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Magnetoencephalography (MEG) is a persuasive tool to study the human brain in physiology and psychology. It can be employed
to obtain the inference of change between the external environment and the internal psychology, which requires us to recognize
different single trial event-related magnetic fields (ERFs) originated from different functional areas of the brain. Current rec-
ognition methods for the single trial data are mainly used for event-related potentials (ERPs) in the electroencephalography
(EEG). Although the MEG shares the same signal sources with the EEG, much less interference from the other brain tissues may
give the MEG an edge in recognition of the ERFs. In this work, we propose a new recognition method for the single trial auditory
evoked magnetic fields (AEFs) through enhancing the signal. We find that the signal strength of the single trial AEFs is
concentrated in the primary auditory cortex of the temporal lobe, which can be clearly displayed in the 2D images. .ese 2D
images are then recognized by an artificial neural network (ANN) with 100% accuracy, which realizes the automatic recognition
for the single trial AEFs..e method not only may be combined with the source estimation algorithm to improve its accuracy but
also paves the way for the implementation of the brain-computer interface (BCI) with the MEG.

1. Introduction

Magnetoencephalography (MEG) utilizes extremely sen-
sitive magnetic sensors, such as optical pumped atomic
magnetometers (OPMs) and superconducting quantum
interference devices (SQUIDs), to capture the feeble signal
originated from the brain and enable researchers to in-
vestigate neuronal activities [1–4]. MEG is a frontier tool in
scientific research and clinical application. On the one
hand, it can be employed to divide and study different brain
functional areas [5, 6]. On the other hand, MEG is also an
effective method for clinical diagnoses and treatments of
some brain functional diseases, such as mild traumatic
brain injury [7, 8] and autism spectrum disorder [9], and
provides novel insights into the biological mechanisms
underlying some brain disorders such as dementia [10],
depression [11], and psychosis [12]. Especially for epilepsy,

MEG allows us to locate the epileptic foci without risky
invasion procedures [13].

.e signal generated by the brain in response to different
stimuli is the hot topic in the study of the brain function.
.ese signals are called event-related potentials (ERPs) [14]
in the electroencephalography (EEG) or event-related
magnetic fields (ERFs) in the MEG, including sensory ERFs,
motor ERFs, long latency, and artifacts [15]. In the EEG, the
amplitudes, phases, waveforms, occurrence times, and
source locations of ERPs are the major characteristics to be
studied [16, 17]. It is also important to explore the de-
pendences of the ERPs with different subjects [18, 19] or with
different stimulus [20–23]. .us, MEG is an edge tool in
clinical setting, such as brain functional diseases, biomedical
engineering, and medical devices [24–27]. In the context of
given stimuli, studying features of the ERPs is helpful for
obtaining the information from different brain functional
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areas [28, 29]. On the contrary, with knowledge of the brain
functional regions, the recognition for different ERPs can
help us understand the stimuli the subjects are exposed to
[30, 31] and the mental states the subjects are in [32]. It is the
basis of converting the different brain responses of the
subjects into different behaviours, which is also the goal the
brain-computer interface (BCI) intends to achieve [33–35].
Meanwhile, ERFs takes the form of magnetic induction
intensity of brain responses reflected by ERPs. .e recog-
nition for the ERFs would also provide complementary
information for MEG application that is important for brain
research.

Due to the weakness and fuzziness of the ERFs and
existence of various noises [36], even with the magnetic
shielding room (MSR), the single trial ERFs cannot be
precisely observed. We need to stimulate the subjects
hundreds of times and get enough single trial ERFs to av-
erage them precisely. Averaging could suppress the random
noise and strengthen the pattern of the ERFs, which is a
conventional data processing method for the ERPs in the
EEG. However, the average signal depends on the common
patterns and components existing in the single trial ERFs,
which may vary widely in both the time domain and the
scalp distribution. .ese variations result from different
strategies employed by the subject for processing stimuli.
.e physiological differences always appear in the subject’s
performance during each stimulus, such as expectation,
attention, arousal, alertness, and fatigue [31, 37, 38]. At the
same time, signals generated by ongoing activities of the
subject, which are unrelated to the event of interest, compete
with the ERFs for the signal space and play the role of noise
[31]. .ese signals appear randomly and irregularly and are
seldom well defined, which makes the positive identification
of single trial signal very difficult, while it does not mean that
these signals are useless. For example, these signals are
usually required to calculate the noise matrix in the process
of magnetic source imaging (MSI) [39–41]. Besides, if a
considerable noise is introduced in a single trial, averaging
would also bring it into the average signal. Averaging dis-
regards some information of the interested signal contained
in the single trial and can only produce a signal prototype
that is not representative of any of the single trials induced in
the average, which makes the recognition and determination
of the single trial ERFs an important problem in brain
science [31, 42].

Compared to averaging, direct recognition for the single
trial ERFs does not need to store the data, providing the
possibility to perform the on-the-fly identification. In the
help of this advantage, a door opens for the study of cog-
nitive brain function, which is a hot spot of experimental
psychophysiology [43]. Cognitive variables like visual, au-
ditory, sensory, and even emotional changes, as well as
psychological changes, which vary from trial to trial, may be
manipulated and sorted out in the study, showing the
possibility that the ERFs could be used to implement an
objective measure of the brain processes implicated in
learning and problem solving. Furthermore, if the single trial
ERFs can be read from the MEG and translated by the
computer into a perceivable behaviour, the specific brain

activity resulting from the specific consciousness can gen-
erate the specific action, which is exactly what BCI wants to
achieve [44, 45].

Current single trial recognition methods are mainly
for the ERPs in the EEG. Independent component ana-
lyses (ICA) are first employed to separate the feature
vectors from the single trial ERPs to represent their
characteristics [42, 46]. .e original detected EEG signal is
the result of multiple factors, such as the diversity of ERPs’
sources, the inconsistency in the electrical conductivity of
brain tissues, and differences between sensors, leading to
the separated characteristics being not evident. With the
improvement of instruments and detection methods, the
signal waveforms in the EEG become a starting point to
solve the single trial ERPs recognition problem. Various
statistics are constructed using amplitudes [15], phases
[31], and frequencies [30, 47, 48] to detect different ERPs.
However, signals detected by the MEG and the EEG are
different [49]. Data processing methods that are suitable
for the EEG signal may not be appropriate for the MEG
signal. .e MEG signal has less interferences and more
sensors can be used to get the location information. Be-
sides, there are some alternative techniques such as soft
computing capable of studying magnetic fields [50–52].
With the application of machine learning algorithms in
medicine [53–55], in this work, we intend to enhance the
position features indicating the spatial distribution of the
MEG signal and utilize the artificial neural network
(ANN) to recognize the single trial auditory evoked
magnetic fields (AEFs), which are called auditory evoked
potentials (AEPs) in the EEG. Two AEFs datasets and one
noise dataset are used to verify recognition method of the
AEFs. After enhancing the position features with the
signal enhancement method, these position features are
also highlighted as 2D images and are automatically
recognized with GoogLeNet [56].

In this article, we first describe the AEFs dataset, in-
cluding the data collection and the data format, in Materials
and Methods. .en the signal enhancement and recognition
method for the single trial AEFs are described in detail.
Results show the effect of the signal enhancement method
and the recognition results for the single trial AEFs. In
Discussion, we further discuss the advantages and disad-
vantages of this single trial AEFs recognition method
compared with traditional methods and prospect the future
development and application of the method. At last, we
summarize this article in Conclusions.

2. Materials and Methods

2.1. Data Description. .e data used in this work comes
from the open-source database on the Brainstorm website
[57]. .e experiment with the method involves three
datasets. .e first and second datasets are AEFs data and the
third dataset is the noise recorded in the same empty room.
.ese data are all recorded with a SQUID-MEG device,
which is produced by CTF corporation, Canada, and the
distribution of its sensors is shown in Figure 1. .e sensors
involved in the data recording are shown in Table 1.
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Two AEFs datasets are acquired with a sampling rate of
600Hz in 360 s. .e first (second) dataset contains 200 (199)
auditory stimuli, which means that it should include 200
(199) single trial AEFs.We use the first dataset as the training
data source and the second dataset as the testing data source.
.e noise collected in an empty room with the same en-
vironment is the third dataset..e noise has a length of 120 s
and is sampled with a rate of 600Hz..ese three datasets are
shown in Figure 2. It should be noted that the spikes that
appear in the signal are interferences caused by eye
movement signals. In addition, the fluctuations may be
caused by various signals from various parts of the brain as
well as some environmental noises.

2.2. Signal Enhancement. One cannot observe any trace
about the single trial AEFs from Figure 2, due to the
fuzziness of the single trial AEFs and the existence of various
noises. It is necessary to enhance the AEFs and suppress the
noise as much as possible. We propose a signal enhancement
method, which can be used to enhance the position features
of the single trial AEFs. .e procedures for signal processing
are described below.

Event markers: in order to obtain the single trial AEFs
segment, the initial time of the single trial AEFs should be
calibrated and marked by the signal recorded from the audio
recording channel, because there is a delay between the sound
being produced and the sound being heard by the subject,
which is about 0.13 s in the experiment, while the appearance
time of the stimulus recorded by the audio recording channel
is almost the same as the time at which the subjects heard the
sound. In addition, the eye movement artifacts and the
cardiac artifacts should be marked according to the signals
recorded by the bipolar ECG and the bipolar EOG, as is
shown in Figure 3(b), so that we can eliminate them with the
signal space projection (SSP) algorithm. After the process, the
occurrence times of the artifacts and the AEFs are marked in
the original detected data.

Preprocessing: the presence of various noises makes the
identification of the AEFs difficult. Noise needs to be
eliminated as much as possible. Firstly, the SSP algorithm is

adopted to remove the eye movement artifacts and the
cardiac artifacts [58–61]. Secondly, a 2nd-order infinite
impulse response (IIR) notch filter with 3 dB bandwidth of
2Hz is used to clear α and β waves of 10Hz, 11Hz, 20Hz,
and 21Hz. At last, an even-order linear phase finite impulse
response (FIR) low-pass 40Hz filter with 60 dB stopband
attenuation is performed on the signal to remove as much
noise as possible and leave the AEFs. Meanwhile, the line
frequency noise and its harmonics (60Hz, 120Hz, and
180Hz) are also filtered. .e preprocessing signal is shown
in Figure 3(c). After the process, the artifacts, irrelevant
MEG signals, and the line frequency noise have been
removed.

Interception for the single trial AEFs: in order to obtain
the major features of the AEFs, which are three peaks called
P50, N100, and P200, respectively (see Appendix A for
detailed information), we need to intercept the single trial
AEFs. .e single trial AEFs last for about 0.3 s and can be
intercepted according to the stimulus previously marked in
the MEG signal. During the first (second) set of data re-
cording, we stimulate the subject with 200 (199) audio
stimuli. .erefore, we can obtain 200 (199) single trials AEFs
from the first (second) dataset.

Calculation of correlation coefficients of the MEG signal:
among 200 single trials AEFs from the first dataset, it could
be found that signals detected in the primary auditory area of
the temporal lobe are correlated. .us, the correlation co-
efficients are used to enhance the single trial AEFs. We set
0.022×1.7m as the radius and define a neighbourhood for
each sensor Si; i � 1, 2, . . . , 274  (see Appendix B for more
details). For simplicity, the sensor in the centre of neigh-
bourhood is called the selected sensor Sseli and its detected
signal is the selected signal Xsel

i . Sensors in its neighbour-
hood are neighbourhood sensors Sneij and their detected
signals are neighbourhood signals Xnei

j . .e number of the
neighbourhood sensors m is 5 to 8. .e correlation coeffi-
cients cij between the selected signal and its neighbourhood
signals are calculated as [62, 63]
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Signal enhancement: it is a conventional way to stack
signals of different channels by weighting as a new signal in
the EEG [30]. In this work, when the correlation coefficient
cij between the neighbourhood signal Xnei

j and the selected
signal Xsel

i is greater than 0.8, we will make the weighted
linear superposition of two signals as the new selected signal.
Since the correlation coefficient represents the size of
components in one variable which are similar to the others,
the weight is selected as the correlation coefficient between
them. .e new selected signal can be obtained as

X
sel′
i �

X
sel
i + cj≥0.8cjX

nei
j 

(n − 1)
,

(2)

where n represents the number of neighbourhood signals
with an absolute value of the correlation coefficient greater

Figure 1: A map of all channels of the SQUID-MEG system drawn
with the MEG data processing software Brainstorm. .is system is
employed in the experiment to measure the MEG signal. .e red
dots indicate the channels distributed in the auditory area of the
temporal lobe.
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than 0.8. Meanwhile, if there were no neighbourhood signals
with a correlation coefficient greater than 0.8, we would do
nothing with the selected signal; that is, Xsel′

i � Xsel
i . After

the enhancement, if the selected signal Xsel
i consists mostly

of the noise, due to its irrelevance to the neighbourhood
signals Xnei

j , the new selected signal Xsel′
i should not be
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Figure 3: Eye movement artifacts cleaning for theMEG. (a) A segment of eye movement signals measured by the EOG bipolar..e blue line
represents the vertical eye movement signal (VEOG) and the red line represents the horizontal eye movement signal (HEOG). .e dotted
black line shows where eye movement artifacts appear in the time domain. (b) .e marked 274-channel MEG signals. (c) .e MEG signals
after noise cleaning.

Table 1: Sensors employed in the SQUID-MEG device.

Sensor type Number Function
Stimulus channel 1 Recording the electrical trigger signals that produce audio stimuli.
Audio recording channel 1 Recording the audio stimuli sent to the subject.
MEG axial gradiometers 274 Recording the MEG signal.
EEG electrodes 2 Recording the EEG signal.
Electrocardiograph (ECG), bipolar 1 Recording the subject’s heartbeat signals.
Electrooculogram (EOG), bipolar 2 Recording the subject’s eye movement signals
Head tracking channels 12 Recording the position of the subject’s head.
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Figure 2: .ree datasets used for the single trial AEFs identification. (a) .e first AEFs dataset. (b) .e second AEFs dataset. (c) .e noise
dataset. It is the noise recorded in an empty room with the same environment.
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strengthened, while if the AEFs from the brain were detected
by the selected sensor, the surrounding sensors could also
detect the same component, which means that the corre-
lation between them would be strong and the new selected
signal Xsel′

i would be enhanced.
2D images: since the permeabilities of brain tissues are

approximately the same, while the conductivity varies from
tissue to tissue, one of the advantages of the MEG is that its
detected signal is a better indicator of its source location.
Drawing 2D image is a decent way to highlight the spatial
distribution of the MEG signal. We calculate the energy of
the enhanced signal to draw the 2D image and normalize it
for convenience of comparison. A certain kind of ERFs, that
is, the single trial AEFs, can be observed and identified. .e
method should also be applicable for other ERFs including
location information, such as visual evoked magnetic fields
(VEFs) and somatosensory evoked magnetic fields (SEFs). If
the noise also contained spatial correlation, the enhance-
ment method would strengthen the noise. However, as the
noise does not have regular spatial distribution, it can further
be filtered out by ANN.

2.3. Signal Recognition. In the first AEFs dataset, there are a
total of 200 single trial AEFs, 3 of which are seriously
polluted by the noise, so they are screened out (see Appendix
C). .e remaining 197 single trial AEFs are training data
source. Each intercepted AEFs segment lasts 0.3 s, ensuring
it contains P50, N100, and P200 peaks. At the same time, we
randomly intercept 200 equal-length segments from the
third noise dataset without overlapping. All 397 signal
segments are processed with the signal enhancement
method and 397 2D images can be obtained as training data.
Similarly, 199 single trial AEFs can be obtained from the
second AEFs dataset. 200 other equal-length noise segments
are also randomly intercepted from the noise dataset.
.erefore, a total of 399 2D images can be obtained as testing
data.

Pretrained GoogLeNet is utilized to recognize auditory
activation patterns in the single trial data. GoogLeNet is a
144-layer convolutional neural network (CNN). .e input
image is filtered by each layer of the network to get its
features. .e initial layer is used primarily to identify
common features of the image, such as blobs, edges, and
colours. .e subsequent layers focus on more specific fea-
tures to divide the images into different categories. For the
single trial AEFs recognition problem, 3 layers of Goo-
gLeNet should be readjusted.

.e first adjusted layer is the final dropout layer in the
network, which aims to prevent overfitting. .e original
dropout layer randomly sets input elements to zero with a
given probability of 0.5, which is set as 0.6 in the new layer.
.e second one is the last connected layer that decides how
to combine the features that the network extracts into class
probabilities, a loss value, and predicted labels. In order to
retrain GoogLeNet to classify noise and AEFs 2D images, the
last connected layer is replaced with a new fully connected
layer with the number of filters equal to the number of
classes (noise and AEFs). .e third adjusted layer is the final

classification layer that is utilized to specify the output
classes of the network. .e classification layer is replaced
with a new one without class labels, which will be auto-
matically set as the output classes during the network
training. .en, we retrain GoogLeNet for the single trial
AEFs recognition problem, which means that it is trained
based on the network parameters obtained from pretraining.
We set the initial learning rate as 0.0001, which determines
the variation range of parameters in the ANN. .e epoch is
set as 10, which represents how many times ANN is trained
with the same set of training data. We use 80% images for
training and the remainder for validation. A random seed is
set as the default value in Matlab to generate random
numbers.

3. Results

.e first three single trial AEFs show the positive effect of
the signal enhancement method, as is illustrated in Fig-
ure 4. If there were auditory stimuli, the auditory area
would send out signals, and the correlation coefficients
should be higher than 0.8. .e original detected single trial
AEFs appear randomly in the time domain and do not have
a regular spatial distribution across the scalp. After signal
enhancement process, the signals detected by the temporal
lobe sensors are all enhanced in the time domain, which
makes them become the maximum amplitude or the
minimum amplitude of all the channel signals at the P50,
N100, and P200 peaks. In the spatial distribution, the
normalization energy is concentrated in the auditory area
of the temporal lobe of the brain, while the detected signals
in other areas tend to be random noises with little corre-
lation, which makes the position characteristics of the AEFs
evident. .e second detected original AEFs are already well
characterized, which indicates that the MEG signal is less
interfered during the second measurement. However, the
location of the AEFs deviates from the auditory part of the
temporal lobe a little. After the enhancement, the deviation
has been corrected. It should be noted that, in the exper-
iment, the subjects’ left ear is not sensitive to hearing, so in
the 2D image, the signal on the right side is more obvious
than that on the left side.

.e same operation is implemented for the noise
segments to obtain the similar 2D image, as is shown in
Figure 5..e noise detected by sensors at various locations
appears randomly in space. After the enhancement, most
of them are suppressed, but some are also enhanced. For
the noise 2D image in Figure 5, it can be speculated that a
large magnetic signal fluctuation appears on the front of
the brain, resulting in the enhancement of signals in the
region, while the signal strength is generally suppressed
elsewhere.

After retraining GoogLeNet, it can be utilized to achieve
the automatic and on-the-fly recognition for auditory ac-
tivation patterns in the single trial data. In this work, we use
the training data (the testing data), which include 197 (199)
single trial AEFs and 200 (200) noise segments, to test the
efficiency of GoogLeNet in identifying the single trial AEFs.
.e recognition accuracies of both datasets are 100%.
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4. Discussion

In this work, according to the correlation of the signals
detected by different sensors, the signal strength is

concentrated to the auditory area of the temporal lobe, so
that the AEFs can be automatically and timely recognized by
ANN..e new method makes full use of the information on
the signal spatial distribution contained in the MEG.
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Figure 4: Single trial AEFs enhancement. (a) .ree detected original single trial AEFs. .e first column displays time domain diagrams of
the three AEFs. .e x-coordinate represents time, and the y-coordinate represents the normalized amplitude. .e red lines in the time
domain diagram represent the signals detected by the auditory channels and the black lines are the signals detected by other channels. .e
occurrence times of the three peaks P50, N100, and P200 are marked by blue lines..e second column shows the corresponding distribution
of the normalized energy across the scalp. .e 2D image has a resolution of 224× 224 pixels so that it can be taken as input by GoogLeNet.
(b) .ree corresponding enhanced single trial AEFs. .e area in the red circle represents the auditory area of the temporal lobe, where the
normalized energy is basically concentrated in, which makes GoogLeNet able to easily identify it.
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which indicates that the source of noise is likely to be located here.
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Although some noises with a specific spatial distribution
could also be enhanced, generally the correlation of noises is
not strong, and the noise source does not happen to be
located in the auditory area. Besides, the method also applies
to other ERFs that have a specific spatial distribution, while it
may not be suitable for the EEG that is disturbed by different
conductivities and measures potential differences.

Compared with the conventional averaging, the new
method could preserve the information in the single trial
data as much as possible, including the intact ERFs obtained
by stimulation and other signals. .e single trial recognition
can be carried out synchronously with the signal mea-
surement, which means that the real-time identification can
be realized. It would provide a powerful tool for psycho-
physiological study and MEG data processing. At the same

time, it is also the basic algorithm to realize the BCI with the
MEG. However, the identification of AEFs in single trial
requires the AEFs segments so that their position features
can be enhanced and displayed, which means that we still
need to know the approximate location of the stimulus. If the
single trial ERFs can be recognized without any prior
condition on the MEG, the information about the external
stimulations the body of the subject is exposed to and the
mental states the brain of the subject is in could be obtained
through the MEG in real time, which is also the true “mind-
reading.”

.e process of enhancement and recognition for the
single trial AEFs is actually the process of extracting and
recognizing the position features. It is required that the
single trial AEFs are highlighted by the signal enhancement
method. In this work, the signal strength is concentrated to
its source location, which is the primary auditory cortex of
the temporal lobe. On the one hand, if the source of the
single trial signal is directly calculated based on some source
estimation algorithms such as minimum norm imaging [41],
linearly constrained minimum variance (LCMV) beam
formers [42], and dipole modelling [43], due to the weakness
and fuzziness of the single trial AEFs and the existence of
various noises, the results of source estimation may be
greatly deteriorated. Nevertheless, if the signal enhancement
method proposed in this work is used to process the signal
first and then we estimate the source, it may achieve a more
accurate result. Further research is needed to figure out how
to combine the enhancement method with the source es-
timation algorithm. On the other hand, ANN is employed
here to recognize auditory activation patterns and realize the
automatic and on-the-fly recognition for the single trial
AEFs. If the training dataset can be extended, ANN should
also have the potential to be used to identify VEFs, SEFs, and
so forth, which are originated from different functional areas
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Figure 6: Comparison of the average AEFs in the MEG and the average AEPs in the EEG. (a).e average AEFs in the MEG. By comparison
with the AEPs in the EEG, AEFs in the MEG also contain three peaks which are P50 at 68ms, N100 at 108ms, and P200 at 193ms after
stimulation, respectively. Time 0 in the picture is the time when the stimulus occurs. (b) .e average AEPs in the EEG. .ere are three
distinct peaks occurring at the same time in the MEG. .ese peaks have been extensively verified and observed in EEG experiments. (c)
Spatial distribution of the EEG electrodes.
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Figure 8: .e neighbourhood correlation coefficients calculated from the first dataset. (a) .e average neighbourhood correlation co-
efficient calculated by 200 single trial AEFs. .e x-coordinate denotes the channel number, and the y-coordinate represents the average
correlation coefficient between the selected signal and the neighbourhood signals. .e red dots indicate 10 sensors located in the auditory
part of the temporal lobe, which are all greater than 0.8. (b) All neighbourhood correlation coefficients calculated for 200 single trial AEFs.
For each single trial AEF, 274 channels are chosen as the selected channels in turn and the correlation coefficients between them and the
neighbourhood signals within their neighbourhood are calculated. .e x-coordinate represents the channel number, the y-coordinate
represents single trial, and the z-coordinate represents neighbourhood correlation coefficient. .e red dots indicate sensors located in the
auditory part of the temporal lobe, most of which have neighbourhood correlations greater than 0.8. (c) .e effect comparison was
performed using different values as threshold. .e auditory part of the temporal lobe is demarcated by black circles. .e thresholds of
correlation coefficients used from left to right are 0.7, 0.8, and 0.9, respectively..e 2D images come from the first single trial AEFs from the
first dataset. It can be seen that, for these single trial AEFs, 0.7 and 0.8 have similar effects, but greater than 0.9 is relatively poor.
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Figure 9:.e energy of the single trial AEFs for 274 sensors. (a).e signal energy for each single trail AEF and each channel. For each single
trial AEF, the power of 274-channel signals is calculated and displayed. .e x-coordinate represents the channel number, the y-coordinate
represents single trial, and the z-coordinate represents the signal power. .e red dots indicate sensors located in the auditory part of the
temporal lobe. In the 93th, 94th, and 112th trials, respectively, MRT31 channel, MRT41 channel, and MRT51 channel detect signals with
very high power. (b) .e energy of the remaining signals. After deleting the 93th, 94th, and 112th trials’ data, the remaining signal energy
shows a more random distribution. .e red dots indicate signals generated by the auditory part of the temporal lobe.
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of the brain. It could even be employed to identify the signal
amplitude, phase, frequency, and distribution features of
some brain diseases such as epilepsy andmigraines, realizing
the initial diagnosis of these diseases.

5. Conclusions

In this work, we propose a new signal recognition method
in analysis of the single trial AEFs. ANN can be used to
automatically and timely identify the single trial AEFs.
.is single trial identification can retain the intact original
data. .ree datasets, two AEFs datasets and one noise
dataset, are utilized to experimentally verify the signal
enhancement method and the single trial recognition
method. Finally, the recognition accuracies of training
data and testing data are both 100%. .e recognition for
the single trial ERFs can not only expand the psychological
research methods but also establish the algorithm basis for
using the MEG signal to achieve BCI. In addition, it may
be combined with the source estimation algorithm to
improve its accuracy in the future.

Appendix

A. Average Process for the AEFs

.e averaging for the first dataset is exhibited in order to
observe some features of the AEFs. .e first dataset is 360 s
with a sampling rate of 600Hz and contains 200 single trial
AEFs produced by sound stimuli at a frequency of 440Hz.
.e average operation for the AEFs mainly includes the
following processes.

Data preprocessing: notch filter of 60Hz, 120Hz, and
180Hz, respectively, is performed on the original detected
data to remove line frequency noise and its harmonics. .en
the positions of heartbeat artifacts and eye movement ar-
tifacts are obtained and marked according to heartbeat
signals and eye movement signals measured by one bipolar
ECG and two bipolar EOG, so that the SSP algorithm can be
utilized to remove these artifacts.

Interception for the single trial AEFs: marking single
trial AEFs on the MEG according to the occurrence time of
stimuli sounds recorded by the audio recording channel.
MEG signal segments of 100ms before and 500ms after this
time point are then intercepted.

Average signal segments: all AEFs are averaged to get the
average signal. .e AEFs with obvious characteristics can be
observed in Figure 6.

B. Selection of Parameters in the Algorithm

In this work, the neighbourhood radius of 0.022×1.7m and
the signal enhancement correlation coefficient threshold of
0.8 are two reasonable parameters obtained through sta-
tistics..e average distance between sensors is 0.022m..e
neighbourhood radius selected as 1.7 × 0.022m ensures that
5 to 8 sensors exist in each selected sensor’s

neighbourhood, as Figure 7 shows. In other words, 5 to 8
neighbourhood signals are involved in the calculation of
correlation coefficient and the competition of signal
enhancement.

In addition, the threshold value of correlation coefficient
is selected as 0.8. When the correlation coefficient between
the neighbourhood signal and the selected signal is greater
than 0.8, the neighbourhood signal will be superimposed
with the selected signal, so as to enhance the selected signal.
.e value of 0.8 is selected according to the average cor-
relation coefficient for the selected signal Xsel

i , which can be
calculated as

ci �
1
m



m

j�1
cij. (B.1)

For simplicity, we call it the neighbourhood correlation
coefficient. m represents the number of neighbourhood
signals Xnei

j for the selected signal Xsel
i ; cij denotes the

correlation coefficients between the selected signal Xsel
i and

its neighbourhood signals Xnei
j . 0.8 is obtained based on the

statistics of 200 AEFs in the first dataset, as is illustrated in
Figure 8. It should be pointed out that because we calculate
the correlation coefficients between the neighbourhood
signals and average them, they are all positive. But there are
also negative correlation coefficients between the MEG
signals. .ere are approximately 10 sensors located in the
auditory part of the temporal lobe. For 200 single trial AEFs,
2,000 average correlation coefficients ci can be obtained,
1711 of which are greater than 0.8 and other values are also
close to 0.8. .erefore, the threshold value in the body of the
paper is set at 0.8.

C. Selection of Training Data

In the first dataset, there are 200 single trial AEFs, 3 of which
are screened out due to serious pollution caused by noise.
.is can be observed by the energy of signals of each
channel, as is shown in Figure 9(a). In the 93rd, 94th, and
112th trials, there are three channels with very high power,
which are MRT31 channel, MRT41 channel, and MRT51
channel, respectively. All these three channels are located
closest to the eye, so it can be reasonably speculated that such
power fluctuations are due to the incomplete elimination of
eye movement artifacts. In the training data, we delete these
3 AEFs. .e power of the remaining signals is shown in
Figure 9(b).
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