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Cone-beam computed tomography (CBCT) images suffer from poor image quality, 
in a large part due to contamination from scattered X-rays. In this work, a Monte 
Carlo (MC)-based iterative scatter correction algorithm was implemented on mea-
sured phantom data acquired from a clinical on-board CBCT scanner. An efficient 
EGSnrc user code (egs_cbct) was used to transport photons through an uncorrected 
CBCT scan of a Catphan 600 phantom. From the simulation output, the contribu-
tion from primary and scattered photons was estimated in each projection image. 
From these estimates, an iterative scatter correction was performed on the raw 
CBCT projection data. The results of the scatter correction were compared with the 
default vendor reconstruction. The scatter correction was found to reduce the error 
in CT number for selected regions of interest, while improving contrast-to-noise 
ratio (CNR) by 18%. These results demonstrate the performance of the proposed 
scatter correction algorithm in improving image quality for clinical CBCT images.
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I. INTRODUCTION

Cone-beam computed tomography (CBCT) images suffer from poor image quality when com-
pared to conventional fan-beam CT, in a large part due to contamination from scattered X-rays. 
X-ray scatter manifests as streaking and cupping artifacts in CT images, as well as degraded 
contrast, contrast-to-noise ratio, and CT number accuracy.(1,2) Due to their lower than diagnostic 
quality, CBCT images are presently problematic for radiotherapy treatment replanning.

Current CBCT scatter correction techniques involve two main components: scatter compen-
sation, which consists of mechanically rejecting scattered X-rays, or compensating for them 
using deterministic or statistical methods;(3) and scatter estimation, where the contamination 
from scattered X-rays is estimated from measurements or mathematical models.(4) Provided with 
accurate models, the most accurate method available for the estimation of scatter distributions 
is through a Monte Carlo (MC) simulation.(5) While MC-based CBCT scatter calculations are 
prohibitively long if no special techniques are used, the simulation may be accelerated by use 
of efficient algorithms. One approach to reduce simulation time is by reducing the number of 
voxels in the object volume, the number of detector pixels, and the number of simulated projec-
tion views. This approach exploits the assumption that CBCT scatter distributions are smooth 
and well-behaved across each projection and between projection views. While a number of 
authors have published MC-based scatter correction algorithms following this approach,(6,7,8) 
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the assumption of CBCT scatter smoothness may or may not be valid depending on the spe-
cific imaging geometry.(9) To improve calculation efficiency without heavily relying on scatter 
smoothness assumptions, Mainegra-Hing et al.(9) employ variance reduction techniques (VRTs) 
and scatter projection denoising. The performance of their method has been demonstrated 
on idealized data,(9,10) and patient CT phantoms,(11) showing an increase in efficiency of up 
to four orders of magnitude over an MC calculation without the use of efficiency improving  
techniques.(12) Their software is now available as an EGSnrc(13) user code, called egs_cbct.

In the original paper describing egs_cbct, Mainegra-Hing et al.(10) proposed an iterative 
CBCT scatter correction technique, whereby the patient geometry used to calculate the scatter 
distribution is updated by reconstructions from scatter-corrected projection data obtained from 
the previous iteration. This procedure then converges towards the scatter-free reconstruction. 
It was reported that the technique was able to correctly reproduce attenuation coefficients in 
mathematical phantoms. The iterative approach is interesting from a clinical implementation 
perspective, as it can be run directly on the raw CBCT projection data and requires no a priori 
information about the patient, such as a planning CT scan. This also eliminates any additional 
artifacts which may be introduced by registration errors between CT and CBCT. 

In this work, we investigate the clinical feasibility of the iterative, MC-based scatter cor-
rection of Mainegra-Hing et al.(10) by implementation on real phantom data acquired from a 
clinical on-board CBCT system. The scatter correction investigated also accounts for the pos-
sible presence of an antiscatter grid in the CBCT system. Results of the scatter correction were 
compared with the default vendor reconstruction. To assess performance, all CBCT images 
were compared with the clinical benchmark of a planning CT scan. 

 
II. MATERIALS AND METHODS

A.  Scatter correction definitions
If Si is the scatter contribution to the signal in pixel i for a given projection, and Pi is the pri-
mary contribution, the total pixel signal will be Ri = Pi + Si. The quantity reconstructed by the 
CBCT scanner is

  (1)
 

ri = ln ,
Bi

Ri

where Bi is the pixel signal from a blank (air) scan. We can then define the scatter-free quantity

  (2)
 

pi = ln .
Bi

Pi

= ln
Bi

Ri – Si

We then assume that the major differences between measured and simulated pixel intensity 
are due to differences in simulation attenuation properties; that is the ratio between measured 
and simulated pixel signal (both primary and scatter) is a constant. Pi can be replaced with  
P̃ × Ri/R̃i, where symbols with a tilde denote MC-derived quantities. Equation (2) then becomes

  (3)
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To compensate for errors introduced by this assumption, a relaxation term of α(ri – rĩ) is 
added, with α left as a free parameter. To account for the presence of an antiscatter grid, the 
simulated scatter intensity is modulated by a grid parameter (β). The scatter-free quantity in 
its final form is then given by

  (4)
 

 

This expression is an extension to the proposed approach of Mainegra-Hing et al.(10)

It can be shown that β is equivalent to the reduction of scatter-to-primary ratio (SPR) due 
to an antiscatter grid by looking at the quantity in the logarithm of Eq. (4),

  (5)
 
 
where S̃/P̃ is the SPR simulated without an antiscatter grid. We see that β can then be expressed 
as: 

  (6)
 

For a given configuration, β can be found in literature. Sisniega et al.(14) report that the 
reduction in SPR achieved with a 10:1 antiscatter grid for a CBCT linac configuration (SAD = 
100 cm, SDD = 150 cm) is in the neighborhood of 0.5.

B.  Iterative scatter correction algorithm
The scatter correction used in this work follows the iterative algorithm proposed by Mainegra-
Hing et al.(10) To initialize the algorithm, raw projection data from the to-be-corrected CBCT 
scan must be acquired. A 3D reconstruction is performed from this projection data to yield the 
raw, uncorrected CBCT slices.

Once this 0th iteration has been performed, the steps of the scatter correction algorithm are 
as follows:

1.  Convert reconstructed voxel attenuation coefficients (μ) to material densities.
2.  Import density phantom into MC simulation, and compute primary and scatter distributions 

for each projection angle.
3.  Apply scatter correction Eq. (4) to raw projection pixel data.
4.  Perform 3D reconstruction from projection data
5.  Go to step 1.

The iterative procedure stops at step 4 when a convergence criterion has been reached. A 
flowchart depicting the iterative correction algorithm is shown in Fig. 1.
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C.  Image reconstruction
After acquiring a CBCT scan, the raw projection data was extracted from the OBI reconstruc-
tor computer. This data was normalized to the X-ray tube output chamber, then smoothed with 
a median filter. Air normalized projection values were then calculated and input into an FDK 
reconstruction algorithm,(15) using a Shepp-Logan convolution filter.(16) Partial arc reconstruc-
tion was handled by weighting overlapping projections with a smooth sinogram window.(17)

D.  MC simulation
The CBCT simulation was performed using egs_cbct, an EGSnrc user code. The detector signal 
was estimated by scoring air kerma using forced detection, where contributions from photons 
aimed at the detector are scored before crossing the plane, accounting for the attenuation through 
the geometry. Photons were simulated down to 10 keV and electron transport was turned off. 
Material photon cross sections were calculated from the XCOM database.(18) Compton interac-
tions were modeled in the relativistic impulse approximation taking into account binding and 
Doppler broadening.(13) Coherent scattering (Rayleigh) was simulated using the independent 
atom approximation.

To further improve the calculation efficiency of CBCT scatter estimation, egs_cbct makes 
use of a number of variance reduction techniques (VRTs).(9) To enhance the number of interac-
tions occurring deep in the phantom where most of the scatter signal originates, a photon path 
length biasing technique was implemented which does not depend on the photon direction. A 
combination of fixed interaction splitting and Russian Roulette (RR) was used to increase the 
number of photons directed towards the scoring plane. In this splitting + RR scheme, after its 
first interaction, a photon is split into Np photons with statistical weight 1/Np. To reduce the 
time wasted transporting photons aimed away from the scoring plane, RR is used to “kill” these 
photons with a probability of 1-1/Ns. A split photon surviving the RR will have a weight of  
Ns/Np. This photon can then interact and be split Ns times, with the same RR procedure applied. 
This approach ensures that all photons reaching the detector have the same statistical weight  
(1/Np). To reduce the amount of time spent transporting photons not aimed at the detector through 
heterogeneous regions, delta transport, or Woodcock tracing, was employed.(19) Delta transport 
is a technique whereby photons are allowed the possibility to undergo a fictitious interaction. 
This fictitious interaction leaves the energy and direction of the photon unaltered, and has a 
cross section equal to the difference of the maximum cross section in the volume and the voxel 
cross section (i.e., voxels with a large cross section will have a small fictitious interaction cross 
section, and vice versa). This approach gives the entire geometry a homogeneous total (real + 
fictitious) photon cross section, allowing the photon to be transported directly to the interaction 
site, eliminating the need for tedious ray tracing. A locally adaptive smoothing algorithm(20) 
was applied to the scatter distributions to further decrease simulation time.

Fig. 1. Flowchart of iterative scatter correction algorithm.
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E.  CT-to-density conversion
To transport particles through a CT-acquired geometry using Monte Carlo, each voxel of the 
CT image must be associated to a material type (atomic number Z and atomic mass number 
A)* and mass density (ρ). For each CBCT-scanned object, a ramp file was created containing a 
list of relevant materials, their nominal attenuation coefficient (μmat), and mass density (ρmat). 
Once assigned to a material, voxel mass density was calculated by a fractional method, where 
for a voxel with μi, density was given by

 
  (7)
 

In this way, the ratio of μi to μmat is recovered in the simulation by dividing ρi by ρmat. Table 1 
lists an example of μ ranges used in this work to assign materials to voxels reconstructed from 
a scan of a Catphan 600 phantom (The Phantom Laboratory, Salem, NY). 

F.  Algorithm implementation on VMS OBI system
All CBCT images in this study were acquired using a VMS (Varian Medical Systems, Palo Alto, 
CA) On-Board Imager (OBI) system, mounted on a VMS Novalis medical linear accelerator. 
The system consisted of a kV X-ray source (VMS G242) and flat-panel detector (PaxScan 
4030CB) whose beam central axis was orthogonal to the treatment beam central axis. The flat-
panel detector had dimensions of 39.7 by 29.8 cm (1024 by 768 pixels), and was equipped with 
a focused 10:1 antiscatter grid. The source-to-axis (SAD) distance of the system in question 
was 100 cm, and the source-to-detector distance (SDD) was 149.88 cm. In this work, the OBI 
system was operated using the Standard Dose Head scanning protocol (100 kVp and 145 mAs), 
with the bowtie compensator removed. In this protocol, 372 projection images were acquired 
over a 200° partial arc scan.

The iterative scatter correction was applied to a CBCT scan of a Catphan 600 phantom. The 
configuration of the egs_cbct simulation was made to resemble the OBI system operated using 
the Standard Dose Head protocol with the bowtie filter removed. The X-ray spectrum was based 
on a model of a COMET MXR-320 tube operated at 100 kVp, and includes inherent filtration 
and attenuation through its beryllium window (Eeff = 45 keV). Beam intensity was assumed 
to be constant across solid angle, and was collimated to the projected dimensions of the flat 
panel detector. The detector was assumed to have an ideal energy response, and scoring plane 
resolution was set to 256 by 192 pixels of 1.552 by 1.552 mm2. This coarse scoring helps to 

Table 1. Attenuation coefficient ranges used for material assignment and density conversion for a Catphan 600 phan-
tom. μmat was determined from an EGSnrc simulation for the CBCT X-ray source spectrum.

	 μ	 	 μmat ρmat
 (1/cm) Material (1/cm) (g/cm3)

 < 2.5E-4 Vacuum 0.0 0.0
 2.5E-4 to 0.09 Air 5.18E-4 1.205E-3
 0.09 to 0.189 PMPa 0.178 0.83
 0.189 to 0.209 LDPEb 0.200 0.93
 0.209 to 0.23 Polystyrene 0.217 1.06
 0.23 to 0.251 Water 0.243 1.00
 0.251 to 0.287 Acrylic 0.259 1.19
 0.287 to 0.4 Delrin 0.315 1.41
 > 0.4 Teflon 0.485 2.10

a Polymethylpentene
b Low-density polyethylene

* For composite materials, we associate an effective Z and A.
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increase computational efficiency by taking advantage of the relatively low spatial frequency 
of scatter distributions.(21) Once the egs_cbct simulation was complete, the simulated projec-
tion images were upsampled using bicubic interpolation to match the resolution of the OBI 
system (1024 by 768 pixels). 

The CBCT projection data was reconstructed to have a size of 512 by 512 pixels, with 
0.51 by 0.51 mm2 per pixel. Slice thickness in the longitudinal direction was 2.7 mm. Prior 
to converting the reconstructed voxel attenuation coefficients to densities as part of the scat-
ter correction, the reconstructed slices were downsampled to a resolution of 256 by 256. This 
downsampling helps to increase the simulation efficiency by reducing the number of voxel 
boundaries encountered during particle transport. 

G.  Comparison with fan-beam CT and evaluation
In addition to the CBCT scan, the Catphan was also scanned on a fan-beam CT (Philips Brilliance 
Big-Bore CT (Philips Healthcare, Andover, MA)) used for patient treatment planning at the 
Montreal General Hospital. The planning CT (pCT) images were acquired axially at 120 kVp, 
200 mAs, with 3 mm slice thickness (3 mm collimation). This allowed for a comparison of 
the scatter corrected CBCT images with “clinical ground truth” CT data. A CBCT CT number 
normalization was performed by setting the Hounsfield units (HU) for Catphan water-equivalent 
material to agree between the scatter corrected CBCT scan and the planning CT.

To quantify the reconstructed CT number accuracy, a region of interest (ROI) was selected 
for each of the eight Catphan embedded contrast materials. In each ROI, the mean CT number 
and standard deviation was recorded. The overall CBCT image CT number error was estimated 
by the square root of the mean square error (RMSE):

  (8)

where μi and μi,ref are the mean values of the CBCT and planning CT ROI for material i, 
respectively. Image quality was also quantified by the contrast-to-noise ratio (CNR), defined as

   
  (9)
 

where μA and μB are the mean values, and σA and σB are the standard deviations of CT numbers 
in two neighboring ROIs.

 
III. RESULTS & DISCUSSION 

A.  Mathematical water phantom
The performance of the iterative scatter correction was first assessed on a mathematical phan-
tom, using a monoenergetic 60 keV X-ray source. The phantom consisted of a homogeneous 
water cylinder (20 cm diameter by 20 cm length) containing a central cylindrical air cavity 
(2 cm diameter by 10 cm length). Exploiting the phantom symmetry, only the 0° projection was 
computed. This projection was then duplicated to obtain the complete scan (360 projections 
over 360°). Figure 2 shows the simulated water phantom scan when reconstructed from primary 
photons only (left panel), and (right panel) primary + scattered photons. Here, a cupping artifact 
and an air cavity CT number inaccuracy are quite noticeable in the primary + scatter scan. The 
scatter correction was applied with β = 1, as no antiscatter grid was present in the simulation. 
Two relaxation parameters, α = 0 and α = 0.5, were investigated.
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Figure 3 shows profiles through the central horizontal line of the reconstructed water phantom 
for both primary only and primary + scatter scans (Fig. 2), and the results after each iteration of 
the scatter correction. For both chosen values of α, after each iteration the reconstructed attenu-
ation coefficient values appear to converge towards the scatter-free result. This convergence 
can be quantified by calculating the RMSE of the reconstructed voxels for each iteration, using 
the scatter-free scan as reference. Figure 4 shows the RMSE in the central slice as a function 
of scatter correction iteration number, starting with the uncorrected scatter + primary scan (0th 
iteration). After only two iterations, the RMSE for both cases of α can be seen to converge 
towards a minimum value. This residual error is largely due to statistical noise and correlations 
introduced by reusing the 0° projection for all projection angles (visible as fluctuations near 
the center of the phantom profiles in Fig. 3). It was found that using a nonzero α has negligible 
improvement on convergence rate, while enhancing voxel errors.

 

Fig. 2. Mathematical water phantom with air cavity used in the study, reconstructed from (left) primary photons only, 
and (right) primary + scattered photons.

Fig. 3. Profiles of the reconstructed water phantom after iterative scatter correction using relaxation parameters of (left) 
α = 0 and (right) α = 0.5. It can be seen that the correction reduces a scatter-induced cupping artifact and air cavity CT 
number error.
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B.  Catphan 600 phantom on VMS OBI system
Next, the iterative scatter correction was performed on measured phantom data, using α = 0 
and β = 0.5. The results were found to converge visibly after three iterations of the correction. 
The performance of the scatter correction is evident in the reconstructed Catphan images, as 
shown in Fig. 5. When reconstructed from uncorrected projection data, the CBCT image has an 
obvious cupping artifact and large CT number errors, as shown in Fig. 5(a). Implementation of 
the proposed scatter correction significantly reduces these scatter artifacts (Fig. 5(b)). As another 
test of performance, the scatter corrected images were compared with the images provided 
by the Varian OBI default algorithm for the same scan protocol (Fig. 5(c)). Qualitatively, the 
default images were found to have more noise than the scatter corrected images, and contained 
a crescent artifact due to the presence of the bowtie filter. A comparison of profiles across the 
central horizontal line in these images is shown in Fig. 6. In both figures (Fig. 5(d) and Fig. 6), 
the fan-beam planning CT image is shown for reference.

As described in the Materials & Methods section G, a quantitative analysis of image quality 
was investigated. An ROI was selected for each of the eight Catphan contrast materials (see 
Fig. 5). Each ROI was drawn as a circular region of size 225 voxels, centered on the contrast 
material, with care taken to avoid the material edge. The mean CT number for each ROI from 
the CBCT images was then compared with the mean value obtained in the fan-beam planning 
CT images, and the CT number difference (ΔHU) was calculated. The CNR for each contrast 
material was computed, referenced to the surrounding background phantom medium in which 
the materials were embedded. Table 2 summarizes these results. 

In nearly all materials, the CBCT CT number accuracy was greatly improved after scatter 
correction. The only exception was for PMP, whose ΔHU, in absolute terms, was left relatively 
unchanged (ΔHU = -19 for raw CBCT versus ΔHU = 24 after scatter correction), with the 
uncorrected HU the closest to the pCT HU. While the CT number accuracy of the air cavities 
was improved, they had the poorest performance when compared to the other material inserts. 
This overestimation of air HU is most likely due to beam hardening, which is not accounted for 
in the scatter correction algorithm. Compare this to the Varian default algorithm, which applies 
a variety of corrections and calibrations, and had a relatively consistent ΔHU for all materials. 

The CBCT image CT number error as estimated by the RMSE is shown in Table 3, along 
with the average standard deviation (SD) and CNR for all ROIs. There is improvement in the 
overall CT number accuracy after applying the proposed scatter correction, as witnessed by the 
reduction of RMSE from 175.8 to 65.3 HU. The Varian default algorithm had the lowest CT 
number error, at 47.7 HU. However, if the air ROIs are ignored in the calculation of RMSE, 
the scatter corrected result improves to 34.2 HU, while the Varian default degrades slightly to 
50.4 HU. This highlights that the CT number inaccuracy of air is a dominant contribution to 

Fig. 4. RMSE in the central slice of the mathematical water phantom as a function of scatter correction iteration number. 
After only two iterations, the RMSE for both cases of α can be seen to converge towards a minimum value.



224  Watson et al.: Implementation of CBCT scatter correction 224

Journal of Applied Clinical Medical Physics, Vol. 16, No. 4, 2015

the RMSE of the scatter corrected image, and could be improved further by introducing a beam 
hardening correction to the scatter correction procedure. 

To put these values into perspective, it is worth mentioning that a perfect agreement between 
planning CT and CBCT CT numbers (i.e., RMSE = 0 HU) is not expected. Due to differences in 
beam quality and other scanner dependent features, interscanner CT numbers can easily differ 
by more than 10 HU.(22,23,24) In the context of dose calculations, it has been shown that MV 
photon beam dose distributions are relatively insensitive to CT number errors.(25) Poludniowski 
et al.(25) reported that CT number errors of up to 50 HU resulted in calculated dose discrepan-
cies of less than 3%.  

Fig. 5. Reconstructed Catphan images from: a) CBCT without scatter correction; b) CBCT with scatter correction;  
c) Varian default algorithm, and d) fan-beam planning CT (reference).

Fig. 6. Profiles across the central horizontal line of the Catphan images in Fig. 5.
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Improved CNR is arguably more important than CT number errors regarding the use of CBCT 
images in treatment planning, as it allows for better delineation of tissues and structures.(26) 
The scatter correction was found to enhance the average image CNR, increasing it from 12.5 to 
14.8, representing an improvement of 18%. The CNR of the Varian default algorithm was only 
marginally better than the raw CBCT (13.0, or 4% improvement), mainly due to image noise.

 
C.  Calculation time
For each simulated projection angle, ~ 107 particle histories were run. This yielded an aver-
age statistical uncertainty of 2% for primary projections, 4.2% (presmoothing) and 0.3% 
(postsmoothing) for scatter projections. Running on a single core of a 2.66 GHz Intel Xeon 
processor, the simulation of one projection angle required 35 min. The FDK reconstructions 
were completed in less than 10 min. Using a computer cluster of 80 CPU cores, one complete 
iteration of the scatter correction could be obtained in 3 hrs.

There are options available to further decrease the simulation time. Instead of an MC 
simulation, the primary photon signal could be estimated by an efficient ray tracing algorithm, 
essentially eliminating primary statistical uncertainty.(11) For scatter projection simulation, 
the parameters of the VRTs and smoothing algorithm used by egs_cbct could be optimized 
for the specific geometry.(12) Provided no bias was introduced, scatter scoring could be made 
even coarser, and fewer projection angles could be simulated. The statistical uncertainty of the 
smoothed scatter distributions in this work was 0.3%; however, a more relaxed uncertainty 
criterion may be acceptable for scatter correction. Allowing for a larger scatter statistical uncer-
tainty would reduce the required number of simulated photon histories, reducing computation 
time. After implementation of these suggestions, we believe a decrease in overall computation 
time of two orders of magnitude is possible. 

For clinical feasibility, it would be beneficial to have implementation on a desktop computer, 
rather than relying on access to a computer cluster. Multicore desktop workstations of up to 36 
cores are now commercially available. Implementation of egs_cbct on a graphics processing 
unit (GPU)(27) is another potential option for desktop parallelization. 

 

Table 2. Reconstructed mean CT number, standard deviation (SD), and CNR for Catphan material ROIs. Absolute 
differences (ΔHU) from fan-beam planning CT values are shown for the CBCT images. The CT number scale used 
here defines water as 1024 HU.

	 	 	 Air	1	 Air	2	 PMP	 LDPE	 Polysty.	 Acrylic	 Delrin	 Teflon

 Mean HU pCT 68±11 68±11 853±7 940±7 994±7 1145±9 1363±9 1936±10
  Raw CBCT 302±21 294±23 834±16 901±16 939±17 1043±19 1199±17 1621±21
  Scat. Corr. 185±22 184±31 877±17 958±17 1005±18 1119±17 1327±18 1872±20
  Varian default 27±6 32±14 785±30 881±34 940±32 1105±33 1321±41 1965±37
	 ΔHU Raw CBCT 234 226 -19 -39 -55 -102 -164 -315
  Scat. Corr. 117 116 24 18 11 -26 -36 -64
  Varian default -41 -36 -68 -59 -54 -40 -42 29
 CNR pCT 80.7 80.7 27.0 16.9 12.7 2.2 21.3 66.8
  Raw CBCT 26.7 25.8 8.3 5.5 3.8 0.6 7.1 21.7
  Scat. Corr. 33.9 26.2 9.9 6.6 4.4 0.2 8.8 28.8
  Varian default 34.2 31.4 6.8 4.2 3.0 0.7 4.9 18.7

Table 3. The RMSE, averaged standard deviation and CNR for material ROIs of the Catphan phantom.

  RMSE (HU) SD (HU) CNR

 pCT - 9.0 38.5
 Raw CBCT 175.8 18.7 12.5
 Scat. Corr. 65.3 20.2 14.8
 Varian default 47.7 28.4 13.0
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IV. CONCLUSIONS

This paper demonstrates the feasibility of implementing an MC-based iterative scatter correc-
tion on Catphan 600 phantom images acquired from a clinical on-board CBCT scanner. The 
scatter correction requires no a priori patient information, and is run directly on raw CBCT 
projection data. Primary and scatter distributions were calculated using egs_cbct, an EGSnrc 
user code shown to increase efficiency by up to four orders of magnitude compared to an analog 
simulation. The scatter correction has been shown to be successful in reducing scatter-based 
image artifacts, such as cupping and CT number inaccuracies, while improving CNR by 18%.

Prior to clinical implementation on patient data, the inclusion of a bowtie compensator, 
accurate X-ray source spectrum, detector energy response, and beam hardening should be con-
sidered as part of the scatter correction. These effects are not expected to significantly increase 
simulation time. The X-ray source simulation with bowtie compensator can be performed in 
a separate simulation, yielding a phase space file at the exit plane of the compensator contain-
ing photon energies, positions, and directions. This phase space file could then be used as the 
photon source in the egs_cbct simulation. Including the bowtie compensator may even help 
to decrease simulation time by reducing the amount of patient scatter.(28) Detector response 
could be calculated quickly by using a lookup table that maps the detector response to a pho-
ton’s energy and direction. With accurate knowledge of the X-ray spectrum leaving the bowtie 
compensator, a higher-order beam hardening correction could be incorporated into the scatter 
correction algorithm.

With further improvements to simulation efficiency through ray tracing, optimization of 
VRTs, and GPU implementation, this work paves the way for a clinical MC-based, patient-
specific CBCT scatter correction. These are promising results towards reliable use of CBCT 
images in adaptive treatment replanning.
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