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Abstract.	 [Purpose] Physiotherapeutic heating agents are classified into two groups: superficial-heating agents 
and deep-heating agents. Therapeutic ultrasound is a deep-heating agent used to treat various musculosketal disor-
ders. Numerous studies have attempted to determine the impact of ultrasound on healthy nerve conduction param-
eters. However, the instantaneous effects of deep heating via ultrasound on demyelinating nerves do not appear to 
have been described previously. The present study aimed to assess and compare the impact of ultrasound on demy-
elinating nerve and healthy nerve conduction parameters. [Subjects and Methods] Carpal tunnel syndrome was used 
as a focal demyelination model. Thirty-two hands of 25 participants with carpal tunnel syndrome were enrolled 
in the study. Ultrasound parameters were 3.3 MHz, 1.0 W/cm2, 8 minutes, and continuous wave. Electrodiagnostic 
studies were performed initially, at the midpoint (4th min), and immediately after (8th min) ultrasound application. 
[Results] Reduced motor conduction velocity was found in demyelinating nerves at the 4th and 8th minutes. Ulnar 
nerve onset latency was significantly prolonged in the 8th minute recording, compared to the initial value. There 
were no significant differences in relative velocity and latency changes between demyelinating and normal nerves. 
[Conclusion] Deep heating via ultrasound may inversely affect conduction velocity in demyelinating nerves.
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INTRODUCTION

The impact of heat on nerve conduction was initially described by Hodgkin and Katz in 19491). Changes in sodium and 
potassium channel activation are primarily responsible for heat-related nerve conduction changes1, 2). With increasing tem-
perature, voltage-gated sodium channel activation and deactivation becomes increasingly rapid, and channels remain open 
for a shorter duration. Depending on the decreasing ion passage, the action potential amplitude diminishes and conduction 
velocity (CV) accelerates2). These differences that were defined at a single-fiber level were found to be similar in an in vivo 
environment3). In healthy nerve fibers, heating has been reported to increase both the sensory and motor nerve CV4, 5). In 
demyelinating diseases, nerve conduction blocks are observed with increasing body temperature6, 7). With respect to focal 
demyelinating conditions, superficial heating has been reported to increase nerve CV5, 8–10).

Heating modalities are mostly categorized as superficial and deep heating agents. Superficial heating modalities primarily 
increase the temperature of the skin and superficial subcutaneous tissues. In contrast, deep heating modalities change the 
temperature of deeper tissues to a depth of approximately 5 cm11). Therapeutic ultrasound (US) is a deep-heating agent 
used to treat various musculoskeletal disorders12–14). The biophysical effects of US on tissues occur through 2 mechanisms: 
(1) thermal effects acquired with continuous application, and (2) non-thermal effects acquired from pulse application15). In 
addition, the depth of penetration increases with increasing US frequency11).

Studies have reported contradicting results concerning the effects of deep heating produced by US on healthy nerve 
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conduction parameters. With respect to motor nerve CVs, continuous US was found to depend on intensity. Zankel and 
Farmer reported decreased ulnar motor nerve CVs with sonation intensities of 1 to 2 W/cm2, but increased velocities at other 
intensities16, 17). Madsen reported decreased CVs after sonation at 0.88 and 1.28 W/cm2, but increased CVs with sonation at 
1.92 W/ cm2 18). On the other hand, Kramer19) observed increased motor CVs with all 5 tested sonation intensities in a range 
of 0.5–2.5 W/ cm2. Regarding sensory conduction velocities, US application is generally associated with decreased sensory 
latencies and increased CVs in healthy nerves20, 21). However, not all studies support this effect. Recently, Burnham et al. 
reported no significant change in healthy nerve conduction parameters after US application5).

Carpal tunnel syndrome (CTS), the most common neuropathy, is caused by entrapment of the median nerve under the 
flexor retinaculum. Prolonged pressure on the nerve leads to focal demyelination. Patients usually present with paresthesias, 
pain, and numbness or a tingling sensation in the fingers innervated by the median nerve. Initial treatment of this condition is 
conservative, and includes splinting, exercises, medication, and physical therapy modalities. In a previous study, continuous 
US therapy at different intensities was applied to the palmar carpal tunnel area during 10 sessions. The researchers observed 
a decreased motor nerve conduction velocity and increased motor distal latency in median nerve conduction. The authors 
therefore suggested that continuous US should not be recommended for the treatment of carpal tunnel syndrome because of 
possible adverse effects on nerve conduction parameters due to overheating22). This negative effect of US on demyelinating 
nerve conduction must be considered, and therefore the biophysical effects of US should be assessed to confirm this result.

Previous reports do not appear to have described the instantaneous effects of deep heating on demyelinating nerves. 
However, such information would be important to the clarification of the effects of deep-heating modalities such as US on 
diseased nerves. Therefore, the authors aimed to analyze and compare instantaneous changes after deep heating in demyelin-
ating and healthy nerves in the present study.

SUBJECTS AND METHODS

This study was designed as a cross-sectional controlled trial (Fig. 1). The effects of deep heating on motor and sensory 
nerve conduction studies were analyzed immediately before, at the midpoint, and immediately after the application of thera-
peutic US. The study was conducted in compliance with the principles of the Declaration of Helsinki. The study protocol 
was approved by the local ethical committee (dated 20.06.2012, no. 69), and patients provided written informed consent to 
participate.

Before all applications, the room temperature was recorded. Patients were left to rest to allow their skin temperature to 
adapt to room temperature. The skin surface temperature on the palm was measured before, at the midpoint, and at the end 
of the US application using an infrared skin thermometer (Medisana AG, Neuss, Germany). The infrared skin thermometer 
was reported to be highly reliable and valid for the purposes of an electrodiagnostic laboratory23). The probe head of the 
thermometer was placed on the skin surface of the palm, and the temperature was recorded in °C.

A total of 32 hands of 25 subjects (mean age: 51.6 ± 9.5 years) were recruited for the study. Eligible subjects were identi-
fied among patients referred to our electrodiagnostic laboratory with symptoms and diagnoses of CTS24). A sample size of 
19 would achieve 92% power for the detection of a mean difference in pre-treatment and post-treatment sensory velocities 
of 1.9 m/s with an estimated standard deviation of 2.4 m/s, and a significance level (alpha) of 0.05 using a 2-sided paired 
t-test25). Patients were excluded if they had diseases that would affect nerve conduction, such as polyneuropathy, cervical 
radiculopathy, rheumatic diseases, or traumatic nerve injury. Patients were also excluded if they had contraindications to US 
application and/or were administered a corticosteroid injection in the last 6 months.

Nerve conduction studies were conducted using a Nihon Kohden Neuropack-S1 electromyogram device (Tokyo, Japan). 
Motor conduction studies were conducted using low- and high-frequency amplifier settings at 5 and 10 kHz, respectively. 
The amplifier settings for sensory conduction studies were 2 kHz for the low and 20 kHz for the high frequency. The 
sensitivity and sweep velocity were respectively set at 20 microvolts (µv)/division and 2 msec/division for sensory studies 
and 5 millivolts/division and 2 msec/division for motor conduction studies. Median motor nerve conduction parameters 
were recorded from the abductor pollicis brevis muscle, and ulnar motor nerve conduction parameters were recorded from 
the adductor digiti minimi muscle using superficial electrodes (orthodromic). The nerve was first stimulated from 7 cm 
proximal to the recorded muscle. A second stimulation was applied from the antecubital fossa for the median nerve, and from 
the cubital tunnel for the ulnar nerve. Onset latency and nerve CV were recorded. Median sensory nerve conduction studies 
were recorded from the 2nd finger, and ulnar sensory nerve conduction studies were recorded from the 5th finger using a ring 
electrode (antidromic). Peak latencies and CVs of the sensory action potential were recorded. Median versus ulnar sensory 
conduction comparison studies were recorded from the 4th finger, and the peak latency of the sensory response was recorded. 
All stimulation and recording points were marked on the skin. Electrodiagnostic studies were repeated from the same marked 
points at the midpoint (4th min) and end (8th min) of US application.

US applications were performed using an Intellect Mobile Combo US Unit (Chattanooga, TN, USA). Each subject was 
exposed to continuous-wave US treatment with a sonation intensity of 1.0 W/cm2 and frequency of 3.3 MHz. A 0.5-cm2 
US head was used. A circular application technique with a soundhead movement speed of approximately 3 cm/second was 
used. The treatment area was 4 cm × 2.5 cm, expanding from 1-cm distal to 2.5-cm proximal of the wrist crease, including 
the median and ulnar nerve traces. The size of the radiated area with respect to the diameter of the US head was within the 
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recommended limits18). The transmission gel was brought to room temperature before treatment.
The Kolmogorov-Smirnov test was used to assess the normality of numeric variables. For numeric variables that were nor-

mally distributed, comparisons between 2 groups were made using the independent sample t-test, and results are expressed as 
means ± standard deviations. For the scores and numeric variables that were non-normally distributed, comparisons between 
2 groups were made using the Wilcoxon t-test or Friedman test, and results are expressed as medians (25th–75th percentiles). 
P values <0.05 were considered statistically significant.

RESULTS

The mean room temperature throughout the study was 26.9 ± 1.2 °C. There were no statistically significant differences 
between skin surface temperature measurements before US application and at the 4th and 8th minutes (p >0.05; Table 1).

Table 2 summarizes the median values of changes in motor and sensory latencies and nerve CVs recorded from median 
and ulnar nerves before and at the 4th and 8th minutes of US application. Regarding motor studies, the CVs of demyelinating 
median nerves exhibited significant decreases at the 4th and 8th minutes. In addition, a significant prolongation in the healthy 
ulnar nerve onset latency was identified at the 8th minute when compared to the initial value. There were no significant 
differences in the before- and after-US values for median motor latency, median sensory latency and CV, ulnar motor CV, 
ulnar sensory latency and CV, and median-ulnar 4th finger peak latency.

Relative changes in electrophysiological parameters obtained from demyelinating and normal nerves at the 4th and 8th 
minutes of US application are compared in Table 3. There were no significant differences between demyelinating and normal 
nerves in terms of velocity and latency changes due to deep-heat application.

DISCUSSION

The main question addressed in this study was whether the application of deep heating would differently affect demyelin-
ating and normal nerves. Previous studies of healthy nerves observed inconsistent effects of US. Some of these reports16–18) 
suggested that the CVs of healthy motor nerves decreased at sonation intensities of approximately 1 W/cm2, except for 1 
study25) that observed an increased CV. In addition, previous research indicated an association between sonation and in-

Fig. 1.  Study design

Table 1.  Changes in skin surface temperature

Before application 4th minute 8th minute
Temperature (˚C) 36.8 (36.5–37.0) 36.8 (36.5–37.1) 36.7 (36.5–37.2)
Absolute change values are presented as medians (25–75 percentiles)
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creased sensory nerve CVs in healthy nerves19, 21, 25). In the present study, a statistically significant deceleration was observed 
with deep heating in both in demyelinating and healthy nerve motor CVs, but not in sensory CVs.

Previously, reduced healthy nerve motor conduction speed following US radiation has been attributed to micromassage 
action16) or a mechanical effect17) of US. Todnem et al. reported that motor CVs increased non-linearly with increasing skin 
temperature26). This non-linear relationship between body temperature and nerve CVs might also explain the results of the 
present study. The authors of that earlier study also surmised that a decreased motor CV might be related to the cooling 
effect of the transmission gel. According to a report by Kramer et al., intensities above 1.5 W/cm2 were necessary to exceed 
the cooling effect of the transmission gel25). In the present study, the sonation intensity was 1.0 W/cm2, or below the lower 
limit determined by Kramer et al25). The present study was conducted at a frequency of 3.3 MHz. However, previous work 
has demonstrated temperature elevation in deeper tissue layers at a continuous US application of 1 MHz27). Additionally, 
the effective radiating area and output power of US devices from different manufactures may differ, resulting in different 
degrees of tissue heating28, 29). Consequently, these variables differed between studies and increased the difficulty of drawing 
a precise conclusion.

The median and ulnar nerves, which have similar structures and anatomical locations, respond similarly to temperature 

Table 3.  Comparison of changes in demyelinated and normal nerves with deep 
heating

Median Nerve Ulnar Nerve
ML1-ML2 −0.05 (0.28) −0.06 (0.21)
ML1-ML3 −0.01 (−0.23–0.21) −0.08 (−0.31–−0.02)
MCV1-MCV2 1.25 (0.00–4.77) 1.30 (−1.22–2.60)
MCV1-MCV3 0.91 (3.77) 1.57 (3.55)
SL1-SL2 −0.03 (−0.10–0.08) 0.01 (−0.07–0.07)
SL1-SL3 0.00 (−0.10–0.10) −0.01 (−0.05–0.11)
SCV1-SCV2 0.14 (1.99) 0.30 (4.67)
SCV1-SCV3 0.55 (−0.60–1.72) 0.25 (−4.37–3.20)
Absolute change values are shown as means (standard deviations) or medians 
(25th–75th percentiles) as indicated. 1: initial value; 2: value at 4th minute; 3: 
value at 8th minute; ML: motor latency; MCV: motor conduction velocity; SL: 
sensory peak latency; SCV: sensory conduction velocity

Table 2.  Summary of changes in nerve conduction parameters with deep heating

Initial 4th minute 8th minute
Median nerve
Motor
Latency (msec) 4.61 (4.26–4.95) 4.58 (4.32–5.19) 4.66 (4.09–5.14)
CV (m/s) 53.95 (50.60–56.55)* 52.15 (50.15–54.75) 52.60 (50.85–54.75)

Sensory
Latency (msec) 4.03 (3.33–4.61) 4.03 (3.39–4.5) 4.05 (3.42–4.64)
CV (m/s) 37.0 (33.5–45.0) 36.0 (33.5–43.1) 36.9 (33.3–41.3)

Ulnar nerve
Motor
Latency (msec) 2.60 (2.46–2.88)** 2.64 (2.54–2.95) 2.77 (2.54–3.03)
CV (m/s) 62.65 (59.55–5.60) 60.60 (58.15–63.85) 61.40 (57.65–64.10)

Sensory
Latency (msec) 2.40 (2.34–2.67) 2.43 (2.31–2.58) 2.48 (2.31–2.59)
CV (m/s) 56.35 (51.55–59.20) 56.50 (52.00–59.10) 56.45 (51.90–59.55)

Med-Uln 4P
APLD (msec) 1.20 (0.92–2.30) 1.18 (1.00–2.34) 1.13 (0.98–2.26)
Absolute change values are median (25th–75th percentiles). CV: conduction velocity; Med-Uln 4P: median and ulnar 
nerve sensory conduction study to the fourth digit; APLD: absolute peak latency difference
*The first measurement differs significantly from the 4th and 8th minute measurements (p <0.05)
**The first measurement differs significantly from the 8th minute measurement (p <0.05)
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changes30, 31). In the present study, healthy ulnar nerves in the arms affected by CTS comprised the control group and were 
compared with demyelinating median nerves. Use of the ipsilateral ulnar nerves as the control group enabled the elimination 
of potential biases such as deep tissue temperature differences or the amount of US radiation. As nerve conduction studies can 
be affected by many other parameters, such as height, age, sex, tissue temperature, and room temperature, the simultaneous 
comparison of healthy control and demyelinated nerves in the same arm is a strength of this study.

CTS is the most common of all demyelinating nerve disorders. Deep heating via US is often used for CTS treatment. 
Several studies have evaluated the cumulative effect of US treatment in patients with CTS18, 32, 33). In the first study, US 
pulsed mode 1:4 US was applied at 1 MHz and 1.0 W/cm2 for 15 minutes and 20 sessions, and significant improvements 
were observed in motor distal latency and sensory nerve conduction32). In another study, improvements in motor latencies 
and amplitudes of were observed in patients with CTS after 15 sessions of US33). In contrast, another study found no signifi-
cant difference in nerve conduction after 10 sessions of US with changing dosages, but identified a mild increase in motor 
latencies and deceleration of motor CVs with US applications at 1.5 W/cm2 and 0.8 W/cm2 22). These studies focused on the 
effectiveness of US with consecutive applications. In contrast, the present study focused on the immediate biophysiological 
results of deep heating from US.

Subcutaneous temperature measurement was not performed in this study, and this omission could be perceived as a limita-
tion. However, previous reports described a significant correlation between intramuscular and skin surface temperatures, and 
skin surface temperature measurement is more reliable and reflective of the subcutaneous tissue temperature close to the 
nerve23, 30). Therefore, in the present study used skin surface temperatures measured with an infrared thermometer, rather 
than subcutaneous tissue temperatures.

The present study revealed a significant reduction in the demyelinating motor nerve CV, but not the sensory nerve CV, 
after deep heating. This finding could raise questions about the effectiveness of deep heating for diseased peripheral nerves. 
However, the present study only obtained results using continuous US at 3.3 MHz and 1W/cm2, with application times of 
4 and 8 minutes. In the future, similar studies involving different US parameters will enable researchers to obtain a wider 
variety of results.
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