5. Quantitative Real-Time RT-PCR Analyses

To validate the microarray results, qRT-PCR was performed with a Mic Real-Time Cycler
(BioMolecular Systems, Upper Coomera, QLD, Australia) with fluorescent DNA-binding dye using a
QUANTUM EvaGreen® PCR Kit (Syngen Biotech, Warsaw, Poland) according to the manufacturer’s
instructions. The primers used to quantify the expression of target genes (Table S1) were chosen
based on data from qPrimerDB (version 1.2). Primer specificity was verified by melting curve analysis.
qRT-PCRs were performed in triplicate. Each 20-µL reaction mixture contained 4 µL of QUANTUM
EvaGreen® PCR Kit mix (Syngen Biotech, Warsaw, Poland), two primers (4 pmol of each) and
1 µL of template cDNA, which was synthesized from 240 ng of total RNA treated with TURBO™
DNase (Thermo Fisher Scientific, Warsaw, Poland) using a smART First Strand cDNA Synthesis kit

https://www.ncbi.nlm.nih.gov/geo/
https://www.yeastgenome.org/goSlimMapper
http://www.yeastract.com
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(EurX, Gdańsk, Poland) according to the supplier’s protocol. qRT-PCRs were carried out under the
following conditions: 95 ◦C for 15 min, followed by 40 cycles of 95 ◦C for 15 s, 51.5 ◦C for 20 s, and 72 ◦C
for 20 s. The crossing threshold cycles (Cq) were determined using micPCR software v2.8.10. Then,
the fold changes of the gene expression levels, corrected by efficiency, were analyzed. The ACT1 gene
was used as the normalization reference (internal control) for target gene expression ratios. The Pfaffl

method [21] was applied to calculate relative expression with respect to that of ACT1.

3. Results

Three independent continuous culture experiments were performed for the wild-type haploid W303
strain. In each of these biological replicates, we analyzed transcriptome changes that occurred between the
40th generation time point, i.e., the early stage of the adaptive phase, and the time point after an additional
200 generations of growth in the adaptive phase. The changes in transcriptomes during this growth
period were determined by the concurrent hybridization of Cy3- or Cy5-labeled RNA samples to yeast v.2
microarrays. Microarray data were validated by qRT-PCR for 8 randomly selected genes (see Materials
and Methods and Table S1 for more details). The correlation coefficient between the microarray and
qRT-PCR data for the selected genes was 0.931 (see Supplementary Figure S1).

Some of the transcriptome changes identified in W303 strain cultures were specific to the individual
biological replicates and could be ascribed to the specific mutations found in the gene pools of the
respective evolved cell populations. Briefly, in Replicate 1 we detected significant mutations in HOG1
and MSY1 genes, in Replicate 2 we found mutations in HOG1 and URE2 genes, and in Replicate
3 we identified a mutation in the MSY1 gene. These data are summarized in the Supplementary data
file. Intriguingly, however, we also noticed changes in the transcriptome that were uniform across
biological replicates even though no mutations were affecting the same genes in all three independent
cultures of the W303 strain. While these changes were most likely adaptive, they could not have been
the consequence of adaptive mutations. The steadiness of the continuous culture conditions ruled
out the possibility that the observed transcriptome changes constituted a response to the changing
environment. This striking finding encouraged us to investigate further the observed phenomenon.

The criteria for the selection of genes whose expression was uniformly and significantly changed
between the two time points were as follows: (|Mean Log2Ratio|) ≥ 0.9 AND p-value ≤ 0.05 Standard
Deviation ≤ 0.8 AND (Standard Deviation)/(Mean Log2Ratio)2 ≤ 0.4, where |Mean Log2Ratio| is the
modulus of the logarithm of fold difference of expression between the two time points averaged
across the biological replicates and Standard Deviation is calculated based on the values of these
biological replicates. These criteria allowed us to reveal 212 genes whose expression was higher
after 240 generations of adaptive growth relative to 40 generations of growth and 241 genes whose
expression was lower when comparing the same time points.

The analysis of Gene Ontology terms overrepresentation, performed with Cytoscape (v3.8.0) [18]
and the BiNGO (v3.0.3) plugin [19] allowed us to identify several functional categories that were
overrepresented within the selected gene sets. The results of this analysis are summarized in Figure 1.
Figure 2 shows all the genes in our gene set sorted by their assigned functions. Some categories were
merged to reduce their number and increase clarity. Below the gray bars are genes whose functional
categories were not overrepresented and genes of unknown function. Genes most strongly up- or
downregulated, with LogRatio above 2.33 or below −2.33, respectively i.e., whose expression changed
at least 5-fold, are marked in bold face. Figure S3 shows the expanded version of Figure 2, listing genes
together with their short descriptions and the LogRatio values denoting the increase or decrease of
gene expression between 40 and 240 generations.
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downregulated (B) genes selected in the course of transcriptome analysis. The analysis was performed 
using Cytoscape (v3.8.0) [18] with the BiNGO (v3.0.3) plugin [19] and GO Slim Term Mapper 
(https://www.yeastgenome.org/goSlimMapper). GO terms belonging to Biological process and 
Cellular Component categories are shown. 

The data presented allow for several general remarks. Downregulated genes dominated in our 
gene set. More of them have known functions and more of them belonged to overrepresented Gene 
Ontology categories compared to upregulated genes. Notably, in both up- and downregulated gene 
lists there was a 1.5-fold excess of genes qualified in SGD as Uncharacterized relative to the whole S. 
cerevisiae genome (62 of 453 in our gene set versus 578 of 6256 S. cerevisiae genes represented by 
oligonucleotide probes on Yeast (v2) Microarrays). This may have no significance, or it may reveal 
the existence of novel, unknown and specific functions important for yeast cell survival in continuous 
culture. These genes may not be well characterized for the very reason that such growth conditions 
are less frequently employed in studies of yeast cell biology. 

3.1. Functional Categories of Genes Upregulated during the Prolonged Continuous Culture 

Among upregulated genes whose function fell into one of the significantly overrepresented 
categories, a subset of genes encoding peroxisomal enzymatic proteins involved in the catabolism of 
fatty acids was recognized. However, we did not observe a significant change in the expression of 
PEX genes involved in peroxisome biogenesis. This indicates that the volume and/or the number of 
peroxisomes in yeast cells did not change during prolonged culture. Remarkably, the POT1 gene 
encoding thiolase performing the last step of the β-oxidation pathway, the release of acetyl-CoA, was 
not upregulated. Instead, there was an induction of the ECI1 gene encoding delta3, delta2-enoyl-CoA 
isomerase. Moreover, the CIT2 gene encoding peroxisomal citrate synthase that utilizes the β-
oxidation pathway end product was downregulated. This expression pattern is compatible with the 
idea that the role of peroxisomal metabolism under applied growth conditions is not the assimilation 

Figure 1. Overrepresentation of Gene Ontology (GO) terms in the group of upregulated (A) and
downregulated (B) genes selected in the course of transcriptome analysis. The analysis was performed
using Cytoscape (v3.8.0) [18] with the BiNGO (v3.0.3) plugin [19] and GO Slim Term Mapper (https:
//www.yeastgenome.org/goSlimMapper). GO terms belonging to Biological process and Cellular
Component categories are shown.

The data presented allow for several general remarks. Downregulated genes dominated in our
gene set. More of them have known functions and more of them belonged to overrepresented Gene
Ontology categories compared to upregulated genes. Notably, in both up- and downregulated gene
lists there was a 1.5-fold excess of genes qualified in SGD as Uncharacterized relative to the whole
S. cerevisiae genome (62 of 453 in our gene set versus 578 of 6256 S. cerevisiae genes represented by
oligonucleotide probes on Yeast (v2) Microarrays). This may have no significance, or it may reveal the
existence of novel, unknown and specific functions important for yeast cell survival in continuous
culture. These genes may not be well characterized for the very reason that such growth conditions are
less frequently employed in studies of yeast cell biology.

3.1. Functional Categories of Genes Upregulated during the Prolonged Continuous Culture

Among upregulated genes whose function fell into one of the significantly overrepresented
categories, a subset of genes encoding peroxisomal enzymatic proteins involved in the catabolism
of fatty acids was recognized. However, we did not observe a significant change in the expression
of PEX genes involved in peroxisome biogenesis. This indicates that the volume and/or the number
of peroxisomes in yeast cells did not change during prolonged culture. Remarkably, the POT1 gene
encoding thiolase performing the last step of theβ-oxidation pathway, the release of acetyl-CoA, was not
upregulated. Instead, there was an induction of the ECI1 gene encoding delta3, delta2-enoyl-CoA
isomerase. Moreover, the CIT2 gene encoding peroxisomal citrate synthase that utilizes the β-oxidation
pathway end product was downregulated. This expression pattern is compatible with the idea that the
role of peroxisomal metabolism under applied growth conditions is not the assimilation of fatty acids

https://www.yeastgenome.org/goSlimMapper
https://www.yeastgenome.org/goSlimMapper
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but perhaps the remodeling of lipids by introducing double bonds into the fatty acids and thereby
increasing membrane fluidity.
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functions were not overrepresented within the gene sets. Genes with LogRatio above 2.33 or below 
−2.33, i.e., whose expression changed at least 5-fold, are marked in bold face. See Figure S3 for the
expanded version of this figure listing genes together with the short descriptions of their functions
taken from SGD.

Another prominent group contains genes whose products are involved in the catabolism of 
amines, mostly amino acids, transport, and catabolism of allantoin and other amides. We also 
identified a group of genes for mitochondrial proteins, both enzymes performing catabolic reactions 
and mitoribosomal proteins. There is also a subgroup of genes encoding proteins involved in sister 
chromatid segregation. The purine nucleotide salvage process is represented by two genes, HPT1 and 
XPT1. 
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2 and S3) there were genes whose products are involved in signal transduction, response to toxins, 
cell division, metabolism-mostly mitochondrial ion transport and organization, vesicular trafficking, 
DNA repair, regulation of transcription and translation, RNA metabolism and protein modification. 
Three groups of genes encoding mitochondrial proteins, chromatin-associated proteins and plasma 
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The most strongly upregulated genes encode proteins involved in the transport and catabolism 
of allantoin (DAL1, DAL4, DAL5); transporter proteins for oligopeptides (OPT2), urea and 
polyamines (DUR3); α mating pheromone (MF(α)2); proline oxidase (PUT1); a transcriptional 
repressor involved in glucose repression (MIG2) and a protein kinase involved in the control of 

Figure 2. All upregulated (A) and downregulated (B) genes selected in the course of transcriptome
analysis sorted according to the functional category assigned to them. For clarity, the number
of GO terms, shown in Figure 1, was reduced by merging the lists of genes of similar functions.
Sorting was performed manually based on GO annotations assigned to genes and the descriptions of
their functions in the Saccharomyces Genome Database (SGD). Below the gray bar are genes whose
functions were not overrepresented within the gene sets. Genes with LogRatio above 2.33 or below
−2.33, i.e., whose expression changed at least 5-fold, are marked in bold face. See Figure S3 for the
expanded version of this figure listing genes together with the short descriptions of their functions
taken from SGD.

Another prominent group contains genes whose products are involved in the catabolism of amines,
mostly amino acids, transport, and catabolism of allantoin and other amides. We also identified a group
of genes for mitochondrial proteins, both enzymes performing catabolic reactions and mitoribosomal
proteins. There is also a subgroup of genes encoding proteins involved in sister chromatid segregation.
The purine nucleotide salvage process is represented by two genes, HPT1 and XPT1.

Among the genes of known but not significantly overrepresented functional categories
(Figure 2 and Figure S3) there were genes whose products are involved in signal transduction,
response to toxins, cell division, metabolism-mostly mitochondrial ion transport and organization,
vesicular trafficking, DNA repair, regulation of transcription and translation, RNA metabolism and
protein modification. Three groups of genes encoding mitochondrial proteins, chromatin-associated
proteins and plasma membrane-associated transporters have functions related to those listed under
overrepresented GO categories.

The most strongly upregulated genes encode proteins involved in the transport and catabolism of
allantoin (DAL1, DAL4, DAL5); transporter proteins for oligopeptides (OPT2), urea and polyamines
(DUR3); α mating pheromone (MF(α)2); proline oxidase (PUT1); a transcriptional repressor involved



Genes 2020, 11, 1419 8 of 18

in glucose repression (MIG2) and a protein kinase involved in the control of Msn2p-dependent
transcription of stress-responsive genes (YGK3). 60 upregulated genes were of unknown function.

3.2. Functional Categories of Genes Downregulated during Prolonged Continuous Culture

Among downregulated genes whose function fell into one of the significantly overrepresented
categories (see Figures 1 and 2 and Figure S3), there was a subset of genes involved in cell wall
organization; in the biosynthesis of certain amino acids (note that some other genes for synthesis of
other amino acids were upregulated); plasma membrane transporters for ammonium, amino acids
(very strongly repressed) and other compounds; sizable groups of genes encoding ribosomal proteins
and stress response genes and a large, heterogeneous group of genes involved in the biosynthesis of
various compounds.

Among the genes of non-overrepresented functional categories, there were genes encoding
proteins localized to various cellular compartments (mitochondria, the cell periphery, endomembrane
system, or nuclear pore complex); involved in various aspects of cellular functions (respiration,
lipid metabolism, genome maintenance, RNA metabolism, protein modification, invasive growth,
and zinc ion homeostasis). There was also an ATG36 gene required for pexophagy, and downregulation
of this gene is compatible with the upregulation of peroxisomal metabolism genes.

Among the most strongly downregulated were genes encoding transporters of amino acids (BAP3,
TAT1, TAT2, AGP1, MUP1, GNP1), a protein involved in the regulation of mitochondrial expression of
ATP synthase subunits (NCA3), ammonium permeases (MEP1, MEP3), desiccation stress-protecting
hydrophilin (GRE1), sodium pumps (ENA1, ENA2), nitroreductase involved in the repression of
fatty acid biosynthesis (FRM2), glycerol transporter (STL1), and several genes of unknown function.
Forty-seven downregulated genes had unknown or poorly characterized functions.

Interestingly, there were groups of genes that are functionally related yet were present either
in upregulated or in downregulated sets. For instance, genes whose expression was most strongly
affected encoded plasma membrane transporters for nutrients. Among those strongly induced were
OPT2, DAL5, DAL4, and DUR3, whereas GNP1, TAT2, MUP1, AGP1, TAT1, MEP3, MEP1, and BAP3
were strongly downregulated. The distinction seems to be based on ligand specificity: transporters of
allantoin, oligopeptides, urea, and polyamines were induced, whereas transporters of amino acids and
ammonia were repressed. One could interpret these changes as resulting from a change in the medium
composition; however, this was kept constant throughout the entire culture period.

Similarly, while we observed the downregulation of stress-induced and/or stress-related genes
(PUN1, YJL144W, ECM5, DAK2, GAD1, YPT53, TPS2, GPP2, SNO4, HSP32, TPS3, GPP1, TSL1, SIP18,
HSP33, EDC2, MTL1, HSP150, DOG2, SSA3, CIN5, PAI3, HSP12, ALD3, CTT1, SED1, DDR2, GRE2,
STL1, FRM2, GRE1), a small number of such genes (YGK3, OYE3, ALD2) were upregulated.

3.3. Dubious ORFs

ORFs of this category in most, if not all, cases do not encode real proteins, but microarray probes
assigned to these ORFs will detect noncoding RNAs if they are synthesized on the templates of the
corresponding genome regions. In many cases, transcript-level information regarding such ORFs
may be useful. It is worth noting that the dubious ORF YGR190C overlaps with the HIP1 gene on the
opposite strand encoding high-affinity histidine permease [22]. While YGR190C is strongly upregulated
HIP1 is on our list of downregulated genes. This suggests the mode of regulation of that gene with the
antisense transcription. Such phenomena are quite common [23] and the HIP1 gene may be regulated
in a similar fashion, which would explain why HIP1 and YGR190C are inversely regulated.

3.4. Search for Common Attributes Affecting the Expression of Selected Genes

To further explore the phenomena occurring within budding yeast cell populations during
prolonged continuous culture and the importance of the proteins encoded by genes identified in
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our transcriptome analysis under these conditions, we looked for the common regulatory systems
controlling them.

With the help of the Yeastract+ web tool and database [20] (http://www.yeastract.com)
we performed a search for transcription factors (TFs) regulating the expression of the genes on
our list. The results of this analysis are shown in Table 1 and Table S2. The detailed strategy of this
search is described in the Materials and Methods section. In brief, we were interested in TFs that
regulate many genes in our gene sets, that regulate them preferentially, and for which the result of
Yeastract+ analysis was statistically significant. The resulting lists contained 11 TFs for upregulated
genes and 25 TFs for downregulated genes. The functions of these TFs, shown in the Description
column, generally correlate well with the functions of genes on our lists.

Table 1. Transcriptional factors (TFs) are most strongly involved in the regulation of genes selected in
transcriptome analysis. The list was generated with the help of the Yeastract+ online database [20]
(http://www.yeastract.com). Each TF name is accompanied by the description of the function according
to SGD and with the parameters that were used for filtering the raw TF output list. See the Materials
and Methods section for a more detailed description of these parameters and the filtering strategy.
The lists are sorted according to the Rank parameter.

Transcriptional Factors for Up-Regulated Genes

TF Fraction p-Value Gene
Count

Over-
represen-

tation
Rank Description

Adr1p 0.07 0 54 2.96 11.1

Carbon source-responsive zinc-finger
transcription factor; required for

transcription of the glucose-repressed
gene ADH2, of peroxisomal protein

genes, and of genes required for ethanol,
glycerol, and fatty acid utilization

Mga1p 0.06 0 54 2.86 9.4

Protein similar to heat shock
transcription factor; multicopy

suppressor of pseudohyphal growth
defects of ammonium permease mutants

Fzf1p 0.09 0 18 4.31 6.8

Transcription factor involved in sulfite
metabolism; sole identified regulatory

target is SSU1; overexpression
suppresses sulfite-sensitivity of many

unrelated mutants due to
hyperactivation of SSU1

Gzf3p 0.07 0 31 2.51 5.1

GATA zinc finger protein; negatively
regulates nitrogen catabolic gene

expression by competing with Gat1p for
GATA site binding; function requires a

repressive carbon source; dimerizes with
Dal80p and binds to Tor1p

Dal81p 0.06 0.0001 24 3.12 4.8 Positive regulator of genes in multiple
nitrogen degradation pathways

Cat8p 0.09 0 16 3.16 4.6

Zinc cluster transcriptional activator;
necessary for derepression of a variety of
genes under non-fermentative growth
conditions, active after diauxic shift,

binds carbon source responsive elements

Dal80p 0.08 0.0003 15 3.18 3.6

Negative regulator of genes in multiple
nitrogen degradation pathways;

expression is regulated by nitrogen levels
and by Gln3p; member of the

GATA-binding family, forms homodimers
and heterodimers with Gzf3p

http://www.yeastract.com
http://www.yeastract.com
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Tod6p 0.1 0.0002 10 3.06 3.1

PAC motif binding protein involved in
rRNA and ribosome biogenesis; subunit

of the RPD3L histone deacetylase
complex; Myb-like HTH

transcription factor

Sut2p 0.07 0.0012 13 2.35 2.1

Zn2Cys6 family transcription factor;
positively regulates sterol uptake under

anaerobic conditions with SUT1;
represses filamentation-inducing genes

during non-starvation conditions;
positively regulates mating

Wtm2p 0.07 0.0014 12 2.39 2

Transcriptional modulator; involved in
regulation of meiosis, silencing, and

expression of RNR genes; involved in
response to replication stress

Rpi1p 0.06 0.0053 11 2.13 1.5

Transcription factor, allelic differences
between S288C and Sigma1278b;

mediates fermentation stress tolerance
by modulating cell wall integrity

Transcriptional Factors for Down-Regulated Genes

TF Fraction p-Value Gene
Count

Over-
represen-

tation
Rank Description

Hot1p 0.31 0 32 12.68 126

Transcription factor for glycerol
biosynthetic genes; required for the

transient induction of glycerol
biosynthetic genes GPD1 and GPP2 in

response to high osmolarity; targets
Hog1p to osmostress
responsive promoters

Crz1p 0.11 0 102 3.63 40

Transcription factor, activates
transcription of stress response genes;

nuclear localization is positively
regulated by calcineurin-mediated

dephosphorylation

Gis1p 0.12 0 73 3.7 33.5
Histone demethylase and transcription

factor; regulates genes during
nutrient limitation

Rlm1p 0.11 0 77 3.51 29.4

MADS-box transcription factor;
component of the protein kinase

C-mediated MAP kinase pathway
involved in the maintenance of

cell integrity

Ifh1p 0.1 0 44 4.53 20.7 Coactivator, regulates transcription of
ribosomal protein (RP) genes

Met4p 0.1 0 63 3.04 18.7
Leucine-zipper transcriptional activator;

responsible for regulation of sulfur
amino acid pathway

Mig1p 0.1 0 57 3.26 18.2

Transcription factor involved in glucose
repression; regulates filamentous growth

along with Mig2p in response to
glucose depletion

Mga2p 0.08 0 90 2.41 17.6

ER membrane protein involved in
regulation of OLE1 transcription;

inactive ER form dimerizes and one
subunit is then activated by

ubiquitin/proteasome-dependent
processing followed by nuclear targeting



Genes 2020, 11, 1419 11 of 18

Table 1. Cont.

Stp2p 0.09 0 52 3.33 16.1

Transcription factor; activated by
proteolytic processing in response to

signals from the SPS sensor system for
external amino acids; activates

transcription of amino acid
permease genes

Stp1p 0.08 0 70 2.62 14.8

Transcription factor; undergoes
proteolytic processing by SPS sensor

component Ssy5p in response to
extracellular amino acids; activates

transcription of amino acid permease
genes and may have a role in

tRNA processing

Nrg1p 0.09 0 46 3.29 14

Transcriptional repressor; mediates
glucose repression and negatively

regulates a variety of processes
including filamentous growth and

alkaline pH response

Gzf3p 0.1 0 46 3.06 13.8

GATA zinc finger protein; negatively
regulates nitrogen catabolic gene

expression by competing with Gat1p for
GATA site binding; function requires a

repressive carbon source; dimerizes with
Dal80p and binds to Tor1p

Sko1p 0.08 0 77 2.12 13.6

Basic leucine zipper transcription factor
of the ATF/CREB family; cytosolic and

nuclear protein involved in osmotic and
oxidative stress responses

Gat4p 0.1 0 42 3.06 13.3
Protein containing GATA family zinc

finger motifs; involved in spore
wall assembly

Nrg2p 0.16 0 18 4.63 13
Transcriptional repressor; mediates
glucose repression and negatively

regulates filamentous growth

Hap1p 0.09 0 56 2.52 13

Zinc finger transcription factor; involved
in the complex regulation of gene

expression in response to levels of heme
and oxygen

Rgm1p 0.08 0 49 2.67 10.9

Putative zinc finger transcription factor;
overproduction impairs cell growth and
induces expression of genes involved in

monosaccharide catabolism and
aldehyde metabolism; regulates

expression of subtelomeric genes

Sfl1p 0.08 0 51 2.53 10.5

Transcriptional repressor and activator;
involved in repression of

flocculation-related genes, and activation
of stress responsive genes; has direct role

in INO1 transcriptional memory

Tbs1p 0.13 0 13 3.77 6.2 Putative transcription factor of
unknown function

Rof1p 0.09 0 24 2.74 6.1 Putative transcription factor containing a
WOPR domain

Tog1p 0.1 0 21 2.93 5.9
Transcriptional activator of oleate genes;

regulates genes involved in fatty
acid utilization
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Wtm2p 0.1 0 17 2.98 5.1

Transcriptional modulator; involved in
regulation of meiosis, silencing, and

expression of RNR genes; involved in
response to replication stress

Rpi1p 0.1 0 17 2.89 4.8

Transcription factor, allelic differences
between S288C and Sigma1278b;

mediates fermentation stress tolerance
by modulating cell wall integrity

Com2p 0.09 0.0001 16 2.94 4.3

Transcription factor; COM2 transcription
is regulated by Haa1p, Sok2p and Zap1p

transcriptional activators; C. albicans
homolog (MNL1) plays a role in

adaptation to stress

Sdd4p 0.1 0.0002 12 2.93 3.5
Putative transcription factor, induced in

response to the DNA-damaging
agent MMS

3.5. Are There Other Explanations for the Observed Changes in Gene Expression?

Among the strongly upregulated genes were four identical ones, ASP3-1, ASP3-2, ASP3-3,
and ASP3-4, encoding L-asparaginase. Their increased expression was consistent with the upregulation
of other catabolic enzymes; however, all four genes are located in the genome in the immediate
proximity of the rDNA region on chromosome XII and also near the Ty1-1 transposon. Mobile elements
have been reported to undergo multiplication in the yeast cell genome during long-term continuous
culture, with the rate of transposition between 3 × 10−7 and 1 × 10−5 transpositions per Ty element per
generation [24]. The number of rDNA repeats could also have changed throughout our experiment
because it is regulated by TOR signaling, with the number of rDNA repeats inversely correlated with the
level of the Pnc1p protein [25]. Notably, PNC1 was downregulated in our list of genes after long-term
culture. Moreover, long-term cultivation under selective pressure may favor fitness-increasing
duplications of certain regions of chromosomes [12,26]. For all these reasons, we explored the
possibility that the upregulation of genes in our study was a consequence of their multiplication,
i.e., an increase in transcript level due to an increase in gene dosage even though no selective pressure
was applied to cultured cells in our experiments. However, duplication encompasses regions of
chromosomes containing at least several genes and would affect the expression of all of them, yet,
except ASP3, we did not observe the coordinated upregulation of clusters of neighboring genes in our
transcriptome analysis results. Thus, while it cannot be absolutely excluded that an increase in ASP3-1,
ASP3-2, ASP3-3, and ASP3-4 expression is the result of their duplication, the change in expression
levels of most or all other upregulated genes in our set by their duplication is unlikely.

4. Discussion

Since its inception, continuous culture has been used in microevolution studies [27]. More recently,
the availability of high-throughput techniques has allowed us to study microevolution by following
the adaptive changes of the transcriptomes (e.g., [7,15,28]), proteomes (e.g., [29,30]), metabolomes
(e.g., [31]), or genomes (e.g., [9,10,32]) of cell populations subject to continuous culture. It has
been assumed that transcriptomic, proteomic, and metabolomic alterations reflect changes in the
genomes of the microorganisms under study. In many cases, such an association has been directly
proven (e.g., [8,12]) confirming the generally accepted tenet that DNA is a carrier of heritable traits.
The observation that became the topic of this work attracted our attention because it implied something
different than is commonly believed. Our results revealed that slow, adaptive transcriptome changes
in budding yeast cells subjected to microevolution may not always be the consequence of adaptive
mutations of their genomes. The expression of over 400 genes was changed between the time point
after 40 generations of growth (the beginning of the steady-state phase) and the time point after
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240 generations of growth (the adapted cell populations). As there were no common mutations that
could be associated with these changes, they must have been encoded in some other way.

The stability of continuous culture conditions in microevolution experiments is usually assured
by growth limitation; the medium contains a limiting concentration of one of the nutrients, most often
the carbon or nitrogen source [1]. Limitation assures the control of doubling time but at the same
time results in starvation stress, which we intended to avoid in our experimental design. The dilution
rate was kept at 0.17–0.18 × h−1, allowing the cell population to be maintained at a constant density
equivalent to the late exponential growth phase. Moreover, to include as many genes as possible in our
analysis, we used mineral, YNB-based growth medium with glycerol as a respiratory carbon source
(see Materials and Methods).

As documented by Figures 1 and 2, and Figure S3, the modulation of the S. cerevisiae cell
transcriptome in the course of continuous culture involves groups of genes belonging to distinct
functional categories. Evidently, the observed changes in expression levels are specific and signify a shift
in the biosynthesis/catabolism balance towards catabolism and towards diminishing the stress response.
However, sometimes the cellular processes underpinning these changes are unclear. The observed
transcriptome remodeling is interesting in several aspects. First, one might expect a change in gene
expression in response to some variations in cell internal or external stimuli of any kind. However,
we see the changes despite the absence of such variations. Moreover, changes in gene expression in
response to stimuli are fast, measured in minutes or even in seconds, whereas the changes observed
by us were slow, measured in days. To our knowledge, this phenomenon has not previously been
reported in the literature.

Interestingly, the observed transcriptome remodeling had a negligible effect on the fitness of the
cell population. The growth rate of the culture, not limited by the dilution rate, remained constant for
the whole duration of culture, even though among differentially expressed genes were those involved
in basic cellular functions, such as genes encoding ribosomal proteins. While the observed coordinated
transcriptome changes were definitely not random and most likely reflected the cell adaptive response
to continuous culture conditions, a much longer continuous culture would probably be necessary to
reveal the benefits of these changes.

4.1. Regulatory Network Responsible for the Cellular Switch from a Variable to a Stable Environment

More information was extracted by searching for regulatory proteins that may affect the expression
of genes in our gene set. This analysis was performed using the Yeastract+ online tool [20].
As demonstrated in Table 1 and Table S2, there is a very high correlation between the functions
of genes in our gene set and the regulatory responsibilities of TFs on the Yeastract+ output list.
Within the group of TFs for upregulated genes, we observed those involved in the regulation of
catabolism of various nonfermentable carbon sources (Adr1p, Cat8p) and nitrogen sources (Gzf3p,
Dal80p, Dal81p). Within the group ascribed to downregulated genes, we observed numerous TFs related
to the stress response (Com2p, Crz1p, Hot1p, Rpi1p, Sdd4p, Sfl1p, Sko1p, Wtm2p). We also observed
TFs responsible for the induction of filamentous growth (Mig1p, Nrg1p, Nrg2p, Sfl1p), cell wall
integrity (Gat4p, Rlm1p, Rpi1p), and membrane rigidity (Mga2p). The association of downregulated
genes with the cell periphery, especially with lipid membrane composition, is consistent with the
observed upregulation of a subset of genes encoding peroxisomal proteins (see above). TFs responsible
for the regulation of amino acid biosynthesis and assimilation (Met4p, Stp1p, Stp2p) were also
present. In accordance with the downregulation of ribosomal protein genes, Ifh1p, a TF regulating the
transcription of these genes, was present.

Superficially, no clear evidence of the existence of master regulators emerged from this analysis;
however, there was a clear tendency toward diminished stress alertness and reduced nutrient reserves
and protein biosynthetic capacity. The involvement of TFs, such as Sfl1p and Rpi1p, in more than
one of these processes, suggests their coordinated action during adaptation to a less challenging
environment. Notably, certain TFs, e.g., Mga2p and Rlm1p, have quite specific regulatory roles in
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yeast cells according to SGD, yet in the Yeastract+ database, they influence the expression of numerous
genes. These or other TFs of still poorly defined regulatory roles may function as switches functioning
in the transition from turbulent to tranquil environments. It is also possible that such a switch is of a
different nature.

4.2. How Could a Constant Cell Environment Induce a Drift in Gene Expression Patterns, and Why Would It
Make Biological Sense for the Drift to Be Slow?

The observed changes, downregulation of genes involved in ribosome biogenesis, a shift in
balance towards catabolism, and downregulation of stress response and protection genes, suggests that
prolonged continuous culture under stable, nonstressful conditions requires fewer resources. This in
turn lowers the demand for transactions on the cell periphery, which is exactly what we see.

S. cerevisiae cells can occupy various niches differing in nutrient availability and the overall
variability of environmental conditions. It is conceivable that survival in unpredictable environments
requires a surplus of resources to allow for quick responses to rapid changes. The existence of such
overcapacity has been previously reported in microorganisms [33,34], and it has been considered
a trait beneficial for fitness under varying growth conditions [35]. It appears that overcapacity is
a more general strategy of yeast cell survival in dynamic environments, affecting various cellular
functions, such as environmental stress protection, protein biosynthesis, or the ability to acquire and
assimilate diverse nutrients [36]. Conversely, in stable conditions, withdrawing overcapacity would be
advantageous. Indeed, as a part of adaptive changes occurring in stable chemostat culture conditions,
a reduction in this overcapacity was observed for metabolism [14,15,31] and for the signaling networks
that regulate it [10]. Therefore, our results are consistent with these observations with one important
distinction. Unlike the previous reports mentioned above, our data indicate that adaptation to a stable
environment may not involve the accumulation of mutations, so it can be quickly reversed if the
conditions become variable again. On the other hand, it seems rational that the changes increasing
cell fitness in a stable, nonstressful environment must be slow because the cell must spend some
time in such an environment before it is assured that the growth conditions are indeed stable and
nonstressful. Such apparent purposefulness is explicable considering the stochastic nature of gene
expression. It has been shown that within a genetically homogenous yeast cell population, certain genes,
especially those responding to environmental changes, display high cell-to-cell variation in expression
levels, termed transcriptional noise [37]. This phenomenon of heterogeneity of gene expression
was later shown to be important for survival in conditions of variable nutrient availability [38,39]
or stressful environments [40,41]. In addition to genes involved in nutrient assimilation or stress
resistance, transcriptional noise is characteristic of genes encoding plasma membrane transporters [42].
Moreover, it is known that stress awareness can be inherited and that the memory of the response to
environmental stresses is encoded epigenetically [43,44]. It can be transmitted to offspring as chromatin
modifications [45], such as tethering it to the nuclear envelope [46], by histone methylation [47] leading
to heterochromatin formation [48], and by changing the nucleosome code [49]. It can also be transmitted
by prion propagation [50,51]. These memory records are subject to gradual modifications as the
growth conditions change [51]; therefore, the prolonged growth of transcriptionally heterogeneous
yeast cell populations in stable, nonstressful conditions will favor cells with lower expression of
stress protecting genes whose products are becoming dispensable. This may result in a gradual
decrease in their expression levels averaged across the cell population. We did not reveal the specific
mechanism(s) pertinent to gene expression differences discovered in our study. However, we postulate
that the differences observed by us during the cultivation of S. cerevisiae cells in a stable, unchallenging
milieu demonstrated the process of “forgetting” their previous experience of growth in variable and
stressful conditions.

Incidentally, mutational changes in microevolution experiments leading to the abandonment of
network signaling circuits that are dispensable in a constant environment have been considered a
manifestation of the myopic nature of evolution; these mutations put cells at a disadvantage when the
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environment becomes variable again [10]. Our data indicate that switching to a less resource-hungry
lifestyle can occur without adaptive mutations and therefore is not so myopic because it can be
easily reversed.

To our knowledge, the phenomenon described in this paper has never been the subject of a
standalone study; nevertheless, it was recently noticed by others in the course of a large-scale proteomic
study [30]. The authors of that paper provide evidence that the gradual changes in protein levels
as an adaptation to continuous culture conditions are not a consequence of adaptive mutations.
Considering the gradual nature of adaptive changes, the authors suggest the epigenetic mechanism
of this regulation [30] and emphasize the presence of a “Histone modifier” GO category among
their proteins.

5. Conclusions

Slow changes in gene expression in cells grown under stable conditions may be a part of a more
general, not yet fully understood, phenomenon. In the majority of studies employing budding yeast
or other microorganisms, including those exploring the cell transcriptome or proteome, strains are
grown in batch culture and preferably harvested during the exponential growth phase. Less frequently,
other growth phases are chosen, and cells are seldom grown for several days or weeks. Therefore,
is not surprising that the phenomena specific to these other growth phases have been noticed
relatively recently. Interestingly, upregulation of genes encoding peroxisomal proteins together with
downregulation of stress-response genes, similar to changes in the transcriptome documented by us,
has been observed during prolonged growth of yeast cell colonies [52]. Perhaps cells dwelling in such a
microcosm perceive it as stable and nonstressful, which leads to similar transcriptome rearrangements.
The observation of slow changes in gene expression in cells grown under constant conditions for many
generations reveals gaps in our knowledge of this infrequently studied type of budding yeast lifestyle.
At the same time, our results call for greater caution in the interpretation of transcriptome data derived
from microevolution experiments.
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