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The presence of Pseudogymnoascus 
destructans, a fungal pathogen 
of bats, correlates with changes 
in microbial metacommunity 
structure
Matthew Grisnik1, Joshua B. Grinath2 & Donald M. Walker1*

Metacommunity theory provides a framework for how community patterns arise from processes 
across scales, which is relevant for understanding patterns in host-associated microbial assemblages. 
Microbial metacommunities may have important roles in host health through interactions with 
pathogens; however, it is unclear how pathogens affect host microbial metacommunities. Here, we 
studied relationships between a fungal pathogen and a host-associated microbial metacommunity. 
We hypothesized that a fungal pathogen of bats, Pseudogymnoascus destructans, correlates with a 
shift in metacommunity structure and changes in relationships between community composition, 
and factors shaping these assemblages, such as ecoregion. We sampled bat cutaneous microbial 
assemblages in the presence/absence of P. destructans and analyzed microbial metacommunity 
composition and relationships with structuring variables. Absence of P. destructans correlated with a 
metacommunity characterized by a common core microbial group that was lacking in disease positive 
bats. Additionally, P. destructans presence correlated with a change in the relationship between 
community structure and ecoregion. Our results suggest that the fungal pathogen intensifies local 
processes influencing a microbial metacommunity and highlights the importance of cutaneous 
microbial assemblages in host–pathogen interactions.

Elucidating how patterns of community structure relate to underlying structuring variables and processes of 
community assembly is a primary goal of community ecologists. Patterns observed at one scale of observation 
can be directly influenced by processes occurring at another  scale1. For example, rescue effects describe the 
process by which species can persist in unfavorable local environments through dispersal from regional source 
 populations2. Communities interacting between scales, including local and regional, form a spatial patchwork 
of taxa referred to as a  metacommunity3.

Metacommunities are defined as groups of habitat patches, linked by species dispersal and interactions 
between taxa among these  patches3,4. Both local and regional processes contribute to shaping metacommunity 
structure and the distribution of species across habitat  patches3. By using pattern-based assessments, one can 
analyze species distributions along environmental and spatial gradients to diagnose metacommunity  structure5,6.

Leibold and  Mikkelson6 developed a framework to identify metacommunity patterns, called the Elements of 
Metacommunity Structure (EMS), which uses three metrics to describe metacommunity structures: coherence, 
turnover, and boundary clumping (Fig. 1). Coherence is measured as the number of embedded species absences 
from a site and describes the overall response of a community to an environmental or spatial gradient (Fig. 1a). 
Turnover is measured as the number of species replacements across samples. Boundary clumping describes 
clustering in species’ range boundaries and is a metric that defines how cohesive species ranges are across  sites6. 
After determining the EMS, an idealized distributional pattern including hyperdispersed species loss, clumped 
species loss, evenly spaced, or Clementsian (Fig. 1b-e) can be used to describe metacommunity  structure5,6. 
Clementsian structure (Fig. 1e) describes communities of species that have similar responses to environmental 
differences, resulting in discrete community  boundaries5–7. Specifically, Clementsian metacommunities have 
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positive coherence, turnover, and clumping, meaning there are less absences (positive coherence) but more 
frequent species replacements (positive turnover) than expected by chance alone. Additionally, Clementsian 
metacommunities have clumped species boundaries defined by positive boundary clumping. For example, Cle-
mentsian succession occurs when communities of species replace each other over time, with little overlap in 
community composition. Evenly spaced metacommunities (Fig. 1d) are similar to Clementsian, in that they 
have positive coherence and turnover, but they have hyperdispersed species boundaries as opposed to clumped 
species loss. Evenly spaced metacommunities still exhibit turnover, with species replacing each other across 
sites, however there are no distinct communities characteristic of Clementsian metacommunities. Nested pat-
terns consist of less diverse assemblages making up subsets of more diverse  communities5,6,8. Nested community 
structures result from positive coherence, but negative turnover, where species do not replace each other but 
rather, are lost from sites. For example, nested sites are made up of subsets of species from a much larger species 
pool. Nested metacommunities that exhibit positive clumping have clumped species loss (Fig. 1c) where species 
are lost from sites in groups. Those with negative clumping have hyperdispersed loss (Fig. 1b) where individual 
species are lost from sites. While EMS analyses provide descriptions of metacommunity structure, they do not 
reveal the variables responsible for such processes.

Complimentary analyses are needed to elucidate the variables driving metacommunity structure. The influ-
ence of geographic distance on community structure is assessed using distance-decay models, which estimate 
the rate of species turnover along a  gradient9. Positive relationships between community dissimilarity and geo-
graphic distance may indicate that species’ distributions are highly affected by dispersal  limitation10, whereas, 
the lack of a relationship suggests that environmental filtering and species sorting may be more important for 
determining community  structure11. Species sorting and environmental filtering emphasize the role of the local 
abiotic environment in determining what species can persist within an assemblage, resulting in assemblages 

Figure 1.  The elements of metacommunity structure and their resulting patterns. Plus signs ( +) 
indicate a significantly positive relationship, whereas minus signs ( −) indicate a negative relationship. (a) 
metacommunity with checkerboard pattern. (b) nested metacommunity with hyperdispersed species loss. 
(c) nested metacommunity with clumped species loss. (d) evenly spaced metacommunity. (e) Clementsian 
metacommunity structure. (Modified from  reference5 using the software Inkscape 1.0 www. inksc ape. org).

http://www.inkscape.org
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correlating with local habitat factors, such as  precipitation3. In addition, permutational multivariate methods are 
frequently implemented to understand the effects of environmental factors on community patterns. For instance, 
permutational models can distinguish differences in community composition and turnover across environmental 
variables, as well as the interactive effects of multiple environmental  variables12. Interactive effects are especially 
important to consider when new structuring variables, such as invasive species or anthropogenic perturbations, 
are introduced to a metacommunity, as they might change the role of established structuring factors.

While macroorganismal metacommunities have been studied in some  detail10,13,14, minimal work has focused 
on characterization of host-associated microbial  metacommunities15–17. Understanding variation in structure of 
host-associated microbial metacommunities may be especially important given the role of host assemblages in 
pathogen  defense18,19. For instance, the pathogenic fungus Pseudogymnoascus destructans, the causative agent of 
white-nose syndrome, was introduced into the United States in 2006, and is responsible for massive bat popula-
tion  declines20,21. Recently, declines have been shown to be highly variable across space, bat species, and  time22. 
Tri-colored bats (Perimyotis subflavus) have shown recent population stabilizations possibly due in part to the 
presence of antifungal bacteria composing the cutaneous microbial  assemblage22,23. Previous work has shown P. 
subflavus that are exposed to, but not invaded by P. destructans, have microbial assemblages enriched in antifungal 
bacterial  taxa24. Determining the structure and drivers of bat cutaneous microbial metacommunities in relation 
to this fungal pathogen may improve our understanding of microbial metacommunity response to fungal inva-
sion, as well as our understanding of assemblages that are resistant to fungal invasion.

Understanding how the presence of a fungal pathogen correlates with changes in both metacommunity struc-
ture and its relationship with structuring factors is likely important to understand the role of the host associated 
microbial assemblage in pathogen defense. The objectives of this study were to understand how the presence of 
a fungal pathogen correlates with the composition of a host-associated cutaneous microbial metacommunity 
and its structuring factors. We investigated the relationship between P. destructans and the cutaneous microbial 
metacommunity of hibernating P. subflavus across 48 sites in Tennessee, USA. We hypothesized that the presence 
of P. destructans would be correlated with a shift in 1) metacommunity structure and 2) relationships between 
structuring variables and community composition. We tested the first hypothesis using EMS, further informed by 
indicator operational taxonomic unit (OTU) and fungal pathogen load analyses. We tested the second hypothesis 
with distance-decay and permutational models to understand how spatial and environmental variables structure 
the bat cutaneous microbial assemblage in the presence/absence of a fungal pathogen.

Results
Of the 249 individuals of P. subflavus studied, quantitative PCR (qPCR) results indicated that there were 40 
negative and 209 P. destructans positive bat individuals collected from 48 sites across three ecoregions (Interior, 
Ridge and Valley, and the South West Appalachians; Fig. 2a). All sites were determined to have at least one P. 
destructans positive bat. Post processing of high-throughput sequence data resulted in a mean read depth of 
194,550 sequences per sample (14,899–2,968,637) reads and a total of 11,071 OTUs for P. destructans positive 
and 3370 OTUs for P. destructans negative bats.

Metacommunity structure. Metacommunities for both P. destructans positive and negative bats showed 
positive coherence, with significantly (p ≤ 0.05) less embedded absences than expected based on null mod-
els (positive = 1,142,539 embedded absences, 1,376,131.98 ± 1943.23 expected; negative = 46,167 embedded 
absences, 52,651 ± 186.4 expected; Fig. 3, Table 1). The P. destructans positive metacommunity was characterized 
by significant positive turnover (p ≤ 0.05, 2.48e + 10 replacements; simulated mean 2.26e + 10 ± 2.25e + 08), while 
the P. destructans negative metacommunity had significant negative turnover (p ≤ 0.05, 42,579,240 replacements; 
47,012,450 ± 1,005,206 expected replacements). Both P. destructans positive and negative metacommunities had 
significant clumping of species range boundaries (positive bats; Morisita’s index = 1.44, p ≤ 0.05; negative bats; 
Morisita’s index = 1.39, p ≤ 0.05). Together, these results indicate that the P. destructans positive metacommunity 
can be described as having a Clementsian structure (Fig. 1e), whereas, the P. destructans negative metacommu-
nity had a nested structure with clumped species losses (Fig. 1c; ref.5).

A total of 14 OTUs were identified as indicator taxa for P. destructans positive and 363 OTUs for negative bats 
(Supplemental Table). The group of indicator OTUs for the P. destructans negative bats represents the common 
taxa occurring across the individual microbial communities that contributed to the nestedness in metacommu-
nity structure. OTUs indicative of P. destructans negative bats were significantly more abundant on P. destructans 
negative, relative to P. destructans positive bats (GLMM; z = − 62.84, p ≤ 0.05; Fig. 4a, Supplemental File 1E). 
Additionally, there was a significant negative relationship between log transformed fungal load and indicator 
taxa rarefied abundance (GLMM; z = − 10.78, p ≤ 0.05; Fig. 4b, Supplemental File 1E), with increased fungal load 
predictive of fewer indicator taxa. However, similar patterns were not found when analyzing the relationship 
between P. destructans load and the nested component (SNE) of averaged community dissimilarities (GLM; 
z = − 0.10, p > 0.05; Fig. 4c). Between site average community dissimilarity (SOR and SIM) was not related to the 
between site average difference in log transformed fungal load (GLM; SOR: z = 0.237, p > 0.05; SIM: z = 0.798, p  
> 0.05, Supplemental File   1E). When the compositional nature of the dataset was considered, patterns of indica-
tor taxa abundance were identical to those observed with subsampled data (Supplemental File 1F).

Relationship between community structure and structuring variables. All three measures of beta 
diversity lacked a distance-decay relationship (GLM; SOR: z = 0.79, p > 0.05; SIM:  z = 0.86, p > 0.05; SNE: z = 0.96, 
p > 0.05; Fig. 2, Supplemental File 1E). There was no difference in the rate of decay between positive and negative 
bats for total beta diversity (ANOVA; SOR: p > 0.05, Fig. 2b), the turnover component of beta diversity (ANOVA; 
SIM:  p > 0.05; Fig. 2c), or nestedness (ANOVA; SNE: p > 0.05 Fig. 2d). Multivariate dispersion was statistically 
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different between P. destructans positive and negative bats for total beta diversity (betadisper; SOR:  F1, 247 = 5.89, 
p ≤ 0.05, Supplemental File 1G). Interestingly, analyses of multivariate dispersion indicated that there was a sig-
nificant interactive effect between P. destructans status and ecoregion for both total beta diversity and turnover 
(betadisper; SOR:  F5,243 = 15.232, p ≤ 0.05; SIM:  F5,243 = 8.646, p ≤ 0.05, Supplemental File  1G;   Figs.  5a,b, 6). 
Post-hoc analysis of the interaction term for total beta diversity showed that dispersion was not different across 
ecoregions for P. destructans positive bats but varied for P. destructans negative bats (Fig. 5a). In general, disper-
sion was large in P. destructans positive bats, with negative bats within the Interior Plateau having significantly 
less dispersion (Fig.  5a), largely driven by a difference in the turnover component (Fig.  5b). PERMANOVA 
revealed that average community composition (multivariate centroids) differed between P. destructans status 
and ecoregion when analyzing both total dissimilarities and the turnover component, but not nestedness, and 
that these effects were independent of each other (Fig. 6, Table 2).

Figure 2.  (a) Map of the study system, red dots indicate sample sites. Samples were collected across three 
Tennessee ecoregions (Interior Plateau in light green, South West Appalachians in red, and Ridge and Valley in 
olive green). Map produced using ArcGis 10.7.1. (https:// deskt op. arcgis. com/ en/ arcmap/) Copyright 1995–2018 
Esri. All rights reserved. Published in the United States of America. Distance-decay relationships, comparing 
geographic distances between sites and (b) total beta diversity, (c) turnover, (d) nestedness, for P. destructans 
positive (dashed line and black dots) and P. destructans negative (solid line and grey dots) bats averaged by site. 
There is no significant relationship between geographic distance and community dissimilarity (GLM; SOR: 
z = 0.79, p > 0.05; SIM: z = 0.86, p > 0.05; SNE: z = 0.96, p > 0.05) or decay rates between disease states (p > 0.05) 
for any metric (ANOVA; SOR: p > 0.05, SIM: p > 0.05, SNE: p > 0.05). Graphs were produced using the ggplot2 
package (version 3.3.2) in  R25.

https://desktop.arcgis.com/en/arcmap/
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Discussion
This study characterized the metacommunity structure of host microbial assemblages in the presence of a fun-
gal pathogen. Overall, support was found for both of our hypotheses, we determined that the presence of P. 
destructans correlated with a change in cutaneous microbial metacommunity structure and loss of indicator 
OTUs from the core skin assemblage. Additionally, we found that the presence of P. destructans correlated with 
a change in relationship between community structure and an environmental structuring variable. These results 
suggest that the presence of P. destructans alters cutaneous microbial metacommunity structure by intensifying 
local processes, such as species sorting mechanisms or antagonistic species interactions.

The cutaneous microbial assemblages of P. destructans negative bats were characterized by a nested metacom-
munity structure with clumped species loss. The presence of numerous indicator taxa within negative bats further 
supported the inference of a nested metacommunity structure. Nested metacommunities have been observed 
in a variety of organisms, including  Bryophytes14,  macroinfauna27, and  bats13, and likely represent variation 
in species-specific characteristics such as dispersal ability and tolerance to environmental  conditions5. This is 
supported by previous work, which has shown the importance of host environment in shaping the cutaneous 
microbial  assemblage12 and suggests that OTU-specific tolerances to host environmental conditions might drive 
the clumped OTU loss seen in P. destructans negative bats.

Figure 3.  Site by species incidence matrix for OTUs on P. destructans positive/negative bats describing the 
actual metacommunity patterns. Black bars represent each OTUs (x-axis) range across bat samples (y-axis). 
EMS analysis suggests a Clementsian structure for P. destructans positive and a nested structure for P. destructans 
negative bat microbial metacommunities. Plots were produced using the Imagine function in the metacom 
package (version 1.5.3) in  R26.

Table 1.  Results for the EMS analysis of bats across P. destructans status. Results suggest Clementsian 
metacommunity structure for P. destructans positive bats, and a nested metacommunity structure for P. 
destructans negative  bats5.

P. destructans positive bats

Coherence p value

Absences 1,142,539  ≤ 0.0001

Simulated mean 1,376,131.9 (± 1943.2)

Turnover

Turnover 2.48 e + 10  ≤ 0.0001

Simulated mean 2.26 e + 10 (± 2.25 e + 8)

Boundary

Index 1.44  ≤ 0.0001

P. destructans negative bats

Coherence p value

Absences 46,167  ≤ 0.0001

Simulated mean 52,651 (± 186.4)

Turnover

Turnover 42,579,240  ≤ 0.0001

Simulated mean 47,012,450 (± 1,005,206)

Boundary

Index 1.39  ≤ 0.0001
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Figure 4.  (a) Comparison of the rarefied abundance of P. destructans negative indicator taxa between P. 
destructans positive/negative samples. Indicator taxa are significantly more abundant within P. destructans 
negative samples (GLMM; z = − 62.84, p ≤ 0.05). (b) Comparison of the rarefied abundance of P. destructans 
negative indicator taxa by fungal load. There is a significantly negative relationship between indicator taxa 
rarefied abundance and amount of P. destructans present (GLMM; z = − 10.78, p ≤ 0.05). (c) Comparison of 
the (log) difference in average fungal load and average nestedness (SNE) of bats averaged by site. There is no 
significant relationship between similarity in fungal load and nestedness (GLM; z = − 0.10, p > 0.05). Graphs were 
produced using the ggplot2 package (version 3.3.2) in  R25.
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Figure 5.  Betadisper analysis comparing beta diversity measured as multivariate dispersion across the 
interaction of ecoregion and P. destructans status, for (a) total beta diversity (SOR), (b) turnover (SIM), and  
(c) nestedness (SNE). Different lowercase letters indicate a significant difference (p ≤ 0.05) between groups, 
lowercase letters are missing from panel (c) due to lack of significant differences between groups. There is 
a significant interaction between P. destructans status and ecoregion for both total beta diversity as well as 
turnover (SOR:  F5, 243 = 15.232, p ≤ 0.05; SIM:  F5,243 = 8.646, p ≤ 0.05). Graphs were produced using the ggplot2 
package (version 3.3.2) in  R25.
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The core microbiome is defined as the taxonomic identity of the most common bacterial taxa within a 
 system28. Pairing of the EMS and indicator analysis results for P. destructans positive bats suggested a loss of 
bacterial OTUs from the core microbiome. This loss might suggest alteration in community function and host 
defense against  pathogens24,29,30. Nucleotide BLAST searches (based on ~ 250 bp region) revealed that indicator 
taxa identified in this study (Supplemental Table) were not genetically identical to cultured bacteria with in vitro 
anti-P. destructans activity identified in Grisnik et al.24. However, seven of 363 indicator taxa were identified to the 
same genera of anti-P. destructans bacteria identified  previously24, including Nocardia, Rhodococcus, Streptomyces, 

Figure 6.  Non-metric multidimensional scaling ordination for. (a) P. destructans positive and (b) P. destructans 
negative bats across ecoregions (a) stress 0.17; (b) stress 0.14. There is a significant effect of P. destructans, year 
and ecoregion (p < 0.05), however, there is no significant interaction between P. destructans status and ecoregion. 
There is significant variation in dispersion across ecoregions for P. destructans negative bats (b). Graphs were 
produced using the ggplot2 package (version 3.3.2) in  R25.

Table 2.  PERMANOVA results for total beta diversity (SOR), the turnover component of beta diversity (SIM), 
and the nested component of beta diversity (SNE). There is a significant difference between P. destructans 
status, Ecoregion, and year for both SOR and SIM (p < 0.05).

Df Sums of squares Mean squares F test R2 p value

Total beta diversity

P. destructans status 1 0.746 0.746 1.7403 0.006 0.018*

Ecoregion 2 1.427 0.713 1.664 0.012 0.011*

year 1 0.795 0.794 1.8541 0.007 0.001***

site 45 24.357 0.541 1.2626 0.216 0.771

P. destructans status:Ecoregion 2 0.905 0.452 1.055 0.008 0.107

Residuals 197 84.454 0.428 0.749

Total 248 112.683 1

Turnover

P. destructans status 1 0.862 0.861 2.139 0.008 0.003**

Ecoregion 2 1.591 0.795 1.975 0.014 0.033*

year 1 0.605 0.605 1.502 0.005 0.012*

site 45 23.712 0.526 1.308 0.221 0.72

P. destructans status:Ecoregion 2 0.876 0.437 1.087 0.008 0.22

Residuals 197 79.344 0.402 0.741

Total 248 106.99 1

Nestedness

P. destructans status 1 − 0.007 − 0.007 − 7.92 − 0.045 1

Ecoregion 2 − 0.01 − 0.005 − 5.955 − 0.067 0.347

year 1 0.009 0.009 11.111 0.063 0.105

site 45 − 0.01 − 0.0002 − 0.269 − 0.069 0.737

P. destructans status:Ecoregion 2 − 0.0003 − 0.0001 − 0.22 − 0.002 0.745

Residuals 197 0.174 0.0008 1.121

Total 248 0.156 1
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Luteibacter, Lysobacter, and Sphingomonas. Each of these bacterial genera were detected on both positive and 
negative bats. Alternatively, bacteria with anti-fungal activity could have been gained to form the core microbi-
ome of P. destructans negative bats, but additional work is required to mechanistically explain the correlational 
patterns found here. It is also important to acknowledge that approaches to understand assemblage function 
in vitro likely oversimplify complex inter- and intra-specific interactions at the community level, and further 
work to understand how bacterial function relates to fungal pathogenicity is warranted. The two most common 
phyla of indicator taxa were Proteobacteria (P. destructans positive n = 2 of 14, P. destructans negative n = 104 of 
363) and Actinobacteria (P. destructans positive n = 12 of 14, P. destructans negative n = 95 of 363). Interestingly, 
the majority of indicator taxa for P. destructans positive bats are from the family Micrococcaceae (n = 11 of 14) 
which contains Micrococcus, a genus of well documented skin  colonizers19. The more common indicator taxa of 
P. destructans negative bats include the phyla Planctomycetes (n = 35 of 363) and Acidobacteria (n = 28 of 363), 
both of which are commonly found in  soils31,32. This might suggest increased interactions between cutaneous 
microbial assemblage and environmental microbes in the absence of P. destructans, however, manipulative studies 
would be required to address this question.

The cutaneous microbial assemblage of P. destructans positive bats exhibited turnover with boundaries 
clumped along an environmental gradient (Clementsian structure). Clementsian structure is known to be com-
mon in both free  living14 and host-associated microbial  assemblages15. Clementsian metacommunities can arise 
from antagonistic interactions preventing the coexistence of some  taxa6,27. Interestingly, previous work showed 
an inverse relationship between P. destructans positive bats and bacteria that inhibited growth of P. destructans24, 
suggesting that antagonistic interactions might drive the shift to Clementsian metacommunity structure in 
microbial assemblages of positive bats.

The lack of a distance-decay relationship in microbial assemblages suggests either a lack of dispersal limitation 
or absence of species sorting mechanisms driving the assembly of bat cutaneous microbial assemblages. Since 
bat host environment (ecoregion) had a significant impact on average assemblage structure and there was no 
significant distance-decay relationship, we can conclude that dispersal limitation does not have a predominant 
role in the assembly of the cutaneous microbial assemblages of P. subflavus. Bacterial dispersal limitation is 
consistent with previous work that has shown a lack of population structure in Appalachian bat  species33,34. This 
suggests that frequent roost switching and host dispersal may provide opportunities for microbial dispersal, and 
therefore, homogenization of bacterial assemblages across the region. Barriers to microbial dispersal between 
individual bats might be low, suggesting that the level of selection for microbial assemblage formation might 
be occurring at the colony level rather than the individual  level35. Other studies have attributed environmental 
heterogeneity as the underlying driver of distance-decay relationships in microbial  assemblages36–39. The lack of 
a distance-decay pattern driven by environmental heterogeneity could be due to the similarity of cave environ-
ments across our study system, as bats were sampled during the winter hibernation period, and not on a variety 
of summer/winter roost sites. Alternatively, variation within cave environments across the study system could 
result in a patchy distribution, rather than a geographically constrained gradient of environmental heterogeneity. 
The overall influence of host environment and species sorting mechanisms have been observed in the literature, 
as other studies have shown an influence of site on cutaneous microbial assemblage structure for a variety of 
host  taxa12,40,41. Our results suggest the role of the host environment in shaping microbial communities through 
species sorting regardless of P. destructans status. The presence of P. destructans does not alter the rate (slope) 
of distance-decay in microbial assemblages across geographic space. In the context of community assembly, we 
found a lack of a P. destructans mediated change in dispersal limitation and/or species sorting in bacterial assem-
blage formation. Previous work has suggested an inverse pattern showing that as levels of disturbance increase, 
the rate of turnover within assemblages decreases, suggesting that disturbances can act as ecological  filters42.

Results of permutational models indicated the role of the environment in shaping the bat cutaneous microbial 
assemblage. The PERMANOVA analysis indicates that the presence of P. destructans correlates with a difference 
in average community composition. Additionally, analysis of multivariate dispersion indicates that there is a 
significant interaction between P. destructans status and the environment, which suggests that the presence of 
P. destructans can alter the relationship between community structure and structuring variables, specifically 
the ecoregion where a bat is located. Of particular interest is the lack of significant differences in dispersion 
across ecoregions for P. destructans positive bats, despite significant differences for negative bats. In general, P. 
destructans positive bats have higher dispersion than negative bats. The presence of P. destructans within the 
Interior Plateau correlates with increased dispersion in the turnover component of beta diversity compared to 
negative bats within that ecoregion. When the analysis of multivariate dispersion is coupled with the lack of a 
distance-decay relationship, it suggests that local processes (such as antagonistic interactions or species sort-
ing) may be stronger in the presence of P. destructans. Previous work has suggested that disturbance increases 
the importance of species sorting mechanisms through the filtering of species that cannot persist within the 
disturbed  environment43.

We assessed metacommunity structure in cutaneous assemblages as they responded to the progression of 
fungal disease. There was no significant relationship between community similarity and fungal load, which serves 
as a proxy for disease progression. This suggests that the presence of P. destructans alone might be enough to 
alter the average microbial assemblage. Previous work has shown the opposite pattern with increasing fungal 
load being positively correlated with assemblage  dissimilarity44. However, this study was done on salamanders 
infected with a chytrid fungus in a mesocosm setting, which could explain the conflicting results. Alternatively, 
due to the hierarchical structure of our data (bats nested within caves), the patterns we observed could be a result 
of site level averages rather than being representative of bacterial-fungal interactions on individual bats. While 
this is a valid concern, it has been shown that colony-level dynamics rather than individual identity better explain 
bat cutaneous microbial assemblage  structure35, suggesting valid ecological patterns observed during this study. 
The presence of P. destructans may drive the formation of a unique assemblage through deterministic processes, 
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but within a disease state category (P. destructans positive or negative) the variation might be best explained 
by stochastic or species-specific factors. While our study failed to find a relationship between assemblage-level 
similarity and fungal load, previous work has shown a correlation between pathogenic fungal load and specific 
bacterial taxa on  bats24. Pseudogymnoascus destructans load may induce OTU-specific abundance responses but 
not influence overall assemblage similarity in terms of species presence. Future research at a fine-scale temporal 
resolution and quantifying microbial relative abundances is necessary to understand the effects of disease pro-
gression on microbial assemblage structure.

In order to understand interactions between host-associated microbial assemblages and pathogens it is 
important to take scale into account. The goal of this study was to elucidate if the presence of a fungal pathogen 
correlates with changes in metacommunity structure and the variables that structure these communities as they 
relate to assembly mechanisms. Results suggest that invasion of these communities by a fungal pathogen cor-
relates with a shift in metacommunity structure likely driven by intrinsic factors that alter community assembly 
mechanisms. We hypothesize that the change in community structure is caused by increased strength of local 
processes within assemblages. Understanding how the host cutaneous microbial assemblage interacts with a 
fungal pathogen, specifically within a metacommunity context, is important for elucidating how this assemblage 
potentially protects hosts from pathogens. Future work should aim to better understand potential antagonistic 
interactions within microbial assemblages as they may help describe observed shifts in metacommunity structure 
and role in pathogen defense. Increased understanding of these antagonistic interactions has potential conser-
vation implications, with recent interest in augmenting host cutaneous microbial assemblages with antifungal 
bacterial taxa, as a way to protect declining host  populations24,30. Additionally, future experimental work in a 
controlled setting is required to confirm the community assembly processes structuring bat skin assemblages. 
Lastly, this study was conducted exclusively on bacterial communities, future work should incorporate other 
members of the host associated microbiome including viruses and fungi.

Methods
Sample collection. Swabs from 369 individuals of adult P. subflavus were collected during statewide surveys 
between December 2016 and March 2019 across 57 cave sites in Tennessee. After bioinformatics processing and 
quality control, 249 P. subflavus from 48 sites were statistically analyzed (see methods below and supplemental 
file 1D for metadata). Each bat had its cutaneous microbial assemblage sampled following the protocol outlined 
in Grisnik et al.24. Briefly we took five swab (sterile Puritan polyester tipped swabs, Puritan, Guilford Maine) 
strokes of each bat muzzle/ear and five from wings/fur while avoiding the mouth using one sterile swab per 
bat individual. Due to the conservation status of P. subflavus, when possible, bats were left hanging attached to 
their roost and swabbed without disturbing torpor. All samples were stored on ice in the field and permanently 
at − 20 °C until processing. This study was approved by the Tennessee Technological University Institutional 
Animal Care and Use Committee (TTU-16-17-003) and USFWS (2009-038). All methods were carried out fol-
lowing relevant guidelines and regulations. We isolated DNA from 369 bats using the Qiagen DNeasy PowerSoil 
HTP 96 kit following the manufacturer’s protocol. Each plate of 96 samples contained a single DNA extraction 
blank (n = 8 total blanks) to filter out kit-based contamination during bioinformatics processing and quantita-
tive PCR reactions (see below). When setting up each DNA extraction plate and subsequent library preparation, 
the location of samples on each 96 well plate was randomized, in order to reduce biased effects of well-to-well 
 contamination45. Extracted DNA was then used for molecular characterization of the microbial community, as 
well as, qPCR for the detection of P. destructans.

Characterization of microbial community. Each step of library preparation (DNA isolation, PCR 
setup, and post PCR processes) was separated into specific PCR cabinet hoods with designated pipettes to mini-
mize environmental and/or cross-contamination. Pipettes were autoclaved, and UV crosslinked periodically 
throughout library preparation. Once isolated, DNA was concentrated, using an Eppendorf Vacufuge plus, to a 
final volume of ~ 25 µL. After concentration, PCR amplification and high-throughput sequencing was performed 
following a modified version of the Illumina 16S Metagenomic Sequencing Library Preparation protocol. Spe-
cifically, we targeted the V4 region of 16S rRNA marker using primers 806R/515F (ref.46). Each PCR reaction 
contained 12.5 µL MCLAB I-5 Hi-Fi taq mastermix, 1 µL of 806R (10 µM), 1 µL of 515F (10 µM), 5.5 µL PCR 
grade water, and 5 µL DNA template. PCR amplification was performed with an initial denaturation at 95 °C for 
2 min, followed by 35 cycles of 98 °C for 10 s, 55 °C for 15 s, and 72 °C for 5 s, with a final extension cycle of 72 °C 
for 5 min. MAGBIO High-prep magnetic beads were used to remove primer/adapter dimers after amplicon PCR 
and indexing steps. Samples were quantified with a Promega Quantus Fluorometer then normalized, pooled at a 
4 picomolar concentration, and loaded onto an Illumina MiSeq v2 flow cell. Sequencing was performed in eight 
separate runs each using a 500-cycle reagent kit (paired-end, 2 × 250 bp reads).

Quantitative PCR. To determine the presence or absence of P. destructans within a sample we followed the 
protocol outlined by Muller et al.47 to amplify the fungal intergenic spacer region (IGS). Each reaction was run 
in triplicate on an Agilent AriaMx Real-Time PCR system, and contained 5 µL 2 × Primetime MasterMix, 0.4 µL 
forward primer (20 µM), 0.4 µL reverse primer (20 µM), 0.1 µL probe (20 µM), 3.1 µL PCR grade water, and 1 
µL sample DNA for a total of 10 µL per reaction. Thermocycling conditions included a 3-min activation step at 
95 °C, then 50 cycles of 95 °C for 3 s and 60 °C for 30 s. Each plate included both a known concentration of syn-
thetically made P. destructans DNA (gBlocks; Integrated DNA Technologies) to serve as a positive control and 
a no template negative control (run in triplicate) to account for within plate contamination. A positive sample 
was indicated by exponential amplification in triplicate with a  Ct value of less than  4047,48. If samples did not test 
positive in triplicate, they were re-tested, and were considered positive if there was amplification in at least one 
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of the three subsequent  reactions49. In order to quantify P. destructans fungal load, qPCR reactions of a serial 
dilution of synthetic DNA was used to generate the standard curve equation y = − 0.2936x + 11.439, with x being 
the average  Ct value for each sample run in triplicate, and y being the log DNA copy number.

Bioinformatic analysis. Amplicon sequencing reads were processed using mothur v1.42.1 (ref.50). A total 
of 48,442,995 raw data sequence reads were obtained from eight sequencing runs. Paired-end reads were assem-
bled into contigs, and sequences containing homopolymers greater than 8 nucleotides or any ambiguous base 
calls were removed. We identified unique sequences and aligned them to the SILVA v123 bacterial reference 
 database51. After alignment, sequences were trimmed to the V4 region and pre-clustered allowing for two-nucle-
otide differences between clusters. Chimera removal was then done using the vsearch function in  mothur52. 
Sequences were classified into taxonomic lineages and reads identified as Archaea, Eukaryota, chloroplast, mito-
chondria, and unknown were removed. The cluster.split command in mothur was used to cluster sequences into 
operational taxonomic units at 97%  similarity53. OTUs that appeared less than five times were considered rare 
and were removed from the dataset. Additionally, OTUs that were found within the DNA extraction blanks were 
also removed (n = 1669 OTUs). OTUs were selected as the focal taxonomic level rather than ASVs (amplicon 
sequence variants), as previous work has shown that there is negligible difference in ecological patterns observed 
when OTU or ASV data are  analyzed54. In total 5,701,307 sequences (11.7%) passed all quality control steps. We 
compared final library sizes across all samples and found that they were significantly different (Kruskal–Wallis: 
χ2[2] = 83.98, p < 0.05). Therefore, the data were rarefied by subsampling each library at 1200 sequence  reads55. 
Data were subsampled as previous work has shown that it is an effective way to account for variation in library 
 size55. The final OTU × sample matrix included 268 samples of P. subflavus. Since we were interested in observing 
variation between P. destructans positive and negative bats over geographic distance we standardized the data so 
that geographic distances between sample sites were equal for P. destructans positive and negative P. subflavus. 
This resulted in a total of 249 P. subflavus (40 P. destructans negative and 209 positive) used for the statistical 
analysis described below. All mothur commands are included in the Supplemental File 1A for reproducibility 
purposes.

Statistical analyses. Previous work has shown that rare OTUs can skew the results of elements of meta-
community structure (EMS)  analysis5. Prior to conducting analyses, all OTUs that summed to less than two were 
removed resulting in 12,603 OTUs in the complete OTU × sample matrix. All analyses were conducted in R 3.4.2 
(ref.56) using α = 0.05 unless multiple comparisons were made, and thus Bonferroni adjusted.

We used the metacom package (version 1.5.3) in  R26 to determine if the presence of P. destructans corre-
lated with changes in metacommunity structure of cutaneous microbial assemblages as outlined in Leibold 
and  Mikkelson6 and Presley et al.5 following the Elements of Metacommunity Structure (EMS) framework. We 
evaluated three EMS metrics (coherence, turnover, and boundary clumping) using a site-by-species presence/
absence matrix to determine metacommunity structure. Coherence was assessed as the number of embedded 
species absences, or the number of gaps/interruptions in species distributions, within an ordinated community 
matrix (Fig. 1). The number of observed absences was compared to an expected number of absences determined 
through the formulation of a null distribution created from simulated matrices with 1000 iterations. Negative 
coherence describes a pattern of significantly more observed embedded absences than predicted by the null 
model, and a metacommunity perceived with a “checkerboard” appearance (Fig. 1a). A random metacommunity 
is identified when there is a non-significant difference between observed and expected embedded absences. 
Significantly less embedded absences indicate positive coherence, which is suggestive of species responding to 
a structuring gradient. The latter pattern requires further analysis of turnover and boundary clumping for more 
specific designation of metacommunity structure. Turnover, was assessed to describe the number of times a 
species is replaced by another between two sites. As with coherence, the number of turnover events observed 
is compared to the number of expected events using a null model prediction. If there are significantly more 
replacements than expected by chance, this represents positive turnover and signals a Clementsian (Fig. 1e) or 
evenly spaced (Fig. 1d) metacommunity structure. If there are significantly less replacements than expected, this 
represents negative turnover and signals a nested metacommunity structure. Boundary clumping was evaluated 
using Morisita’s index to describe how distinct blocks of species are clumped along a range boundary. A Morisita’s 
index significantly greater than one, indicates clumped species loss (positive turnover: Fig. 1e; negative turnover: 
Fig. 1c), whereas, an index value significantly fewer than one indicates evenly spaced, i.e. hyperdispersed, spe-
cies loss (positive turnover: Fig. 1d; negative turnover: Fig. 1b). To assess significance for each EMS metric we 
used the default fixed-proportional null model (“r1”), 1000 permutations, and allowed for null matrices to have 
empty rows and  columns26. EMS analysis was performed using the metacommunity  function26 and analyses for 
P. destructans positive and negative samples were run separately. Metacommunity patterns were visualized using 
the Imagine function within the metacom package.

In order to further describe how P. destructans status correlated with changes in community structure we 
performed an indicator analysis using the multipatt function in R package indicspecies (version 1.7.9;57) on the 
presence-absence transformed OTU data table. We used a generalized linear mixed-effects model (GLMM) with 
the glmer function (package lme4;58) assuming a Poisson error structure, with site set as the random effect to 
account for nested data, to compare the rarefied abundance of significant indicator taxa of P. destructans negative 
bats across all samples. Additionally, we compared the amount of P. destructans present (number of copies using 
qPCR) to the rarefied abundance of indicator taxa using a GLMM assuming a Poisson error structure, with site 
set as the random effect. In order to explore the compositional nature of our  dataset59, we repeated the above 
analyses following the pipeline outlined by Gloor et al.59 using a clr transformed dataset. Complete methods and 
code for this analysis are included in Supplemental File 1F.
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To determine if fungal load influenced community dissimilarity, we converted fungal copy number to a 
distance matrix representing differences between samples using the dist function with Euclidean distances. This 
allowed for us to determine if bats having more similar fungal loads have more similar microbial assemblages. 
The resulting distance matrix was compared to total beta diversity (Sørensen dissimilarity: SOR), the turnover 
(Simpson dissimilarity: SIM), and nested (nestedness: SNE) components of total beta diversity (package beta-
part;60). To address the nested structure of the data, a dummy variable was created to describe the pairwise site 
level comparisons by grouping the samples by geographic distances into a categorical “site contrast” variable. 
Due to issues resulting in singular fit of mixed models, we then averaged both fungal load and beta diversity 
(SOR, SIM, and SNE) by the “site contrast” variable resulting in an average dissimilarity between two samples, 
thus removing the nested structure of the data (Supplemental File 1B). We then used a GLM (function glm) to 
compare average fungal load difference to average beta diversity metrics. The GLM was run assuming a binomial 
distribution with log transformed fungal load dissimilarity set as a fixed effect.

To assess how the presence of P. destructans correlated with differences in the rate of turnover and patterns of 
distance-decay, we compared total beta diversity (SOR), the turnover (SIM), and nestedness (SNE) components 
of Sørensen diversity across geographic distances. Pairwise geographic distances between samples were computed 
as the Euclidian distance between sample points using the dist function in the package vegan61. Similar to the 
analysis comparing assemblage dissimilarity to fungal load difference, beta diversity (SOR, SIM, and SNE) was 
averaged by site contrast, in order to remove the nested structure of the dataset, and to accommodate issues of 
singular fit in the mixed models. The relationship between average community dissimilarity and average geo-
graphic distance (distance-decay relationship) was determined using a generalized linear model (GLM). GLM 
was performed assuming a binomial distribution using the glm function with geographic distance, P. destructans 
status, and the interaction between these variables being set as fixed effects and a Bonferroni adjusted p-value 
of 0.016. The analysis was conducted using type II sum of squares with the Anova function in the package car62 
to account for unequal sample sizes across groups.

To elucidate how environmental variables influenced beta diversity across P. destructans status we compared 
variation in beta diversity, measured as multivariate dispersion (function betadisper, package vegan), across 
P. destructans status, ecoregion (specifically ecoregion level 3, as delineated by the Environmental Protection 
Agency), and P. destructans × ecoregion interaction. Ecoregion was selected as the environmental variable as 
it represents a composite variable encompassing multiple fine scale environmental factors. A Tukey’s post hoc 
test was then used to determine pairwise differences between the groups of the interactive effect. We used 
permutational multivariate analysis of variance (PERMANOVA) stratified by site with 999 permutations using 
the adonis function (package vegan) on SOR, SIM, and SNE dissimilarity metrics to assess the influence of 
ecoregion on average assemblage similarity. Explanatory variables included ecoregion, P. destructans status, the 
P. destructans × ecoregion interaction, as well as year and site as covariates accounting for data structure. The 
PERMANOVA assumption of homogeneity of variance was violated, however previous  work63 has shown that 
PERMANOVA is robust to violations of this assumption when the variable with the greater sample size has a 
larger variance, as seen with our data. All R code is included in the Supplemental File 1C for reproducibility 
purposes.

Data availability
All sequence data were submitted to GenBank SRA under the accession number PRJNA691025. All mothur code 
and all R code has been made publicly accessible in the supplemental file.
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