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Abstract: Mesenchymal stem/stromal cells (MSC) show widespread application for a variety of
clinical conditions; therefore, their use necessitates continuous monitoring of their safety. The risk
assessment of mesenchymal stem cell-based therapies cannot be separated from an accurate and
deep knowledge of their biological properties and in vitro and in vivo behavior. One of the most
relevant safety issues is represented by the genetic stability of MSCs, that can be altered during
in vitro manipulation, frequently required before clinical application. MSC genetic stability has
the potential to influence the transformation and the therapeutic effect of these cells. At present,
karyotype evaluation represents the definitely prevailing assessment of MSC stability, but DNA
alterations of smaller size should not be underestimated. This review will focus on current scientific
knowledge about the genetic stability of mesenchymal stem cells. The techniques used and possible
improvements together with regulatory aspects will also be discussed.
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1. Introduction

Human stem cells include three main cell types: pluripotent embryonic stem cells (ESCs) [1]
human induced pluripotent stem cells (iPSCs) generated from adult somatic cells reprogrammed to
a pluripotent state by introduction of specific transcription factors [2]; multipotent adult stem cells,
with reduced differentiation and proliferation ability compared to the previous two [3]. The latter
group includes mesenchymal stem/stromal cells (MSCs), a heterogeneous group of tissue-specific cells,
with no unique cluster of differentiation (CD) signature, that can be isolated from many tissues [4].

MSCs were identified for the first time as fibroblastic colony-forming units (CFU-Fs) in the
bone marrow (BM) [5]. At present, there is no consensus on a single surface molecule to identify
MSCs and the International Society for Cellular Therapy (ISCT) defined minimal criteria for their
characterization [6].

MSCs appear to be extremely powerful tools for tissue engineering and regenerative medicine,
not just for their multilineage differentiation potential (MSC engraftment after in vivo delivery is
low [7]) but mostly for their paracrine activity, exerted through the release of soluble factors [8] such as
anti-inflammatory cytokines, anti-apoptotic and trophic molecules that stimulate tissue repair and
counteract inflammation. These factors are able to modify injured tissue microenvironment [9,10].
More recently, a substantial contribution to tissue regeneration through exosome and microvesicle
release has been described [11]. MSCs show homing ability to sites of inflammation, injury and tumor.
Their immunomodulatory properties [9,12] can be useful to treat immune-mediated diseases and
graft-versus-host disease [13,14]. In addition, these cells can be harvested using minimally invasive
procedures from many different adult tissues and can be easily manipulated in vitro, as for in vitro
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expansion and differentiation. Finally, their derivation from adult tissues solves ethical challenges
represented by the use of other cell types such as embryonic stem cells. For all these reasons these
cells are an ideal candidate for cellular therapies and tissue engineering offering groundbreaking new
opportunities for the treatment of disease and injury, with an enormous potential for development.

MSCs are available from many human adult tissues [15]. In accordance with the hypothesis
of their perivascular origin, they are present virtually in all vascularized tissues. Actually, human
perivascular cells sorted from diverse human tissues and cultured over the long term give rise to
adherent, multilineage progenitor cells that exhibit the features of MSCs [16]. The most commonly used
MSC sources are bone marrow (BM) [17] and adipose tissue (AT) [18–21]. They can also be isolated from
a series of other tissues like umbilical cord (UC) or Wharton’s Jelly [22], cord blood [23,24], placenta and
amnion [25,26], amniotic fluid [27], chorionic villi [28], dental pulp [29,30], endometrium [31], brain [32],
skin [33], synovial membrane and synovial fluid [15,34], sweat glands [35], nasal mucosa [36].

Despite several common aspects, the biological characteristics and differentiation abilities of MSCs
are a function of the tissue of origin [37]. Moreover, by whole transcriptome sequencing analysis
(RNA-seq), it was shown that MSC gene expression and phenotype are also strongly dependent on the
substrate [38], in particular on substrate chemistry and topography, thus highlighting the relevance of
the interactions between cells and biomaterials [39,40].

Mesenchymal stem cell research exploded in the last years and has now reached all areas of
biology, including tissue regeneration, modeling of complex tissues by juxtaposing independently
patterned cellular components, developmental epigenetic regulation, and cancer [41,42]. Progresses in
the clinical use of MSCs came from the combination of stem cells and tissue engineering techniques
with the use of scaffolds and biomaterials to improve the therapeutic efficacy of MSCs alone [43].

MSCs are at present largely used in clinical trials: to end of March 2019, 6071 studies on “Adult
stem cells”, 945 on “mesenchymal stem cells” and about 190 on “mesenchymal stromal cells” were
registered in the public clinical trials database of the US National Institutes of Health, of which 2356,
263 and 47, respectively, completed. Most of them are phase I (safety) and II (efficacy) or combined
Phase I/II interventional studies; both with allogeneic and autologous cells. The prevalent conditions
for MSCs applications are represented by musculoskeletal, autoimmune, vascular, and central nervous
system diseases, wounds and injuries (available online: https://clinicaltrials.gov). In addition, a number
of nonregistered studies and trials are performed in many countries.

The aim of this review is to provide the reader with the current knowledge about genetic stability
of mesenchymal stem cells for clinical use in relation to in vitro expansion and cellular senescence.
The techniques used, their limitations and possible future improvements, together with regulatory
aspects will also be discussed by a scientific point of view.

2. MSC Clinical Use

Despite a relatively still incomplete scientific knowledge about stem cell differentiation,
transplantation and tissue integration [44], MSCs are already an expanding reality in the clinic
due to their enormous therapeutic potential. Several studies provided promising results but further
validation is needed and issues related to MSC general nature and biological behavior cannot be
underestimated [45]. Actually, some studies showed varying outcomes, likely because of the differences
in cell isolation and culture conditions, that could result in the selection of MSC subpopulations [46].
MSCs are heterogeneous populations, with phenotypic and functional features strongly dependent
on the donor, the harvest site, and the culture conditions. Current culture expansion methods do
not guarantee the preservation of native MSC properties causing variable quality and potency and
accounting for inconsistent outcomes. Inconsistencies and variability in MSC studies may also arise
from interindividual variability, the tissue of origin, intrinsic differences in cell-based products, lack of
standardization. Efforts are therefore currently performed to standardize culture and differentiation
conditions. Research aims at increasing clinical reproducibility by thorough characterization of cell
heterogeneity [29] and by method standardization and development (as cell functionalization or
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priming to enhance therapeutic applications) [47]. One of the critical aspects contributing to variable
results is MSC heterogeneity; the presence of different subpopulations with nonidentical characteristics
in MSC preparations limits stem cell production methodology [4,18,29,48,49]. Heterogeneity might
partly explain the variable clinical performance of the cells and the inconsistent results available in the
literature, even if some authors claim that clonal heterogeneity plays a positive role on genetic stability
keeping culture away from transformation [29]. By multicolor lentiviral barcode labeling and deep
sequencing, the heterogeneous composition of umbilical cord-derived MSC preparations was shown
to undergo dynamic clonal selection in culture, with an initial massive reduction in diversity and a
selection of single clones over time, starting in the early passages [49]. Subset selection and cell priming
have been proposed to overcome these disadvantages [47]. Another way to reduce heterogeneity is the
use of clonal MSCs as a starting material, in order to maximize the homogeneity of the final stem cell
products. This was performed by Yi et al. [48] by the development of a GMP-compatible procedure for
clinical-grade production of human bone marrow-derived clonal MSCs obtained by subfractionation
culturing. The drawback is the need for a massive cell expansion to obtain the desired number of
cells, even if the authors demonstrate no acquisition of genetic alterations [48]. For some authors,
manufacturing systems will hardly reach a unique standard due to the intrinsic differences among
samples and experimental conditions. They suggest to concentrate efforts on standardizing methods
for MSC characterization and potency evaluation to establish release criteria for MSC manufacturing
for each specific experimental setting [50].

3. The Safety Issue

The clinical use of MSCs raises the fundamental concern of their safety. Several aspects concerning
MSCs safety are still incompletely explored, therefore it is essential to minimize risks and that solid
evidence of preclinical efficacy and safety is guaranteed.

MSC frequency in human adult tissues is low: approximately 1/106 cells in adult bone marrow
and a 100–1000-fold higher frequency in the umbilical cord and adipose tissue [51]. Due to the limited
presence of MSCs in human tissues, ex vivo expansion is frequently required to obtain the sufficient
number of cells to be administered, but this procedure has some drawbacks, thus raising the problems
of genetic stability, senescence and transformation.

In vitro expansion reduces replicative potential and multipotency; it drives senescence; it reduces
DNA polymerase and DNA repair efficiencies, thus leading to DNA damage accumulation, such as
cytogenetic alterations (deletions, duplications, rearrangements), mutations, epigenetic changes [52–59].
This applies also to stem cells [60] (for a review on stem cell DNA damage and aging see
Behrens et al. [61]). There are two possible outcomes of DNA damage: erroneous repair and persistent
DNA damage; the first can lead to transformation, the second can block transcription and replication
driving the aging process [62]. DNA damage is strictly related to aging and cancer and regulation of
DNA damage checkpoints has a critical role in accelerating or decelerating tissue-aging and age-related
carcinogenesis [56]. If on one side DNA damage accumulation can lead to senescence, on the other
side it can induce genomic instability with a consequent increased risk of transformation. Moreover,
cellular senescence can prevent/promote tumorigenesis [63]. MSC preparations, therefore, need a
careful check of genetic alterations possibly developed or expanded in culture before their use in
the clinic.

In general, MSC preparations ultimately enter senescence and stop proliferation, but transformation
cannot be excluded. Actually, ex vivo expansion implies very high proliferation rates in an artificial
environment lacking the mechanisms that guarantee the negative selection/clearance of altered cells
such as those active in the whole organism. Genomic instability could arise from replicative stress
imposed by in vitro culture and from chromosome condensation defects as those described for human
pluripotent stem cells, showing higher instability compared to MSCs [64]. Therefore, multiple
replications in vitro expose cells to the risk of accumulating genetic and epigenetic alterations, with a
detrimental effect on cell biology and therapeutic properties, with the promotion of cell senescence
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and potential transformation, thus possibly affecting treatment efficacy and patient safety (Figure 1).
Indeed, MSC exposure to DNA damaging agents reduces significantly the differentiation potential [65].

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 25 

 

and patient safety (Figure 1). Indeed, MSC exposure to DNA damaging agents reduces significantly 
the differentiation potential [65]. 

 
Figure 1. Effects of in vitro expansion. During in vitro expansion cells reduce their replicative 
potential and accumulate DNA damage due to progressively reduced DNA synthesis and repair 
efficiencies. DNA damage accumulation can affect genomic integrity of the cells possibly driving 
senescence and transformation, with consequent functional alterations. These can impair the 
therapeutic effect and raise safety issues. 

Several studies were performed to assess if culturing does alter cell phenotype and gene 
expression in relation to cellular ability to differentiate. A series of papers was published that 
demonstrate a decrease in proliferative, differentiating, homing, immunomodulatory properties and 
the development of a senescence-associated secretory phenotype, SASP, [57,58,66,67] with in vitro 
MSC aging. Conversely, a recent study using adipose-derived stem cells (ASCs) [68] demonstrated 
by RNA sequencing that cells maintain differentiation potential and consistent profile of key 
mesenchymal markers in long-term cultures, but associated with distinct RNA isoforms. 

In clinical trials, cell culture usually lasts to the 2nd passage but, in some cases, more passages 
are needed. When large scale production is required and extensive expansion is performed, 
manufacturing processes integrating scientific knowledge and clinical perspectives with prospected 
industrial development are needed [50]. 

4. Senescence 

MSC aging is accompanied by a series of genetic, epigenetic, transcriptional and translational 
changes affecting cell function [60,69] and is a critical aspect to be considered for cellular therapy and 
safety assessments [70]. Both in vivo [61] and in vitro aging should be considered. During in vitro 
expansion, proliferation rate progressively decreases until it reaches a senescent state with growth 
arrest [57,58]. MSCs show low or negative levels of telomerase activity [33,55,71] and their telomeres 
progressively shorten with in vitro age [57,72–74] but without affecting cultures until several 
passages are performed [55,75]. Together with telomere shortening and proliferation slowdown, 
differentiation ability is reduced [57,76], particularly in the case of adult-derived cells compared to 
child-derived [76]. The effect of donor age is supported by the observation that human umbilical cord 

Figure 1. Effects of in vitro expansion. During in vitro expansion cells reduce their replicative potential
and accumulate DNA damage due to progressively reduced DNA synthesis and repair efficiencies.
DNA damage accumulation can affect genomic integrity of the cells possibly driving senescence and
transformation, with consequent functional alterations. These can impair the therapeutic effect and
raise safety issues.

Several studies were performed to assess if culturing does alter cell phenotype and gene expression
in relation to cellular ability to differentiate. A series of papers was published that demonstrate a decrease
in proliferative, differentiating, homing, immunomodulatory properties and the development of a
senescence-associated secretory phenotype, SASP, [57,58,66,67] with in vitro MSC aging. Conversely,
a recent study using adipose-derived stem cells (ASCs) [68] demonstrated by RNA sequencing that
cells maintain differentiation potential and consistent profile of key mesenchymal markers in long-term
cultures, but associated with distinct RNA isoforms.

In clinical trials, cell culture usually lasts to the 2nd passage but, in some cases, more passages are
needed. When large scale production is required and extensive expansion is performed, manufacturing
processes integrating scientific knowledge and clinical perspectives with prospected industrial
development are needed [50].

4. Senescence

MSC aging is accompanied by a series of genetic, epigenetic, transcriptional and translational
changes affecting cell function [60,69] and is a critical aspect to be considered for cellular therapy
and safety assessments [70]. Both in vivo [61] and in vitro aging should be considered. During
in vitro expansion, proliferation rate progressively decreases until it reaches a senescent state with
growth arrest [57,58]. MSCs show low or negative levels of telomerase activity [33,55,71] and their
telomeres progressively shorten with in vitro age [57,72–74] but without affecting cultures until several
passages are performed [55,75]. Together with telomere shortening and proliferation slowdown,
differentiation ability is reduced [57,76], particularly in the case of adult-derived cells compared to
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child-derived [76]. The effect of donor age is supported by the observation that human umbilical cord
MSCs, having a neonatal origin, can be grown for up to passage 10 without losing multipotential
mesenchymal progenitors [77] and show increased telomerase activity and longer telomeres compared
to adult BM-MSCs [78]. Senescence also affects the composition of MSC secretome [67]. Cell cycle
arrest usually requires about 20–30 cell divisions, depending on donor age, tissue source and culture
conditions [57,79]. On the contrary, conventional surface markers do not change [80,81]. The protein
p16 is upregulated during in vitro aging with an accompanied demethylation of its promoter [58].
Furthermore, hypoxic conditions seem to delay/bypass senescence through downregulation of the
cyclin-dependent kinase inhibitors p16 [82] and p21 [83] and upregulation of DNA repair genes with a
concurrent increased genomic stability [84].

Epigenetics has recently gained a great deal of attention [85]. Epigenetics is not only involved in
gene regulation and chromatin structure, but also in senescence and genomic stability [86–88]. Major
concerns still to be addressed are the comprehensive evaluation of dynamic changes of the epigenetic
marks and their effect on senescence, commitment and stemness [88]. Epigenetic anomalies have
been hypothesized to potentially cause/influence MSC genetic stability and differentiation capacity.
Phermthai et al. [27] investigated global genomic methylation and genetic imprinting of some imprinted
genes during prolonged in vitro culture of amniotic fluid stem cells and found epigenetic instability in
high passage (P) cultures (after P8) correlating with loss of differentiation potential. The expression
levels of the analyzed imprinted genes gradually increased with culture time and parental allele-specific
imprinting was found to be frequently lost in association with altered CpG methylation.

The principal epigenetic modifications of the genome are chromatin methylation at CpG sites and
histone modifications (acetylation, methylation). Histone H3/H4 acetylation is significantly reduced
with advancing culture passages in association with enhanced global histone deacetylase activity [87,89].
In general, there is a gradual decrease in global DNA methylation with MSC aging in culture [73,90].
Redaelli et al. [73] speculate that all the changes observed during culture (telomere shortening
and loss of genomic regions) belong to a definite program regulated by epigenetic modifications.
Hypomethylated regions (enriched in genes related to morphogenesis) prevail over hypermethylated
ones (enriched in genes associated with differentiation) [86]. Moreover, methylation changes observed
in long-term cultures of human MSCs overlapped those observed in vivo [91]. In vitro replicative
senescence shares many aspects with physiological aging, with epigenetic modifications influencing
gene expression profile and reducing stemness and the total number of MSCs [86]. Very interestingly,
it was described that human aging is associated to very reproducible DNA methylation patterns with
specific age-associated CpG sites whose detection can constitute a biomarker for chronological age
estimation, a sort of “epigenetic clock” [92]. Similarly, in vitro replicative senescence is accompanied by
DNA methylation changes tightly regulated and reproducible [93–95] that can be used as a biomarker
to evaluate aging of cell preparations for quality controls. An “epigenetic-senescence-signature”
based on six CpGs whose methylation level correlates with the number of population doublings was
recently described in human BM-MSCs [96,97]. However, these CpG methylation profiles significantly
differed among subpopulations of the same MSC preparation, indicating that the epigenetic state of
cellular senescence within MSC preparations is highly heterogeneous and these modifications are
not synchronous [98]. In addition to 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) was
recently described as an epigenetic mark possibly related to cellular aging. Hyper-hydroxymethylation
in MSCs from old subjects appeared associated with 5mC loss, thus suggesting a functional role of
this modification in DNA methylation changes during aging [90]. Epigenetic changes are reversible;
therefore, an epigenetic reprogramming is under study. Epigenome manipulation could be a way
to promote self-renewal capabilities of MSCs, increasing their longevity and potency by contrasting
senescence induced by culture expansion. Other studies are focusing on senolytic drugs to selectively
remove senescent cells from MSC preparations [69,99].
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The role of senescent MSCs in tumor progression is still elusive: cellular senescence can act on one
side as tumor suppressor (by blocking expansion of damaged cells through an irreversible growth arrest)
and on the other side as tumor promoter [80,100] through the SASP mediators released in the tumor
microenvironment able to stimulate cancer cell migration and proliferation [67,101]. There are some
very interesting reports demonstrating that in vitro aged MSCs can shift their activity and can promote
tumor cell proliferation and migration. Therefore, even if MSC do not become transformed per se,
they can negatively influence resident tumor cells. In a recent paper, it was shown that the conditioned
medium (CM) from replicative senescent ASCs can promote tumor cell proliferation, possibly by
induction of galectin-3, a protein strictly related to carcinoma cell proliferation, transformation and
invasiveness [101]. In another paper, it was shown that umbilical cord senescent MSCs (induced to
senescence by replicative or oxidative stress) markedly promote proliferation and migration of breast
cancer cells, with the involvement of the Interleukin-6/STAT-3 (signal transducer and activator of
transcription 3) pathway. The promoting effect was confirmed in vivo in mice by co-injection of tumor
cells and senescent MSCs [80].

It is clear that in vitro expansion should be performed with caution and expansion times should be
reduced as much as possible. Senescence and DNA damage acquisition in culture should be carefully
determined before clinical application and on a case-by-case basis, especially in patients with a history
of cancer. MSC potential to promote tumorigenesis is worthy of concern for clinical applications.
This highlights the risks related to long-term cultures [69,101]. In addition to a possible relationship to
transformation, the senescence can have a detrimental effect on cellular therapy efficacy, by affecting
the biological properties of the cells. It appears therefore of critical importance to monitor senescence
by defining reliable molecular markers of cellular aging and to asses MSC senescent status before
clinical use. In general, for clinical safety issues and in an attempt to minimize the administration of
senescent cells, the expansion should be reduced as much as possible (according to Torre et al. [102] it
should not exceed four passages). Different biological processes and molecules have been proposed to
evaluate cell senescence: proliferation arrest, telomere attrition, increase in senescent markers such as
β-Galactosidase, DNA damage accumulation, increase in some proteins involved in cell cycle regulation
such as p16 and p21, DNA methylation, prelamin A, SASP, microvesicles (MVs) [58,82,83,92,103,104].
Microvesicles dynamically change in relationship to the MSC status. Lei et al. [104] demonstrated that
microvesicles from senescent MSCs resemble their parental cells; in particular, microRNA miR-146a-5p
appeared up-regulated and most of its target genes were down-regulated in both MSCs and MSC-MVs
during senescence, suggesting miR-146a-5p as a potential senescent marker to identify and monitor
senescent MSCs.

5. Tumorigenicity

Tumorigenicity is one of the most relevant risk factors to be considered for MSC clinical
applications [105]. Malignant transformation is a complex and progressive process involving several
steps in which cells sequentially accumulate genetic alterations and modify their expression profile.
In an interesting study, the transcriptional dynamics of immortalized human MSCs were analyzed
by whole transcriptome analysis in association with the progression of cell transformation and
chromosomal changes. The described series of genetic alterations with the parallel gene expression
modifications could be helpful to establish key steps to assess transformation risks in MSC cultures [106].
Potential tumorigenicity of MSCs, and in particular of in vitro expanded MSCs, is a critical issue and it
is strictly related to genomic instability. The absence of transformation potential must be demonstrated
before clinical use. Unfortunately, cancer development is a long process and long follow-up of treated
patients would be needed to verify safety in this context.

Critical aspects include MSC transformation potential in vitro; MSC ability to form tumors in vivo
and MSC promoting effect on tumor development.
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In the early 2000s, some impressive papers described MSC in vitro spontaneous transformation,
but they were retracted following the demonstration that tumor cells were cancer cell lines
cross-contaminating MSC cultures [106–109]. This highlighted for the first time the need to demonstrate
the identity of cell preparations. At present, only one paper described spontaneous tumorigenic
transformation associated with genomic alterations in culture. Long-term cultivation (beyond five
weeks) of bone marrow- and liver-derived MSC produced transformed cells (four batches out of 46)
able to induce sarcoma-like tumors in immunodeficient mice. High-resolution genome-wide DNA
array and short tandem repeat profiling confirmed a shared origin of the transformed cells and parental
MSC [110]. By gene and microRNA expression arrays authors also identified a gene expression
signature that may potentially serve to screen cultures for evidence of early transformation events [110].
The results of this publication have not yet been confirmed. MSC spontaneous transformation in vitro
appears a very rare event eventually occurring after a relatively long-term culture. Overall, for the
expansion protocols commonly used in clinical MSC preparations, malignant transformation appears
not to constitute a substantial safety issue as long as early MSC passages are used.

In contrast to iPSC and ESC showing higher instability and potential to form teratomas [64,111,112],
MSCs do not appear intrinsically tumorigenic [7,71,74,105,113–124]. The epigenetic repression of the
pluripotency factor OCT4 in adult stem cells can partly explain this lower tumorigenic potential [78].
Several papers demonstrated the absence of tumorigenic potential of cultured MSCs of different
tissue origin even at advanced in vitro culture times [48,125–127]. Accordingly, long-term in vivo
tumorigenic assessment of in vitro expanded ASCs in nude mice evidenced that one year after injection,
transplanted cells were completely removed and no tumors were present [128]. In another study,
subcutaneously injected ASCs in immunodeficient mice were still present after 17 months without
signs of migration from the injection site and without teratoma formation [117]. In humans, since the
first clinical trial using MSCs in 1995, tumors have never been reported [129,130]. However, eight
years after intraspinal olfactory mucosal cell autoimplantation for spinal cord injury, a young patient
developed a spinal cord tumor mass autograft-derived. The mass histologically resembled olfactory
mucosa and produced mucus [131]. Moreover, a case of glioneuronal brain tumor developed four
years after fetal neural stem cell transplantation to treat ataxia telangiectasia was described in 2009.
By genetic typing, it was demonstrated that tumor cells were of donor origin [132]. In the first case,
autologous adult stem cell grafts were used, and the tumor developed many years after transplantation.
Autologous treatments appear more dangerous by this point of view since they are likely to be less
immunogenic and more long-lasting than allogeneic ones. These cases highlight the need to perform
long follow-up studies.

If on one side it seems that MSCs do not pose an obvious risk of tumorigenesis having a low
possibility to undergo oncogenic transformation, on the other side they can be tumor promoting
by stimulating growth and dispersion of resident tumor cells already present in the MSC recipient.
Actually, in vivo MSCs have been demonstrated to play a role both in tumor formation and suppression,
in a complex interplay between cells and soluble factors. The controversial results available in
the literature concerning the promoting or suppressive MSC activity can be mostly attributed
to the activation state of MSCs. As for monocytes/macrophages, MSCs can be activated in two
different phenotypes, a pro-inflammatory phenotype (MSC1) and an immunosuppressive phenotype
(MSC2) [133]. In accordance, it was demonstrated that MSC1-based therapy attenuates tumor
growth whereas MSC2 treatment promotes tumor growth and metastasis [134]. This highlights that
unstimulated MSC or MSC2 (able to promote regeneration and therefore useful for regenerative
applications) have also the potential to promote tumor growth, whereas MSC1 do not promote
regeneration nor tumor growth.

Moreover, MSC ability to suppress immune responses may contribute to tumor growth promotion
and metastasis of resident tumor cells [9,135,136]. MSC paracrine activity can promote tumor growth
through several mechanisms: immunosuppression, promotion of angiogenesis, contribution to the
tumor microenvironment, inhibition of apoptosis and promotion of metastasis [137]. In vivo injected
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MSCs sustained cancer growth in mice by suppressing the recipient antitumor response [138]. Tumor
promotion was shown to be also mediated by the MSC secretome alone. Conditioned medium from
healthy donor-derived BM-MSC was shown to promote tumor cell proliferation, glucose uptake and
vascularization via up-regulation of c-myc in tumor cells [139]. Human BM-MSC-derived exosomes
sustained tumor growth and angiogenesis in mice, at least partly by upregulating tumor cell expression
of vascular endothelial growth factor (VEGF) through extracellular signal-regulated kinases 1/2 (ERK1/2)
pathway [140]. In another recent study human BM-MSC-derived exosomes promoted in vitro tumor
growth of osteosarcoma and gastric tumor cell lines through the activation of the Hedgehog signaling
pathway in cancer cells [141,142]. Human ASCs were demonstrated to promote angiogenesis of breast
tumors in vivo in a nude xenograft model through secretion of CXC chemokine ligand 1 and 8 (CXCL1
and CXCL8), thus underlying the risk of cancer recurrence after fat graft in reconstructive surgery
for breast cancer patients [142]. On the opposite side, cancer-primed MSCs profoundly modify their
secretome and partially lose their anti-tumor activity by abrogating the production of pro-senescent
and apoptotic factors [67]. All these data suggest particular caution in applying MSC for regenerative
approaches in recipients with coincidental tumors.

6. Genetic Stability

A high number of studies have well documented that human MSCs acquire cytogenetic alterations
in culture both in autosomes and in sex chromosomes, even if they are frequently transient and not
clonal [28,29,55,73,74,130,143–153]. Conversely, other studies reported stable chromosomes in culture
for MSCs of different tissue origin [24,33,36,48,116,118,120,124–127,149,153–158]. Depending on the
studies, tissue sources, culture conditions, culture times, these alterations occur at early or late passages
and at different frequencies, thus explaining inconsistencies in literature data (for a detailed list of
described aneuploidies, see Rebuzzini et al. [148]).

The relevance of the clear tendency towards increased DNA alterations with culture passages is
still being debated [148,149,151,159,160] since genomic instability, particularly chromosomal alterations,
is a hallmark of cancer [161]. Two risks can be envisaged: tumorigenicity on one side and impaired MSC
biological activity on the other side. Tarte et al. [151] claimed that karyotype and Fluorescent In Situ
Hybridization (FISH) are neither adequate nor informative as release criteria since cells with or without
aneuploidies became senescent without evidence of transformation either in vitro or in vivo [74,119].
Even if chromosomal abnormalities can arise in vitro, the entire transformation process is not reached
in culture [76] and oncogenic transformation does not necessarily associate with clonal expansion
and growth advantage in vitro [95]. In addition, in vitro oncogenic transformation of human cells can
proceed without widespread genomic instability [162].

However, a 4% incidence of aneuploidies was described in a large set of MSC preparations by
Ben David et al. [143], with a correlation between MSC aberrations arising in culture and the most
common aberrations found in tumors of the corresponding tissue. The relevance of these observations
was argued by Sensebé et al. [149] priming a debate [160] that is still open [159] between supporters
of the irrelevance and transient nature of these alterations [119,149,151], and detractors [105,143],
that suggest more caution in result interpretation. Actually, some alterations appear advantageous
and are selected in culture [143,146] thus representing a potential risk, even if in most cases altered
cells did not overcome senescence and did not immortalize [146]. Moreover, cytogenetic alterations
were observed during in vitro expansion of ASCs and umbilical cord-derived MSCs in heterogeneous
subpopulations, with sequential dynamic changes similar to those described for tumor cell populations
during disease progression. Aberrant clones arising at earlier passages become predominant at later
ones [75].

A conventional karyotype analysis performed on a large set of clinical-grade BM-MSC showed
only spontaneous nonclonal aneuploidies, therefore authors assumed that absence of clonal anomalies
and a cut-off of 10% nonclonals can be chosen as release criterion [28,144]. Roselli et al. [28] evaluated
the genomic stability of chorionic villi-derived MSC by karyotype, array comparative genomic
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hybridization (CGH) and microsatellite instability analysis (MSI). They found abnormal clones only
beyond P10 and these clones showed neither growth advantage nor senescence resistance in accordance
with Tarte et al. [151] that reported aneuploidies in culture without transformation signs. Some authors
suggest that if cells become senescent in culture, they are unlikely to produce tumors in patients, even
if actually there are no methods available that allow us to exclude the presence of few tumorigenic cells
harboring oncogenic mutations [163]. Microsatellites appear stable thus indicating that the Mismatch
Repair System (MMR) efficiency is maintained in MSC cultures [28,55,81].

Kim et al. [75] performed karyotype and FISH analysis of cytogenetic aberrations on a large
case series of MSC preparations (68 cell preparations of different tissue origin) to establish reference
values for aneuploidy in human MSCs. They found variable aneuploid clonal proportions (1%–20%),
with asymmetric aneuploid patterns and with chromosomes 16, 17, 18 and X mostly involved [75].
They suggested an aneuploidy cutoff of 13% as well as to combine chromosome. 16, 17, 18 and X FISH
analyses to assess MSC genetic stability.

Binato et al. [164], reported changes in the expression of key genes from passage 5 on and therefore
suggested to use cells up to passage 4 and to analyze case by case cells from higher culture passages.

Even if there is no definitive evidence of in vitro MSC transformation and the majority of the
reported anomalies leads to senescence, it is fundamental to perform an accurate analysis of genetic
stability before clinical application. Moreover, genetic alterations have also the potential to affect the
therapeutic efficacy of the cells. Therefore, it appears of critical importance to know how many passages
can be performed before cells acquire alterations and lose their therapeutic properties. With this in mind,
cellular models should be forced to senescence by long-term culture and genetic alterations should
be verified at different time points to establish the optimal culture times [165]. Donor characteristics,
the tissue of origin and culture conditions are important factors to be considered.

Methodological Approaches to Assess Genetic Stability

Available guidelines do not identify exclusive tests to assess genetic stability. Therefore,
how to assess genetic integrity of in vitro expanded cells? Several methods are available today
to identify/quantify genetic/epigenetic alterations, with different targets, different resolution, different
execution times and costs. The vast majority of techniques fails in detecting alterations affecting
less than 10% of the analyzed cell population and this represents an important issue for the early
detection of newly occurring somatic mutations. Moreover, all genetic variants detected need a
biological interpretation.

In most cases standard karyotype is performed, that is a very useful and consolidated technique,
but with significant drawbacks, first of all the low sensitivity: it fails in detecting rare cell populations
(metaphase cells can represent as few as 0.01% of the tested cells) and it shows a resolution in the order
of megabases of DNA. Moreover, it is time-consuming, it is hampered by the difficulty of obtaining
sufficient metaphases and it requires highly qualified personnel. In a research setting, more sensitive
techniques like array-CGH are also used, but we are still in the order of hundreds of kilobases (kb).
Interphase FISH is also frequently used in association with standard karyotype. Moreover, DNA
sequence and expression levels of key genes involved in cell cycle regulation, senescence and cancer
are frequently evaluated using different techniques. In the research setting, other techniques have been
evaluated to check for universal biomarkers, e.g., micronuclei and nuclear blebs quantification [166,167]
and virtual karyotyping [168], the latter allowing for the evaluation of genomic integrity of autosomes
based on the comparison of gene expression profiles of the sample of interest with a reliable database of
the same cell type and the same microarray platform. In Table 1, the most frequently used techniques
for genetic stability assessments with principal pros and cons are listed.

Cell transformation is associated not only to chromosomal anomalies such as gross deletions,
duplications and aneuploidies but also to micro-deletions and -duplications and mutations at the
single base level.
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Table 1. Techniques to assess genetic damage. Methods are listed based on their level of resolution.

Method Detected
Alterations Resolution Target Characteristics and Limits

Conventional
Karyotype

(G, Q banding)
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It seems appropriate to extend the analysis of genetic alterations acquired in culture to small
molecular defects since there is no reason to assume that small genetic changes are irrelevant. At present,
a full DNA characterization of MSCs through comprehensive studies on small molecular genetic and
epigenetic alterations is still lacking, but it would be extremely helpful in detecting possible frequent
mutations in order to increase knowledge about MSC behavior and to set up increasingly targeted
biosafety tests.

The availability of high throughput technologies such as next-generation sequencing (NGS) makes
it possible today to obtain this information of critical relevance. NGS appears an ideal candidate for
this purpose thanks to its very high and scalable throughput, sensitivity and accuracy with affordable
costs and a clear gain in efficacy and timing, with the potential to be translated to the clinical practice.
NGS massively parallelizes genomic interrogation thus allowing for detection of very rare alterations
(i.e., for early detection of the occurrence of adverse events). To confirm NGS data an equally or more
sensitive technique is required, therefore Sanger sequencing (with a detection rate of about 10% of the
analyzed cells) is unsuitable. Droplet digital PCR or pyrosequencing could be used.

Given NGS versatility, different approaches can be used: whole exome sequencing (WES) or whole
genome sequencing (WGS) allowing for a complete analysis of the genome, but with a limited read
depth; or targeted deep sequencing of specific genes or DNA regions of interest, with the possibility to
reach very high coverage depth and to detect very rare alterations.

Some recently described NGS applications were useful to understand the contribution of BM-MSC
molecular alterations in the pathogenesis of acute myeloid leukemia (AML). Whole exome sequencing
(WES) of AML BM-MSC from 21 patients revealed a non-specific mutation pattern compared to
BM-MSC from healthy donors showing no alterations. This strongly suggests global changes in MSCs
possibly altering the tumor microenvironment and influencing tumor behavior [169]. Another study
on the same topic used NGS technology to focus, by targeted resequencing, on a panel of 50 genes
involved in myeloid malignancies. They found neoplastic cell-specific mutations as well as genetic
variants shared with BM cells and MSC specific genetic variants, the last at a very low-frequency [170].
Kim et al. [71] analyzed by NGS a series of cancer related genes during in vitro culture of human
umbilical cord blood MSCs and found mutations occurring at P16 in NOTCH1 (NOTCH homolog 1),
MLH1 (MutL homolog 1), GNAS (guanine nucleotide binding protein, alpha-stimulating activity) and
TP53 (tumor protein 53) genes. Heterogeneity among clones with distinct chromosomal aberrations
dynamically changed over time, similar to what is observed in cancer stem cells. Cai et al. [59] analyzed
by WGS genetic dynamics in culture (from P1 to P13) of one BM-MSC sample. No significant copy
number alterations and low levels of single nucleotide changes (SNCs) were observed until P8, whereas
numerous SNCs were observed at P13. Very interestingly, the genetic alterations did exist in uncultured
cells with a low allelic frequency (undetectable with traditional methods) but reached up to 36% in
passage 13. Results argue for a relatively stable genome in the early passages, but with a significantly
increased occurrence of altered clones at advanced passages, thus suggesting dominant clonal growth
and highlighting the relevance of the alterations already present in the MSC donor. We also performed
a preliminary study to detect somatic variants in cancer-related genes in human ASCs expanded
in vitro and identified some variants of predicted pathologic significance not present at seeding and
occurring in culture (unpublished preliminary data).

Progressive accumulation of comprehensive studies in a large series of samples will potentially
allow to identify recurrent mutations specific for certain cell types and to set up defined panels of
alterations to be checked in a clinical setting before cell administration. The critical point will be to
demonstrate the biological relevance of the observed alterations and the real risk they represent [111].
Long-term follow-up will be of help in understanding this point.

Another critical point to be considered is related to patient characteristics. Besides the occurrence
of genetic alterations in culture, there is also the risk of expanding cells with DNA alterations already
present in vivo, as demonstrated by papers that detected mutations already present at cell seeding, even
if at a very low-frequency [59]. Moreover, even if without starting alterations, donor cells can possess
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an intrinsic propensity to genetic instability that will be developed in vitro [55,150,151]. This poses an
important question about the eligibility of MSC donors, possibly harboring deleterious mutations due
to genetic or acquired pathologies in their MSC reservoir, with the potential to be expanded in vitro.
For example, MSCs from myelodysplastic syndrome patients were demonstrated to be genetically
unstable by karyotyping and FISH. Some alterations occurred at the first analyzed culture passage
(P2). Therefore, it cannot be established if they were already present in vivo. Interestingly, there was
no overlap between MSC cytogenetic alterations and those of the hematopoietic compartment [171].
BM-MSC from Fanconi Anemia patients cultured in vitro until P5 display chromosomal fragility
(but not unbalanced rearrangements) and signs of senescence occurring earlier compared to BM-MSC
from healthy subjects [172]. Conversely, in another study, autologous ASCs from oncologic patients
did not show tumor-associated genomic alterations but only transient variations [130]. Accordingly,
Lucarelli et al. [147] did not detect significant differences in genetic stability (by karyotyping, array-CGH
and sequencing of cancer-related genes) of BM-MSC from sarcoma patients compared to controls.
The influence of donor characteristics on the genetic stability of MSCs was also observed in ASC
from lipoaspirates where only one of the samples showed in vitro early deceleration of growth
and occurrence of autosomal aneuploidies, suggesting a particular susceptibility of the cells of this
donor [55]. Similarly, a peculiar occurrence of different clonal cytogenetic alterations in different
parallel cultivations of BM-MSCs from a 67-year-old patient has been described [173]. Cells were
expanded for refractory ischemic cardiomyopathy treatment, but the patient had a previous history of
kidney tumor. Despite the absence of cytogenetic alterations in a bone marrow sample of the same
donor, cells displayed alterations from the second culture passage onwards, suggesting a donor-specific
propensity to genetic instability [173]. All these data point to the need for a case by case assessment of
genetic stability and to the need of a careful check of the health status and concomitant morbidity of
MSC donors.

Finally, culture conditions can greatly influence the biological properties of MSCs [50,118,154,158,174]
including genomic stability [148]. Supplements seem to not influence genomic stability [36], whereas
oxygen tension is critical [175] exerting a marked regulatory effect on cell cycle checkpoint genes [166].
It was demonstrated that long-term cultures under hypoxic conditions prevent senescence [82–84]
while maintaining MSC differentiation potential. BM-MSCs cultured under hypoxia improved
their DNA damage response and DNA repair (both non-homologous end-joining, NHEJ, and
homologous repair, HR) [84]. This effect was not observed in ASCs, in accordance with different
in vitro characteristics displayed by MSCs depending on the tissue of origin [176]. Another aspect
to be evaluated is cryopreservation. This procedure is required to pool cells for off-the-shelf
clinical applications but raises safety issues in terms of possible cell alterations or cell selection
during freezing-thawing passages. To date, literature data point to the stability of cryopreserved
MSCs [28,174,177]. Studies on the genetic stability of MSCs should also be performed in genetically
engineered cells after modifications possibly affecting their genome and to evaluate genotoxicity,
such as genetic modifications using vectors, transfer of nanocomplexes and nanoparticles. Recently,
a specialized flow-cytometry-based method was developed to quantitatively analyze genotoxicity
while determining at the same time the mode of mutagenic activity [178]. It was shown that highly
positively charged lipid- and polymeric-based vectors can induce genotoxicity, thus highlighting the
need for extreme care in evaluating the safety of ex vivo modified MSCs [178]. Functional nanoparticles
used as therapeutics and transferred to human MSCs did not affect genome integrity or increased the
mutation rate as evaluated at chromosome and single base level [179].

7. Regulatory Aspects

The increase of therapeutic interventions based on MSCs created an urgent need for specific
legislation for the approval and monitoring of their clinical use. Actually, many dangerous unregulated
stem cell treatments are ongoing across the world [180] and a great effort is in progress to efficiently
regulate this field. To date, no stem-cell medicinal products have received marketing authorization
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in Europe. Access to stem-cell medicinal products is allowed under certain conditions, e.g., taking
part in clinical trials or compassionate-use programs, or receiving a custom-made medicine (European
Medicines Agency, EMA/763463/2009).

Institutional review and ethics committees need specific rules to approve and evaluate preclinical
and biosafety demonstration tests on cellular products. Since the scientific field is still in progress,
guidance is subjected to constant update to continuously translate accumulating scientific knowledge
to therapeutic strategies in order to reduce the risks. Stem cell use requires authorization from national
regulatory agencies from the countries involved in the clinical trials. From a regulatory point of
view, there is the need for the development of diagnostic tools to definitively recognize clinically
“safe” and “unsafe” cell products. Controls should guarantee microbiological safety and the absence
of potential side effects linked to genomic instability driving transformation, reduced potency or
senescence and must be standardized [181]. Moreover, standardized guidelines for isolation, expansion,
preservation and delivery of MSCs are needed to minimize variability and to allow for comparison of
different studies. Quality issues to be demonstrated include purity, tumorigenicity, potency to measure
biological activity (with surrogate markers), biodistribution.

In Europe, MSC preparations are considered as advanced therapy medicinal products (ATMPs)
when their use is preceded by substantial manipulation (including in vitro expansion) or if
they are used for a different essential function. They can be somatic-cell therapy products or
tissue-engineered products (engineered cells or tissues administered to human beings to regenerate,
repair or replace a human tissue). In these cases MSC use is subjected to ATMP specific regulation
(available online: https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapies/
legal-framework-advanced-therapies). Reference legislation is summarized in Table 2 (see also
References [37,182]). In addition, the EMA produces scientific recommendations and guidelines on
ATMP use, drawn up by specific Committees (Table 2). The Committee for Advanced Therapies
(CAT) is responsible for classification, certification and assessment of quality, safety and efficacy of
ATMPs; the Committee for Medicinal Products for Human Use (CHMP) is involved in the development
facilitation of ATMP-based therapies [183].

The 2003/94/EC directive establishes quality control procedures ensuring product standardization
and traceability and also the management of abnormalities. Criteria for quality and safety must
be in accordance with 2004/23/EC and 2006/17/EC. After structure accreditation in accordance with
2001/83/EC and 1394/2007, the CAT is responsible for documentation evaluation and conformity to
2009/120/EC [37].

ATMPs must meet the same stringent requirements of drugs requiring production processes in
line with Good Manufacturing Practices (GMP) and the guarantee of product safety by controls not
only at batch release but also in all production phases [102,181]. GMP compliance must guarantee
the delivery of safe and reliable products, therefore most of the limitations do not apply to the
products but rather to the processes. ATMP development is not based on fixed pre-established
criteria, but it should be adaptable case-by-case in order to face with the complexity and heterogeneity
of cell therapies, that is why reliable quality control of MSCs is yet elusive [184]. Clinical grade
stem cell products and procedures must be used also in preclinical research to allow predictable
translation to the clinic [105]. Preliminary safety data must be provided to authorities and to the
CAT; activity, safety, efficacy and required dose must be defined before clinical use. What is strongly
recommended is a risk-based approach covering the entire development of ATMPs. In particular,
article 3.3.2.3 (regulation 2009/120/EC) identifies which relevant information is needed: identity,
purity (e.g., adventitious microbial agents and cellular contaminants), viability, potency, karyology,
tumorigenicity and suitability for the intended medical use. The same article also reports that “genetic
stability of the cells shall be demonstrated”, but no indication about technical procedures to be used is
present. In fact, accurate guidelines and standardized tests for the evaluation of genomic instability
have not currently been established. Conventional karyotyping combined with other techniques like
comparative genomic hybridization (CGH) and fluorescent in situ hybridization (FISH) is agreed as

https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapies/legal-framework-advanced-therapies
https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapies/legal-framework-advanced-therapies
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the state of the art methodology to evaluate possible chromosomal aberrations. These analyses should
be performed in each batch only when recurrent alterations (present in two different cultures from the
same donor) are detected [165]. The CAT suggests performing cytogenetic analysis, telomerase activity,
proliferative capacity and senescence. However, these analyses are not mandatory and no defined
protocols are recommended.

Table 2. The European regulatory framework on Advanced Therapy Medicinal Products (ATMPs).

European Reference Legislation

Regulation (EC) N◦ 1394/2007 implemented by
regulation EC N◦ 668/2009

Definition of ATMPs. Legal basis for authorization
procedure of ATMPs.

Commission directive 2009/120/EC
(amending directive 2001/83/EC)

Updated definition and detailed scientific technical
requirements for gene-therapy and somatic cell

therapy medicinal products combined ATMPs and
tissue engineered products.

Commission directive 2004/23/EC implemented by
directives 2006/17/EC and 2006/86/EC

Definition of quality and safety standards for
donation, procurement and testing of human tissues

and cells.

Regulation EU 536/2014 repealing
directive 2001/20/EC

Implementation of good clinical practice in the
conduct of clinical trials on medicinal products for

human use.

Guidelines and Recommendations

EMEA/CHMP/410869/2006
Guideline on human cell-based medicinal products

adopted in 2008. General overview of the
requirements to license ATMPs.

EMEA/149995/2008 Guideline on safety and efficacy follow-up and risk
management of ATMPs.

EMA/630043/2008 Update of the procedure for the evaluation of ATMPs
marketing authorization, adopted in 2018.

EMA/CAT/571134/2009
Reflection paper on stem cell-based medicinal

products adopted in 2011. Focused on stem
cell-based products.

EMA/763463/2009 Public statement on concerns over unregulated
medicinal products containing stem cells.

EMA/CAT/600280/2010 rev.1

Revision of the reflection paper on the classification of
ATMPs. Major points: what constitutes a substantial
manipulation of cells or tissues; what is considered as

a non-homologous use of cells or tissues.

EMA/CAT/CPWP/686637/2011 Guideline on the risk-based approach for ATMPs’,
adopted in 2013.

C (2017) 7694 Guidelines

Guideline on GMP specific for ATMPs.
Recommendations: risks and effectiveness based on

current scientific knowledge; level of effort and
documentation commensurate with the risk.

EMA/CAT/327664/2018
CAT work plan 2019 including the development of a
new guideline on requirements for ATMPs in clinical

trials and on ATMP comparability.

In preparation

EMA guideline on investigational ATMPs to create
common standards for the assessment of novel ATMP

products.Public consultation for the draft revised
guideline EMEA/149995/2008) closed. Outcome

expected in 2019.
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A provocative debate of the scientific community was triggered by impressive papers reporting
in vitro malignant transformation of MSCs, although followed by retraction [107,109]. Therefore,
in 2011 the Cell Products Working Party (CPWP) arranged an expert meeting to discuss the challenges
of MSC-based therapies, focusing on tumorigenicity [165]. The need to perform cell culture under
GMP conditions to ensure cell segregation and strict controls was emphasized. Since cell propagation
and culture conditions (such as presence/absence of serum) significantly influence the occurrence of
cytogenetic anomalies [122], it was suggested to perform a reduced number of population doublings in
slow growth conditions. A karyotype or FISH at batch release is required only if recurrent chromosomal
anomalies were found [165].

In general, no detailed requirements are indicated, therefore applicants must develop a risk
assessment program for their specific product. A tentative guideline with minimal MSC quality
requirements for clinical use was proposed by the Italian Group of Mesenchymal Stem Cells (GISM)
with indications for standardization and optimization of critical points such as cell isolation, in vitro
expansion, validation (characterization, functionality, potency and safety) and quality control for
identity, sterility, tumorigenicity and genomic stability. In particular, to exclude potential tumorigenicity,
assessment of telomerase activity (that should be low/undetectable) and soft agar test are recommended.
For genomic stability, karyotyping is recommended. The quality control process is foreseen during the
validation phase, during production and at batch release [102].

For tumorigenicity testing, an approach combining in vitro and in vivo studies or a combination
of in vitro studies is suggested, without specification of preferred tests [183]. The proposed
in vitro assessments are growth rate, anchorage-independent growth by soft agar culture,
cytogenetics, cell differentiation, functionality, expression of cell-cycle regulation genes, oncogenes and
tumor-suppressor genes, telomerase activity and senescence. However, all these indirect tests do not
guarantee the absence of tumor formation in vivo. In vivo studies are required anytime substantial
manipulation is performed and generally foresee the use of immunodeficient animals with the same
route of administration and a follow-up depending on biodistribution and persistence studies [165,183].
Anyway, a tumor developing in vivo on an immunodeficient animal model will not necessarily develop
in vivo in humans. Preclinical nonxenogeneic studies using animal transplant models before the
development of human equivalents have been suggested as the actual most relevant method to assess
tumorigenicity [105]. It should be noted that the frequency of MSC transformation could be too low to
be detected in rodent models and the immunological status of the animal can influence the results.
Before any definitive statement on MSC tumorigenicity can be made, the risk of tumor formation must
be monitored in the clinical setting with longer follow-up than those available today [165] taking into
consideration that tumors need many years to develop [131,132].

The International Society for Stem Cell Therapy (ISSCR) recently revised and extended the past
guidelines for stem cell research and clinical translation (ISSCR, 2006 and ISSCR, 2008) accounting for
scientific progress (such as mitochondrial replacement and genome editing), policy development and
new ethical concerns and social priorities. These guidelines provide principles and best practices for
basic, translational and clinical research [185] addressing ethical and scientific issues. One of the points is
that release criteria must be designed to minimize risk from culture-acquired abnormalities. Preclinical
trials must characterize cells, evaluate potential toxicity, possible tumorigenicity risks, biodistribution
and long-term effects. Moreover, a detailed biodistribution study is mandatory. Practices to address
long-term risks and to detect unforeseen safety issues must be adopted. Guidelines also provide
indications about the use of small and large size animal models. Guidelines recommend rigorous
demonstration of safety and efficacy in preclinical studies and that clinical trials be subject to rigorous
peer review focused at evaluating the risk/benefit balance. Research must be reviewed and approved.
Both positive and negative results must be published. In particular, risk of tumorigenicity must be
rigorously assessed for any stem cell-based product, especially if extensively manipulated in culture,
genetically modified or when pluripotent. An acceptable balance of risk and clinical benefit must be
demonstrated. Particular attention should be paid to research integrity and fairness, patient protection,
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welfare and social justice, transparency, the centrality of good clinical practice, solid preclinical data and
review processes, improved informed consent, rigor in research, public responsible communication
avoiding to exaggerate potential benefits and underestimate risks [85].

To sustain ethic and institution review boards in the approval process of cell-based trials, the
ISSCR developed a framework of questions covering the principal issues including: mechanism of
action, mode of delivery, presence of preclinical safety and efficacy demonstration, GMP production,
reagent quality control, potency assays, Phase I trial requirements [41,186]. By using this questionnaire
stakeholders will be helped in ascertaining if there is sufficient scientific and preclinical support for
moving to a clinical trial thus protecting patients and allowing translation of research to the clinic.

8. Concluding Remarks

Research data clearly demonstrate an intimate correlation between replicative potential, stemness,
senescence and genetic stability of human MSCs, but comprehensive studies and standardization of
procedures are still required to completely explore MSC biology. Basic research on MSCs is fundamental
to evaluate all the still open issues about these cells and the extremely powerful technical tools now
available have the potential to help scientists in reaching this goal. This will help in supporting clinical
trials by strong scientific rationale and adequate preclinical safety and efficacy testing to avoid not only
safety concerns but also excessively high restrictions to MSC-based promising therapies.

Currently, the available data point to the need of a case by case evaluation of MSC clinical
applications, particularly in relation to donor characteristics, specific culture conditions and specific
therapeutic applications. Genetic stability and senescence appear critical aspects to be carefully
evaluated to avoid failures or safety risks and long follow-ups are needed to monitor the incidence of
possible side effects at longer times.

Interpretation of genetic instability and senescence of cultured MSCs is controversial, but the
increasing incidence of genetic alterations at advanced culture times clearly indicates that few culture
passages correspond to a reduced chance to harbor dangerous alterations. Therefore, a prudential
behavior is desirable with reduction of culture times as much as possible to avoid safety concerns.

Finally, an accurate evaluation of the balance between risks and benefits appears a fundamental
criterion to guide the choice to use or not a therapy, particularly for treatment of non-life threatening
pathologies where the risk/benefit ratio has to be carefully estimated.
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