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Oxidative stress induced by hyperuricemia is closely associated with the renin-angiotensin system, as well as the onset and
progression of cardiovascular disease (CVD) and chronic kidney disease (CKD). It is therefore important to reduce oxidative
stress to treat hyperuricemia. We previously found that benzbromarone, a uricosuric agent, has a direct free radical scavenging
effect in vitro. The antioxidant effects of benzbromarone were evaluated in vivo via oral administration of benzbromarone for 4
weeks to model rats with angiotensin II- and salt-induced hypertension. Benzbromarone did not alter plasma uric acid levels or
blood pressure but significantly reduced the levels of advanced oxidation protein products, which are oxidative stress markers.
Furthermore, dihydroethidium staining of the kidney revealed a reduction in oxidative stress after benzbromarone
administration. These results suggest that benzbromarone has a direct antioxidant effect in vivo and great potential to prevent
CVD and CKD.

1. Introduction

The activation of the renin-angiotensin system (RAS) is
closely related to the progression and development of cardio-
vascular disease (CVD) and chronic kidney disease (CKD)
[1, 2]. It has been suggested that angiotensin II (ANG II)
not only increases blood pressure by binding to angiotensin
II type 1 (AT1) receptors but also produces reactive oxygen
species (ROS) via the activation of NADPH oxidase [3, 4].

Excessive ROS promotes the vasoconstriction, proliferation,
and hypertrophy of vascular smooth muscle cells, inducing
endothelial cell dysfunction and inflammatory response in
the vessel wall, which can cause heart or kidney dysfunction
and failure [5].

Hyperuricemia has also been reported to be associated
with CVD and CKD [6–8], in which vascular disorders medi-
ated by oxidative stress have been reported [9]. In hyperuri-
cemia, excess uric acid is taken up by vascular cells or
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adipocytes [10, 11]. The intracellular uric acid then activates
NADPH oxidase, which produces ROS. Excess uric acid also
causes a vicious cycle by activating local RAS, which further
increases oxidative stress [12]. Thus, in order to prevent
CVD and CKD, it is important to suppress the oxidative
stress produced by uric acid.

Benzbromarone is a therapeutic agent that has been used
clinically to combat hyperuricemia for more than 30 years. It
facilitates the excretion of uric acid into urine by inhibiting
proximal tubular uric acid transporter 1 (URAT1) [13]. We
have previously shown that benzbromarone has a direct scav-
enging activity against superoxide radicals and reduces the
levels of intracellular ROS produced by ANG II as well as uric
acid in vascular endothelial cells [14]. Therefore, we pre-
dicted that benzbromarone has an antioxidant effect against
URAT1-independent oxidative stress.

RAS activation has been reported to be involved in
hyperuricemia-related organ damage [15–17]. In the
present study, we evaluated the antioxidant activity of
benzbromarone in vivo using a rat model of angiotensin II-
and salt-induced hypertension. Benzbromarone was orally
administered to the rats for 4 weeks, during which they were
monitored for oxidative stress markers, blood pressure, and
renal function. The results were then compared with those
of model rats treated with olmesartan, an AT1 receptor
blocker with antioxidant activity. These rats served as a
positive control [18–20].

2. Materials and Methods

2.1. Materials. Chloramine-T was purchased from Nacalai
Tesque Inc. (Kyoto, Japan). Methylcellulose 400,
benzbromarone, dihydroethidium (DHE), and ANG II were
purchased from Wako Pure Chemical Industries Ltd.
(Osaka, Japan). Olmesartan was a kind gift from Daiichi
Sankyo Pharmaceutical Co. Ltd. (Tokyo, Japan). All other
chemicals were of the highest grade and obtained from
commercial sources.

2.2. Animals. Six-week-old male Sprague-Dawley (SD) rats
were purchased from Kyudo Co. Ltd. (Saga, Japan). The
experimental protocol was reviewed and approved (F23-
275) by the Animal Care and Use Committee of the School
of Medicine, Kumamoto University. A notification was sub-
mitted to the Japanese government prior to commencement
of the study. The rats used in the experiments were fed with
ordinary laboratory chow, allowed free access to water, and
maintained in a regular 12-hour light-dark cycle.

2.3. Preparation of ANG II-Salt-Infused Hypertension Model
Rats. The hypertension model (ANG II-salt) rats were pre-
pared by administering ANG II and NaCl to the rats
according to a previously reported method [21, 22]. In
brief, NaCl (1%) was given in the drinking water, and ANG
II (120 ng/min) was subcutaneously infused using an
implanted osmotic minipump (ALZET model 2004; Durect
Corp., Cupertino, CA). The rats were randomly divided
into 4 groups: (1) control rats, sham-operated; (2) ANG II-
salt rats administered with vehicle; (3) ANG II-salt rats

administered with benzbromarone (200mg/kg per day);
and (4) ANG II-salt rats administered with olmesartan
(5mg/kg per day). Vehicle, benzbromarone, and olmesartan
were administered daily for 28 days through a stomach tube.
Rodents generally have lower serum urate levels than
humans due to the presence of uricase. Therefore, we admin-
istered a higher dose of benzbromarone based on a preclini-
cal safety data by Urinorm®. Blood pressure was measured by
the tail-cuffmethod using a BP-98E manometer (Muromachi
Kikai, Osaka, Japan). In brief, conscious rats were placed in a
restrainer on a warming pad and allowed to rest inside their
cages before blood pressure was measured. Rat tails were
placed inside a tail cuff, which was inflated and released sev-
eral times to allow the animal to be conditioned for the pro-
cedure. Twenty-four-hour urine was collected from inside
metabolic cages. Plasma was obtained by centrifugation of
blood sample at 3000 rpm for 10min and stored at −80°C
until analysis. Blood pressure, blood sample, and urine sam-
ple were obtained at 0, 2, and 4 weeks. The survival rate of
each group was monitored over the 4-week period.

2.4. Measurement of Physiologic Parameters. Creatinine (Cr)
and blood urea nitrogen (BUN) were measured using
LabAssay™ Creatinine (Wako Pure Chemical Industries
Ltd., Osaka, Japan) and UNB-test Wako (Wako Pure
Chemical Industries Ltd., Osaka, Japan), respectively. Total
protein (TP) and urinary protein (U-pro) were determined
using the Bradford method.

Uric acid (UA), aspartate aminotransferase (AST), and
alanine aminotransferase (ALT) weremeasured using LabAs-
say Uric Acid (Wako Pure Chemical Industries Ltd., Osaka,
Japan) and transaminase CII-test Wako (Wako Pure Chemi-
cal Industries Ltd., Osaka, Japan), respectively. All procedures
were performed according to themanufacturer’s instructions.

2.5. Kidney Histopathology. Harvested kidney tissues were
fixed in 4% paraformaldehyde. The tissues were embedded
in paraffin blocks and sectioned at 2μm thickness for histo-
logic examination. Paraffin sections of kidney tissue were
stained with periodic acid-Schiff (PAS), hematoxylin and
eosin (H&E), or Azan-Mallory stain.

2.6. Measurement of Oxidative Stress Markers. Advanced
oxidation protein products (AOPPs) were measured by
using a previously reported method [23]. Plasma samples
were diluted 10 times with phosphate-buffered saline (PBS).
To the diluted plasma sample (200μL), 10μL 1.16M
potassium iodide (KI) and 20μL acetic acid were added.
After incubation for 30min, the absorbance was measured
at 340 nm using a fluorescence microplate reader (Spectra
Fluor, Tecan Group Ltd., Männedorf, Switzerland). The
AOPP concentration was calculated from a standard curve
using chloramine-T.

2.7. Detection of Reactive Oxygen Species (ROS) in the Kidney
Tissue. The fluorescent dye DHE was used to detect ROS in
the kidney as previously described [24]. Seven-micrometer
cryosections of kidney tissues were stained with the
superoxide-sensitive dye DHE (100μmol/L) in a light-
protected and humidified chamber for 30min at 37°C. The
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results obtained from three experiments were quantified as
fluorescence intensity.

2.8. Statistical Analysis. The results are reported as the
mean± SD. Statistical significance was evaluated using anal-
ysis of variance (ANOVA), followed by the Tukey-Kramer
post hoc test. For all analyses, P < 0 05 was regarded as
statistically significant.

3. Results

3.1. Changes in Biochemical Parameters and Blood Pressure
after the Administration of Benzbromarone. At 2 weeks after
the administration of benzbromarone, blood pressure in the
ANG II- and salt-treated group was higher than that in the
control group. Neither benzbromarone nor vehicle treatment
affected systolic blood pressure (SBP) and diastolic blood
pressure (DBP). In contrast, the olmesartan-treated group
showed significantly reduced SBP (Figure 1(a)) and DBP
(Figure 1(b)) at 2 weeks, which was sustained up to 4 weeks.

Table 1 shows the changes in biochemical parameters.
Although an increase in urinary protein and blood urea
nitrogen (BUN) was observed in the benzbromarone and
vehicle groups, there was no change in creatinine. Therefore,
benzbromarone had no effect on renal function (Table 1). In
contrast, the olmesartan group showed suppressed urinary
protein and BUN. These changes in markers of renal func-
tion depended mainly on the action of ANG II. The AST
and ALT values of the benzbromarone-treated group at week
4 were slightly increased compared to those at week 0, but the
values were within the normal range found in humans, which
are almost the same as those in rodents. Therefore, benzbro-
marone did not induce significant liver damage. At week 4,
the uric acid level was slightly increased in the vehicle-
treated group, despite remaining low in all other groups
including the benzbromarone group. Hence, the effect of
the various treatments on uric acid was insignificant.

3.2. Effect of Benzbromarone on Oxidative Stress. The
vehicle-treated group showed a significant increase in
plasma concentrations of advanced oxidation protein
products (AOPPs) after 2 weeks, in contrast to the olme-
sartan- and benzbromarone-treated groups, which showed
a significant decrease in AOPPs (Figure 2(a)). In addition,
DHE staining of the renal tissues showed increased fluores-
cence intensity in the vehicle-treated group and decreased
intensity in both olmesartan- and benzbromarone-treated
groups (Figure 2(b)).

3.3. Morphologic Changes in Kidney Tissue after Administration
of Benzbromarone. Kidney tissue was subjected to PAS and
H&E staining for the examination of morphological changes
4 weeks after benzbromarone administration. Tubular dilation
was observed in the vehicle-treated group but not in the
benzbromarone-treated group, indicating that benzbromarone
tends to suppress this damage (Figures 3(a) and 3(b)). Mesan-
gial cell proliferation was not observed in all groups, whereas
interstitial fibrosis was observed in all groups, as revealed by
Azan-Mallory staining (Figure 3(c)).

4. Discussion

After 2 weeks of administration of ANG II and salt, high
blood pressure, increased urinary protein excretion, and
increased plasma levels of AOPP, an oxidative stress marker,
were observed in the vehicle-treated group (Figure 1,
Table 1). In contrast, benzbromarone treatment reduced
the levels of AOPP, suggesting that benzbromarone may
exhibit antioxidant effects in vivo (Figure 2). Morphological
examination of kidney tissues (Figure 3) indicated that the
benzbromarone-treated group showed a tendency to sup-
press tubular dilation, in contrast to the vehicle-treated
group. The suppression of DHE-stained cells in the benzbro-
marone group suggests that the improvement in oxidative
stress status may have a protective effect on organs such as
the kidneys. A possible mechanism of benzbromarone-
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Figure 1: Benzbromarone had no effect on SBP (a) and DBP (b) in ANG II/salt-treated rats. Benzbromarone (200mg/kg per day), olmesartan
(5mg/kg per day), or vehicle was administered once daily for 28 days through a stomach tube. Values are expressed as the mean± SD (control,
n = 5; others, n = 4 – 11). ∗P < 0 05 compared with the control group.
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induced reduction in oxidative stress is through the activa-
tion of RAS or inhibition of URAT1. However, our results
clearly showed that it was olmesartan that exerted antihyper-
tensive effects and reduced urinary protein excretion. Thus,
benzbromarone had no effect on RAS activation in this
experiment. Furthermore, the serum uric acid levels observed
were lower in ANG-II-infused hypertensive model rats than
in normal rats, suggesting that the URAT1-inhibitory effect
of benzbromarone may not be responsible for the reduction
in oxidative stress. Rodents generally show a lower serum
urate level than humans due to the presence of uricase,
which converts urate to allantoin [15]. Taken together, the

antioxidant effect of benzbromarone was independent of
its inhibitory effect on RAS and URAT1.

Benzbromarone inhibits uric acid-induced oxidative
stress by inhibiting the uptake of uric acid into the vascular
endothelial or smooth muscle cells [11]. In addition, benz-
bromarone has been reported to partially inhibit voltage-
driven urate transporter 1 (URATv1), the extracellular uric
acid efflux transporter, in renal tubular cells [25]. Interest-
ingly, benzbromarone reduced both urate-dependent ROS
[26] and NO [27] levels by inhibiting URATv1. URAT1
and URATv1 exist in various tissues, including vascular
smooth muscle and endothelial cells. Further studies are
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Figure 2: Effects of benzbromarone on markers of oxidative stress. Changes in serum-advanced oxidation protein product (AOPP) levels (a)
and dihydroethidium (DHE) staining (b) of frozen kidney sections. Values are expressed as the mean± SD (a) (control, n = 5; others,
n = 4 – 11), (b) magnification: ×40. Scale bars: 100 μm. ∗P < 0 05 compared with the control group.
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necessary to clarify whether benzbromarone might affect
both URAT1 and URATv1 in CKD or CVD. Although inhib-
itors of uric acid production, such as allopurinol, also have
antioxidant effects owing to their xanthine oxidase-
inhibitory action [28], benzbromarone is considered superior
because it can trap ROS derived from both xanthine oxidase
and NADPH oxidase. In fact, recent clinical reports on
patients with hyperuricemia or heart failure suggest that
benzbromarone improves the function of endothelial cells
in terms of flow-mediated dilation (FMD) and insulin resis-
tance, resulting in effective organ protection [29, 30].

To the best of our knowledge, our study is the first to
report that benzbromarone exerts direct antioxidant effects
in vivo. It has been shown that intracellular RAS is activated
by ROS derived from uric acid [12] and the direct antioxidant
effect of benzbromarone may contribute to inhibiting local
RAS activation in hyperuricemia. On the contrary, some
studies have shown that hyperuricemic patients commonly
have hypertension [31, 32] due to systemic RAS activation
following the elevation in uric acid levels [15–17]. RAS-
induced oxidative stress is closely related to organ damage
[5]; thus, benzbromarone, in directly reducing oxidative
stress due to RAS, may be a valuable clinical agent that can
be used for organ protection. Based on the drug information

for benzbromarone (Urinorm), the dose of benzbromarone
was comparatively high in this in vivo study; therefore, fur-
ther clinical studies will be required to clarify the antioxidant
activity of benzbromarone. Additionally, because benzbro-
marone slightly increases serum ALT levels, its safety also
requires clinical evaluation. We speculate that as serum urate
levels are higher in humans than in rodents, benzbromarone
might act as an antioxidant at lower concentrations.

On the contrary, olmesartan, an AT1 receptor blocker
(ARB), was also shown to have high antioxidant activity, with
effects similar to those reported previously [18–20] in model
rats with ANG-II-induced hypertension. However, ARBs can
elevate serum uric acid levels [33]. Therefore, the serum uric
acid levels of CKD patients receiving ARBs are normally
monitored. From the perspective of achieving synergistic
treatment effects from antioxidants and antihyperuricemics,
the combination therapy of olmesartan and benzbromarone
may be a better option for CKD patients with hyperuricemia.

5. Conclusion

In this study, we showed that benzbromarone exerted antiox-
idant activity, independent of its blockade of RAS or URAT1,
against AII-induced ROS in vivo. Our results suggest that

Control
Vehicle Benzbromarone Olmesartan
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(c)
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Figure 3: Morphological changes in kidney tissues after administration of benzbromarone. Paraffin sections of the kidney tissue were stained
with periodic acid-Schiff (PAS) stain (a), hematoxylin and eosin (H&E) (b), and Azan-Mallory stain (c). Magnification: ×200. Scale bars:
100μm.
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benzbromarone may reduce not only uric acid-dependent
oxidative stress induced by the intracellular uptake of uric
acid via URAT1 but also nonuric acid-dependent ROS, such
as those derived from NADPH oxidase activated by ANG II.
Benzbromarone may therefore be useful as an antioxidant for
the prevention of CVD and CKD.
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