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Abstract

The major protective coat of most viruses is a highly symmetric protein capsid that forms spontaneously from many copies
of identical proteins. Structural and mechanical properties of such capsids, as well as their self-assembly process, have been
studied experimentally and theoretically, including modeling efforts by computer simulations on various scales. Atomistic
models include specific details of local protein binding but are limited in system size and accessible time, while coarse
grained (CG) models do get access to longer time and length scales but often lack the specific local interactions. Multi-scale
models aim at bridging this gap by systematically connecting different levels of resolution. Here, a CG model for CCMV
(Cowpea Chlorotic Mottle Virus), a virus with an icosahedral shell of 180 identical protein monomers, is developed, where
parameters are derived from atomistic simulations of capsid protein dimers in aqueous solution. In particular, a new method
is introduced to combine the MARTINI CG model with a supportive elastic network based on structural fluctuations of
individual monomers. In the parametrization process, both network connectivity and strength are optimized. This elastic-
network optimized CG model, which solely relies on atomistic data of small units (dimers), is able to correctly predict inter-
protein conformational flexibility and properties of larger capsid fragments of 20 and more subunits. Furthermore, it is
shown that this CG model reproduces experimental (Atomic Force Microscopy) indentation measurements of the entire viral
capsid. Thus it is shown that one obvious goal for hierarchical modeling, namely predicting mechanical properties of larger
protein complexes from models that are carefully parametrized on elastic properties of smaller units, is achievable.
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Introduction

In the past three to four decades the field of Molecular

Dynamics (MD) simulations has matured into an indispensable

and well-established tool in bio-molecular science [1–10]. The

rapid development and improved accuracy of force fields [11] has

turned computer simulations into a reliable and, more important-

ly, an insightful method for describing and understanding

biological phenomena [12]. Time and again, atomic level details

obtained from these simulations have proven crucial in un-

derstanding bio-molecular function of complex biological systems

[1–15].

In biology, the application of computer simulations spans an

impressive range, all the way from sub-atomic resolution chemical

changes in the active site of an enzyme [16–20] to single molecule

level domain motions [21,22] up to protein-protein associations

[23] and assembly of large molecular complexes like actin [24] and

microtubules [25].

However, bigger systems move more slowly. In fact, dispersion

relations for dissipative soft matter are frequently of the form

r!ka with r being a general relaxation rate, k the corresponding

wave vector and aw1 (e.g. a~2 for diffusion or a~3 for

membrane undulations), implying that the time problem is often

the more severe one, and it is much less amenable to

parallelization techniques such as domain decomposition or

running different replicas. Tremendous computational effort

and/or simulation time are required for studying large biological

ensembles such as ribosomes, multi-protein assemblies such as

viruses and biological processes like protein (un-)folding [26,27],

protein self-aggregation etc., in a biologically relevant time scale in

atomistic resolution.

One promising way to overcome these limitations is coarse

graining (CG). As early as 1975 Levitt and Warshel have suggested

to tackle the protein folding problem by reverting to a reduced set

of relevant slow variables, relegating all finer detail to averages

[28]. Hagler and Honig [29] subsequently pointed out that

without stringently defined criteria for measuring folding success,

a wide spectrum of plausible structures might superficially look

good; but recent developments of systematic coarse graining

methodologies [30–33] seem to provide a clean framework for

addressing many possible concerns and have given the field new

momentum.

Nevertheless, any CG model by construction leaves out certain

aspects of the small-scale physics, causing possible problems on

larger scales one must either tolerate or fix. For instance, the

MARTINI protein model [34,35] represents three to four heavy
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atoms by a single CG bead, and for the peptide backbone this

leaves one isotropic CG bead per amino acid; this resolution is too

low to permit secondary structure formation, let alone folding. The

developers of MARTINI hence propose to stabilize native protein

structures by introducing extra harmonic bonds of suitable

strength between selected degrees of freedom. This of course

disqualifies the model for protein folding studies, but protein

partitioning between different phases [35] or assembly of protein

complexes [36,37] are well within its reach, especially since

partitioning coefficients are a central target that MARTINI’s CG

interactions aim to reproduce. In this article we investigate the

question, how such extra stabilizing networks should be con-

structed to capture not only single-protein fluctuations but also the

flexibility of larger assemblies, thereby expanding on earlier work

focusing on single proteins [38]. We will show that this obvious

goal for hierarchical modeling, namely predicting elastic aspects of

larger protein complexes from models that are carefully param-

etrized on smaller units, is achievable.

The idea to add a stabilizing network to a CG simulation goes

back to elastic network models, which in turn were strongly

influenced by Paul Flory’s work on polymers [39]. Tirion showed

in 1996 [40] that the frequency spectrum of a protein is

remarkably well reproduced by the following crude model: link

all atom-pairs in a protein structure within a pre-specified cutoff

with harmonic springs of a rest length equal to the atom distance

and always the same spring constant K. A slightly different setup

(harmonic in the pair vectors) was proposed by Bahar et al. [41].

Elastic network models (ENM) showed that the linear response of

proteins (equilibrium fluctuations and correlation times) is

essentially contained in the static crystal structure [40–47].

Running a simulation is neither necessary for fixing the input

(one spring constant rules all scales) nor for arriving at the output

(harmonic systems can be solved analytically). Both of this

changes, though, if we are interested in physics beyond the linear

regime – in the present case, if we add a stabilizing harmonic

network on top of the generally very nonlinear interactions which

together constitute a (CG) protein model: The energy scale is set

and the spring constant(s) must be chosen relative to the existing

force field, which ideally already captures part of the interesting

physics. Since only very few nonlinear systems can be solved

analytically, one is usually forced to apply numerical approxima-

tion methods. Hence the resulting hybrid system (force field plus

elastic network) has to be simulated.

In this paper we investigate some of the intricacies that arise,

when an artificial network is added on top of a CG model to

amend some of its shortcomings. For instance, the classical cutoff

criterion for adding springs – according to which two neighboring

units closer than a pre-specified cutoff are linked – can lead to the

placement of erroneous bonds, simply because whatever served as

a target structure coincidentally showed a close distance, while the

separation of these two beads in fact fluctuates widely over time.

Or, proteins with identical amino acid sequence might assume

slightly different folded structures, according to their location in

a bigger complex. The capsid subunits of CCMV, which all have

the same amino acid sequence but assume three slightly different

folds, depending on which of the three symmetrically inequivalent

sites on the capsid they assume, are to some extent an example of

such a case. The majority of these differences in the fold are

localized to the N- and C-termini. While the former interacts with

the RNA and is not relevant to the present study (see below for

details), the latter is a dimerization motif. As a consequence, the C-

terminal structural differences between different protein mono-

mers are intimately linked to the overall shape of the protein

dimers. Clearly, these differences are not innate to the capsid

monomer but result from its incorporation into the overall

structure. Though the RMSD differences between the different

chains are small within the protein core, overall they would result

in three different CG models. And it seems ill-advised to engage in

aggregation studies by starting with three inequivalent reference

structures – and consequently inequivalent CG models for the

monomers. In fact, parts of the chain might only assume a well-

defined structure after they have aggregated. The C-terminal tail of

the CCMV capsid monomer is an example for this case: it is

largely extended and unlikely to be stable in its specific

conformation in a single monomer/capsomer, but fits extremely

well into grooves on a second one, thus leading to formation of

a stable dimer. (Note that from now on we will be using the terms

‘‘capsid protein’’, ‘‘capsid monomer’’ and ‘‘capsomer’’ equivalent-

ly, all of which refer to a single subunit of the viral capsid.)

Unfortunately, it is difficult to avoid the above-mentioned biases

while relying on experimental structure data alone, because our

high resolution knowledge of a capsid protein’s crystal structure

precisely derives from studies of full capsids, and the immense

efficiency with which these proteins aggregate into capsids

prevents us from crystallizing them into anything else that would

avoid the capsid-derived bias. However, based on the experimen-

tal structures one can perform atomistic simulations to obtain the

missing information about such structural fluctuations. We used

the systematic refining of the elastic networks as described by

Lyman et al. [48] to introduce the ‘‘missing’’ fluctuation modes in

the coarse grained model. One can simulate monomers, dimers, or

larger capsid fragments and study how their large scale behavior

emerges. In other words, atomistic reference trajectories of

different assembly stages constitute a hierarchical sequence that

can be used as a guiding principle for constructing elastic-network

fortified CG models. This is the strategy we follow in this work.

System
Let us briefly describe the viral model system we investigate in

this work. CCMV belongs to the Bromoviridae family of viruses.

Its capsid has icosahedral symmetry and a triangulation number

(T-number) of 3 (Figure 1A), using the terminology of `quasi

equivalence theory’ as introduced by Casper and Klug [49]. The

whole virus, as well as several structurally consequential mutants,

have been crystallized [50]. The capsid consists of 60 T~180
chemically identical capsomers, each consisting of 190 amino

acids. A capsomer is folded into an 8-strand b-sheet core with the

N-terminus extending into the interior of the capsid and the C-

terminal tails making inter-capsomer contacts to form dimers (see

Figure 1B). The capsomers self-assemble into an icosahedrally

symmetric virus particle via several intermediates. In solution

dimers form the predominant stable structure [51]. Experimental

studies suggest that pentamers of dimers (POD) form an

intermediate seed complex for building the whole capsid by

further addition of dimers. [51–53].

In-vitro experiments have shown that deletion mutation of the

N-terminus (1–36 residues) prevents the packaging of RNA but

does not disrupt the formation of the capsid [52,53]. In this study,

we shall be using this D1–36 mutant capsomer protein in all our

simulations. Throughout the paper we will use the residue

numbering of the D1–36 mutant, this means that residues 37,

38, …, 180 of the full capsomer sequence will be referred to as

residues 1, 2, … 154.

By virtue of the location of the capsomers at the various

symmetry centers of the icosahedron, they adopt 3 marginally

different structural conformations (A, B and C) (see Figure 1C
and Table S1 in File S1). The pentameric association site forces

the capsomers to assume conformation A, whereas the hexameric

A Coarse Grained Model for CCMV Capsid Deformation
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association site enforces conformations B and C, forming a quasi-

six-fold rotational symmetry of the hexamer. The majority of these

structural differences are localized to the N- and C-terminal

regions of the protein chain (see Figure S1 in File S1). The N-

terminal tails form a b-barrel core at the hexameric association

site, whereas there is no evidence of organized structure at the

pentamer interface. We have recently argued that this can indeed

be understood as a collective geometry-dependent impact on local

structure formation during the assembly process [54] Note

however, that in the D1–36 mutant, the N-terminal differences

between A, B, and C folds are largely cleaved away, i.e. not

relevant to the present study. The C-terminal structural differences

between different protein monomers, however, are intimately

linked to the overall shape of capsomer dimers (see Figure S2 and

Table S2 in File S1). For dimer formation two protein chains

interact via their respective C-terminal tails which form a flexible

linker region. Since these dimers are the smallest units proposed

for the assembly process, and since the overall shape of the dimer

is influenced by these small conformational variations in the C-

terminal interface regions, special attention has to be paid to the

representation of these regions in the CG model.

Summarizing, the presence of a high-resolution structure of

CCMV, the ability of capsomers to self-assemble without active

biochemical control, the availability of various in-vitro studies, and

a host of intriguing unresolved questions (such as the back-effect of

global structure on local folding of capsomers) establish the capsid

Figure 1. Different representations of the CCMV capsid and its subunits. (A) Render of the whole CCMV viral capsid, highlighting pentamer
of dimers (POD) (red and blue) plus the flanking CC dimers (green). The type A chains in the POD are colored in red, while the type B chains are
colored in blue. (B) Cartoon representation of the core regions for a dimer (residue 14 to 142 for each chain - without the flexible tails). This figure
draws emphasis to the ‘‘hinge’’ (arrow points to the region) between the two capsomers, that enables them to rotate relative to each other. (C)
Pentamer of dimers (red and blue) plus flanking CC dimers (green) highlighting the asymmetric unit (bottom in cartoon representation). (D) The
defined internal axes (which are loosely based on the gyration tensor of the capsomer) for generating the relative orientation maps (see text). The
center of mass (COM) of Ca atoms of residues 69–71, 92 and 122–124 defines the X-axis (red), the COM of the Ca atoms of residues 20–21 and 134–
135 defines the Y-axis (yellow) and the COM of the Ca atoms of residues 56–58 and 99–100 defines the Z-axis (blue).
doi:10.1371/journal.pone.0060582.g001
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of CCMV as an attractive model system for the type of questions

we wish to address.

Results

A key aim of our work is to test how the different prescriptions

for setting up a supporting elastic network affect the local

fluctuation spectrum of monomers and dimers, how these

fluctuations change in larger capsid fragments, and what impact

they have on the large-scale elasticity of the whole viral capsid. We

performed atomistic simulations of several capsomer complexes. In

the present paper we focus on dimers and a system of pentamers of

dimers with an additional ring of CC-dimers (POD+CC) (i.e.

a highly symmetric capsid fragment consisting of 20 monomers,

see Figure 1C). While the dimer is the main reference system for

the CG model for which the parameters are derived, the

POD+CC system is used to test the agreement between the

atomistic and the CG simulations. It serves as a model complex,

where atomistic reference data can still be obtained – albeit with

considerable computational effort – and where one can verify that

a CG model, which was parameterized based on fluctuation data

of individual dimers in solution, can indeed correctly reproduce

the behavior of the same dimers, when they are placed in a capsid-

like environment. The POD+CC unit was chosen since the

pentameric unit is experimentally proposed to be important for

structure and assembly of the capsid, but – more importantly –

because of its very high symmetry and the two characteristic types

of dimers it is composed of: the center of the POD+CC complex is

formed by five equivalent AB dimers which are completely

surrounded by other proteins, potentially restricting the dynamics

of these dimers. In contrast, the five equivalent outer CC dimers

are more exposed to the solvent and possibly less restricted by the

rest of the complex (Figure 1C).

In a last step, we will study entire CCMV capsids with CG

simulations and show how in different CG models (i.e. different

elastic networks) the parameters of individual capsid proteins

influence the elastic response of the entire capsid. We will evaluate

the elastic networks by setting up comparable indentation

simulations to correspond with experimental mechanical de-

formation studies. This hierarchy of scales and model systems will

permit us to evaluate the necessary level of detail one needs to

invest to obtain a consistent set of structures with correct elastic

properties.

Atomistic Simulations of Dimers
The atomistic simulations are on the one hand used to

characterize the relevant motions in the complexes, in particular

to find out how the dynamics within the individual proteins and

the relative motion of proteins within dimers and larger complexes

are affected by the presence or lack of protein environment. On

the other hand, these simulations will serve as a basis for the setup

and the refinement of the supporting elastic network in the coarse

grained model.

Three independent atomistic simulations (100 ns each, with

a different random seed for the initial velocities) were performed

with the aim to sample the relative conformational flexibility of the

dimers. One of these simulations was additionally extended to

400 ns.

The structural stability of the proteins is analyzed via the root

mean square deviation (RMSD) value of the a-carbons from the

initial/experimental conformation (Figure 2A, B). Here, the

RMSD values of the two individual capsid proteins (dotted lines)

characterize the internal flexibility of the proteins. The compar-

atively low average RMSD values of 2–3 Å indicate that the

capsomers are structurally relatively stable. Figure 2A, B also

shows the RMSD of the entire dimer (solid lines), which is

substantially larger since it also captures the overall deformation of

the protein complex, including the large-scale relative motion that

is mostly happening due to the flexible ‘‘hinge’’, where the proteins

are linked via their C-terminal tails (see Figure 1B). This ‘‘hinge’’

motion will be analyzed in greater detail below. Although time

series are convenient in visualizing meta-stable states of the

conformations, for the sake of lucidity and succinctness we choose

to use histograms (Figure 2B) for subsequent analysis and

comparison with the CG simulations. These meta-stable states (we

discuss examples below) tend to show up as multiple peaks (‘‘multi

modality’’) of the histogram distributions.

The relative orientation of the two capsomers in the dimer

complex can be described by various angles between vectors

defined within the individual proteins. Figure 2C, for example

shows the time evolution of an angle that characterizes a ‘‘twist’’

motion which is defined by planes spanned within the proteins (for

an illustration see Figure S3 in File S1). The time evolution in

the different independent dimer simulations shows that this twist

angle can ‘‘get locked’’ in different values and remains there for

the entire length of the simulation (Figure 2C). Extending the

simulation further to 400 ns does not seem to improve the

sampling of other conformations once the twist orientation gets

locked. The angles sampled by the dimer in the different

simulations span a range of 70 degrees (Figure 2D). Such large

variations and preferential orientation ‘‘locks’’ of the dimer in

separate simulations suggest that sampling of large scale structural

fluctuations in this protein dimer is beyond the timescale of these

atomistic simulations. This observation alone strongly points

towards the need for coarse-grained simulations in enabling access

to longer time scales and thus achieving better conformational

sampling. One problem here is of course that even long and

multiple atomistic simulations of the dimers will not allow us to

extensively sample and equilibrate the dimer dynamics and the

hinge motion. We conclude that the parametrization of the CG

model can only be based on shorter-timescale dynamics such as

fluctuations within the individual monomers. Nevertheless, the

extent of the relative protein orientations within the dimers

observed in the atomistic simulations will be analyzed further in

the next paragraph, since this will provide us with information

regarding the mobility at the ‘‘hinge’’. Due to its connection with

the shape and deformability of the dimers, this ‘‘hinge’’ motion

will be important both for assembly and mechanical properties of

the capsids and is therefore an important criterion for the CG

model.

Descriptors such as a single angle are hardly sufficient to

provide a good characterization of the three dimensional

arrangement of two anisotropic units (in this case capsomers) in

a dimer connected by a hinge. Therefore a better representation

that describes the relative orientations between the two monomers

has been developed in form of relative orientation maps (ROMs)

of all principal axes of the capsomers (described in detail in the

Methods section). Briefly, a ROM stereo-graphically projects

a principle axis of one capsomer onto an equatorial plane whose

normal vector is the corresponding principal axis of the other

capsomer. Relative positions of the capsomer in the dimeric

complex are plotted as probability densities as shown in

Figure 2E. They quantify the relative orientation fluctuations of

the capsomers by separately looking at the (X, Y and Z) ROMs.

The ROMs of internal Y- and Z-axes describe a ‘‘twisting’’-like

rotation of the capsomers with respect to each other, whereas the

X-axis describes an ‘‘opening/bending’’ motion. Figure 2E shows

as an example the three ROMs obtained from an average over all
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atomistic trajectories of the free dimer, i.e. a total of 600 ns of

simulation time. Among the various regions visited during these

simulations there are some favorable states with higher occupan-

cies. After studying these ROMs for several atomistic and CG

trajectories, we found that they are well suited to comprehensively

describe the phase space sampled by the protein dimers and the

extent of the relative motion around the hinge. The spread of the

distributions of these relative orientations provides a very good

visual guide and we will use this in the following to assess the dimer

flexibility in different simulations and to compare simulation

models. In addition we also provide means and standard

deviations of the orientational distributions in the Supplementary

Material (see Table S4, S5 and Figure S10 in File S1).

Coarse-grained Simulations with Standard MARTINI
Elastic Network

We first performed coarse-grained MD simulations using the

MARTINI CG forcefield for proteins [34,35], extended by the

standard ELNEDYN network [38].

As a consequence of the slightly different structures assumed by

the A, B, and C protein chains in the X-ray structure of the capsids

(see Figure 1C and Figure S1 in File S1), the application of the

standard ELNEDYN network definition results in three slightly

different elastic networks. It should be noted here that the elastic

network is only established within each capsid monomer, there are

no network bonds between different protein chains, and the

intermolecular (protein-protein) interactions are purely handled

through the non-bonded interactions of the MARTINI forcefield

(i.e. van-der-Waals forces and Coulomb interactions). As one

would expect one finds different elastic network bonds in the tail

regions of the protein. This ambiguity in the elastic network

definition based on the three reference structures illustrates the

fundamental problem of how to deal with potentially flexible tails

based on structure information only and opens up the question:

how does one decide which elastic bonds should be applied and

which should better be avoided since they would otherwise

artificially restrict potentially flexible units?

In a first CG setup, a uniform spring constant of strength 500 kJ

mol21nm22 is used for all network bonds– in accordance with the

standard MARTINI/ELNEDYN settings. The dimer is simulated

for 400 ns (which corresponds to an estimated 1600 ns* in ‘‘real

time’’ after mapping the accelerated CG dynamics to realistic

timescales by a time-scaling factor of 4 that had been determined

for the MARTINI force field [55,56], see Methods section). The

RMSD distributions in Figure 3B shows that the combination of

this (monomer) elastic network with the MARTINI forcefield

yields a stable dimer complex. However, the structural fluctuations

of the capsomer (open distribution) and the relative motions

between capsomers in the dimer (shaded distribution) are much

too small, i.e. the protein complex is too rigid. (Table 1 provides

the respective means and variances of all RMSD distributions

shown in Figure 3 as a more quantitative analysis.) The bimodal

nature of the dimer RMSDs reflects that the dimer adopted two

meta-stable states, with a long-lasting persistence time of

approximately 200 ns (time series not shown). Since this network

made the proteins too rigid, the spring constant of the

homogeneous elastic network was reduced by more than a factor

of 2 to 200 kJ mol21nm22 (500 ns simulation time). Figure 3C
shows that, interestingly, this partially ‘‘fixes’’ the deviations in the

flexibility of the dimers (shaded distribution) and the RMSD values

were much closer to those observed in atomistic simulations.

However, the individual monomers (open distribution) are still too

rigid. In the interest of being consistent, in all following figures

data obtained from trajectory(ies) of atomistic simulation will be

colored black, CG data from MARTINI plus ELNEDYN with

spring constant of 500 kJ mol21nm22 will be colored red and from

MARTINI plus ELNEDYN with spring constant of 200 kJ

mol21nm22 blue. This coloring scheme should not be confused

Figure 2. Atomistic MD simulations of the free dimer in solution. Colors black, red and blue represent different independent simulations. (A)
Time series of RMSD of core regions (see Materials and Methods) a-carbons in the capsomers (dotted) and the dimer (solid). (B) Histogram of RMSDs
sampled by the capsomers (unshaded) and dimer (shaded) for the 400 ns simulation. (C) Time series of relative ‘‘twist angle’’ of capsomers in the
dimer (see also Figure S3 in File S1). (D) The corresponding ‘‘twist angle’’ distribution for the three simulation trajectories. (E) Relative orientation
maps (ROMs) of the dimers (averaged over all atomistic simulations, i.e. a total of 600 ns). For details regarding the projections shown see main text.
Coloring according to the normalized probability of finding these relative orientations. The blue circles are drawn with a radius of the longest internal
axis of the capsomer.
doi:10.1371/journal.pone.0060582.g002

Figure 3. RMSD (a-carbons of core regions) distributions from
simulations of isolated dimers. Open histograms: RMSDs within the
monomers; shaded histograms: RMSDs of dimers. (A) atomistic
simulation (400 ns); (B) CG simulation with ELNEDYN network (spring
constant: 500 kJ mol21nm22); (C) CG simulation with ELNEDYN network
(spring constant: 200 kJ mol21nm22); (D) CG simulation with IDEN
elastic network.
doi:10.1371/journal.pone.0060582.g003
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with the scheme used in Figure 1 for highlighting the

classification of dimers.

Figure 4 shows the ROM analysis of the simulations with the

two ELNEDYN networks (500 and 200 kJ mol21nm22). It clearly

conveys that the sampling of the phase space by the dimer is

greatly reduced by these networks compared to the atomistic

simulations. Thus, making the individual monomers too rigid

affects the inter-capsomer mobility and this calls for an effort to

carefully refine the elastic network.

This also raises further questions: (a) Can a more refined elastic

network capture the dimer behavior as observed in the atomistic

simulations? (b) Can a uniformly refined elastic network capture

the different behavior at the symmetrically inequivalent A, B, and

C sites? (c) What is the biological relevance of the apparently vast

relative orientational flexibility of the capsomers in a dimer during

the viral capsid assembly process and for the mechanical

properties of the resulting assembled capsid?

Coarse Grained Simulations with IDEN Elastic Network
We attempted to answer the above questions by constructing

a refined universal elastic network to constrain the local flexibility,

as described above. The following adaptations to the standard

ELNEDYN network proved to be relevant: the bond definitions of

ELNEDYN are based on the initial structure and ELNEDYN only

uses a distance cutoff criterion. This has led to several unphysical/

unnecessary bonds in the flexible regions of the protein (Figure 5),

which artificially stiffened the capsomer. We saw evidence of this

in the previous section when monitoring the RMSD of a capsomer

and its dimer in our ELNEDYN coarse-grained simulations

(Figure 3 and 4). In the IDEN (Iteratively-refined Distance-based

Elastic Network) approach we define the bonds based on the

distances between the atom pairs averaged over the two

monomers in 400 ns of atomistic dimer simulations. This may

exacerbate artifacts especially in regions with high mobility/

fluctuations (the atoms might be in unphysical positions like in an

average structure), as illustrated in Figure 5C. The flexible N-

terminal tail is connected to the relatively rigid core of the capsid

protein and would hinder free motion of this region. To avoid

placing such artificial bonds we introduce extra checks (correlated

motions and the extent of local structural fluctuations), and this

takes care of grouping regions that move collectively on the one

hand while preventing restricting mobile regions via unphysical

springs on the other hand (Figure 5D and E). Further, IDEN

scales the bond strength by iterative adjustment to account for

domains that are relatively flexible. Note again that while the

atomistic reference simulations used here are simulations of

a dimer, also in the IDEN network derived form these simulations

elastic network bonds are drawn only within a monomer, all CG

inter-protein interactions are taken care of by the MARTINI

forcefield.

Figures 3D and Figure 4D show the monitored descriptors

(histogram of RMSD values and ROM, respectively) for 400 ns of

CG simulations with our converged heterogeneous network

(IDEN, in green). When compared with distributions obtained

from ELNEDYN networks (Figure 3B, C), the IDEN-derived

RMSDs of capsomers (open) and dimer (shaded) are in better

agreement with the atomistic simulation. The dimer distribution

using the IDEN network shows two meta-stable states as

interpreted by the bi-modality of the distribution. The ROM

projection spread in Figure 4D is now comparable in terms of the

area swept by the conformations relative to one another. As

opposed to the two ELNEDYN networks shown in the previous

section, it is now possible to obtain a good agreement with the

atomistic reference simulations both for the intra capsomer

stiffness as well as for the extent of dimer motion at the ‘‘hinge’’.

Note that the comparison of the orientational distributions in the

free dimer simulations between atomistic and CG simulations

should no be over-interpreted since – as we have shown above –

these large scale dynamics is by no means exhaustively sampled in

the atomistic simulation. The conformationally more restrictive

system studied in the subsequent section will be better suitable for

a more quantitative assessment. At this point we would like to

conclude again that elastic modes of individual capsomers

(dictated by the elastic network) have a profound effect on the

inter-capsomer mobility in a dimer.

This guides us to the following questions. (a) How does a careful

parameterization of ENMs based on the structural fluctuations/

the elastic modes of a ‘‘free capsomer’’ affect the properties of

higher order aggregates? (b) What is the effect of the environment

on a capsomer? We set out to address the above questions by

simulating higher order aggregates in atomistic resolution and CG

using MARTINI plus ELNEDYN and IDEN ENMs.

Coarse Grained and Atomistic Simulations of Larger
Capsid Fragments

To test the transferability of the local elastic network to larger

aggregates we performed simulations of POD+CC complexes

and compared them with atomistic simulations (100 ns) of the

same system. We used two ELNEDYN networks with spring

Table 1. Statistics of RMSD distributions of monomers and
dimers.

Dimers Monomers

2–3 5–6 Mean (nm) Std.Dev. (nm) Mean (nm) Std.Dev. (nm)

Atomistic

Dimer 0.6388 0.1168 0.2867 0.0546

POD+CC
Inner Dimer

0.3962 0.1156 0.2029 0.0404

POD+CC
Outer Dimer

0.4445 0.1188 0.2265 0.0482

ELNEDYN (K500)

Dimer 0.2749 0.1059 0.0989 0.0088

POD+CC
Inner Dimer

0.1812 0.0453 0.1096 0.0088

POD+CC
Outer Dimer

0.2369 0.0384 0.1161 0.0124

ELNEDYN (K200)

Dimer 0.5415 0.0667 0.1504 0.0156

POD+CC
Inner Dimer

0.2568 0.0598 0.1575 0.0143

POD+CC
Outer Dimer

0.2781 0.0660 0.1630 0.0170

IDEN Network

Dimer 0.5765 0.0994 0.2665 0.0254

POD+CC
Inner Dimer

0.3500 0.0432 0.2621 0.0300

POD+CC
Outer Dimer

0.4528 0.0941 0.2695 0.0293

Data obtained from simulations of the free dimer (Figure 3) and the POD+CC
complex (Figure 6), using the atomistic model, the CG model with ELNEDYN
network with a uniform elastic network constant of 500 or 200 kJ mol21nm22

or the IDEN elastic network.
doi:10.1371/journal.pone.0060582.t001
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Figure 4. Relative orientation maps from simulations of isolated dimers. (A) atomistic simulation (400 ns); (B) CG simulation with ELNEDYN
network (spring constant: 500 kJ mol21nm22); (C) CG simulation with ELNEDYN network (spring constant: 200 kJ mol21nm22); (D) CG simulation with
IDEN elastic network. Projections of the X (left panels), Y (middle panels), Z (right panels)-axis of capsomer 2 on the xy plane when capsomer 1 is
aligned to the z axis (see Methods section). Coloring according to the normalized probability of finding these relative orientations. The blue circles are
drawn with a radius of the longest internal axis of the capsomer.
doi:10.1371/journal.pone.0060582.g004
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constants of 500 and 200 kJ mol21nm22 and the optimized

heterogeneous network IDEN on top of the MARTINI model.

To assess the different models, we analyze the behavior of all 10

dimers within the POD+CC complex, most importantly the

RMSD of Ca atoms (Figure 6 and Table 1) and the ROMs of

dimers (Figure 7 and 8).

To ease the analysis procedure we classified the dimers into two

groups, inner dimers and outer dimers. The inner dimers are

completely ‘‘shielded’’ from all sides by interactions with other

capsomers. In contrast, the outer dimers have at least one face

which misses interactions that would otherwise be present in

a whole viral capsid. We expect these two sets to exhibit

qualitatively different ROMs due to the presence of neighbors

or the lack thereof. Within each set (inner and outer dimers) the

dimers are equivalent by virtue of the 5-fold symmetry of the

POD+CC unit; hence we have averaged over the equivalent

dimers for the following analyses to obtain better statistics and

show results separately for inner and outer dimers.

While the RMSD distribution of Ca-beads in both uniform

ELNEDYN networks (spring constant of 500 and 200 kJ

mol21nm22, respectively) is narrower than the atomistic reference,

the spread obtained with the optimized heterogeneous network

IDEN resembles the atomistic simulations (Figure 6). With

uniform spring constants, the means of the RMSD distributions of

individual capsomers (open distribution) are at smaller values

compared to the atomistic simulation (Figure 6C–F and

Table 1), i.e. the structural variations within each monomer are

too small in these networks. In case of the stiffer uniform network

(500 kJ mol21) the backbone fluctuations are essentially restricted

to a narrow range centered around the initial conformation. The

RMSD distributions of the dimers (shaded distributions) exhibit

a similar trend. Naturally, this behavior is more pronounced for

the stiffer (500 kJ mol21nm22) network than for the softer one

(200 kJ mol21nm22).

The IDEN elastic network in comparison exhibits nearly the

same range of RMSD values (both within the monomers and in

the dimers) as observed in the atomistic simulation (Figure 6 H
and Table 1). The same trend is observed for inner (solid outlines,

left panels) and outer dimers (dotted outlines, right panels).

The ROMs of the two sets of dimers (inner and outer) provide

a similar picture (Figure 7 and 8): while the 500 kJ mol21nm22

uniform elastic network (data not shown to simplify the figure)

exhibits a narrower spread, the softer network allows for higher

variations for the relative orientations. (A more quantitative

comparison of the spreads in the ROM data via means and

standard deviations of the orientational distributions is provided in

File S1, see Tables S4 and S5. These data confirm the

qualitative picture discussed above.) Nevertheless, the flexibility

gained by homogeneously softening the capsomers does not suffice

to reproduce the atomistic behavior of the dimers. Again, the

heterogeneous elastic network captures the combination of

elasticity of individual proteins and the dimer reorientation

dynamics much better.

Note that the structural difference between and AB type dimer

and a CC type dimer (RMSD: 0.185 nm, see Supplementary

Material) in the crystal structure is much smaller than the typical

RMSDs observed within the atomistic simulation of these dimers

in the POD+CC complex. This means that the structural variation

between different dimeric sites within the CCMV crystal structure

is too small to expect a measurable, statistically significant induced

fit effect after placing the proteins with the same CG model into

two different environments corresponding to an AB or a CC site.

However, one does observe that the capsid-like environment poses

a restriction to the dimer flexibility that is different for the inner

and outer dimers of the POD+CC complex. We find that the

optimization of the heterogenous network strength of the IDEN

ENM reproduces the subtle restrictive effect of environment on

the dimer conformational and internal flexibility and the

differences between inner and outer dimers. In contrast, the

ELNEDYN networks (with 500 or 200 kJ mol21nm22) too

strongly restrict the internal and inter-capsomer motions to

observe environmental effects of higher order aggregates.

In the next section we will turn towards whole viral capsids.

Here, we will be able to address the question to what extent the

elastic behavior of the individual capsomers influences the

mechanical properties of the assembled capsid, and, consequently,

how a careful parametrization of the elastic network based on

atomistic reference simulations of the capsomers improves the

ability of the model to actually predict said properties.

Figure 5. Illustration of the difference between the Elastic Networks. (A) Superposition of the initial structure (gray) of the atomistic MD
simulation and the average structure (blue). (B) ELNEDYN network based on the crystal structure/initial structure of capsomer protein A from the PDB
entry 1ZA7. (C) First step of the IDEN elastic network definition using just the distance criterion. When the distance criteria alone is used for elastic
network definition it gives rise to artifacts such as the constraining of the flexible N-terminal tail (region pointed to by arrow) (D) The bonds that are
removed from the network definition from (C) according to flexibility and concerned motion using the IDEN definition. (E) Final IDEN elastic network.
The cyan arrow points to the unconnected N-terminal tail and the red arrow points to a loosely connected loop region by comparison to the network
shown in (C).
doi:10.1371/journal.pone.0060582.g005
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Figure 6. RMSD (a-carbons of core regions) distributions from simulations of dimers within a larger capsid fragment. Pentamer of AB
dimers with a ring of CC-dimers (POD+CC). Left side: Inner dimers of AB type (indicated in red and blue); Right side: outer dimers of CC type (indicated
in green). Open histograms: RMSDs within the monomers; shaded histograms: RMSDs of dimers. (A, B) atomistic simulation; (C, D) CG simulation with
ELNEDYN network (spring constant: 500 kJ mol21nm22); (E, F) CG simulation with ELNEDYN network (spring constant: 200 kJ mol21nm22); (G, H) CG
simulation with IDEN elastic network.
doi:10.1371/journal.pone.0060582.g006
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Indentation Simulations of CCMV Capsids
In contrast to the POD+CC aggregates described above,

studying the mechanics of entire viruses requires system sizes

and timescales for which one cannot easily obtain well-equilibrated

atomistic reference simulations. We have carried out virus

indentation simulations using the CG model(s) and compared

them with reference data from AFM (Atomic force microscopy)

indentation experiments of full and empty viral capsids of wild

type CCMV and mutants [57]. Comparison to these can serve as

an independent validation of the proposed optimization route of

the IDEN network. The experimentally studied CCMV capsomer

closest to that used in our simulations (in terms of primary

structure of the capsomer), is the SubE mutant, which carries the

point mutation K42R, that causes increased stability compared to

the native capsid.

The experiments can be divided into an indentation and

a relaxation part. The indentation itself is up to a certain point

reversible, but at higher indentation levels hysteresis is observed

due to irreversible damage done on the capsid. We compare our

results with the experimental ones of Michel et al. [57] from Fig.3b

(hysteresis observed in SubE) and Fig.3c (series of small reversible

indentations observed for empty wt-CCMV).

We performed CG simulations with two elastic networks:

ELNEDYN with a uniform spring constant of 200 kJ mol21nm22

(this had been for the previous complexes the standard

ELNEDYN setup with the best correspondence to the atomistic

Figure 7. ROMs of inner dimers in simulation of POD+CC complex (see left side of Figure 6). (A) atomistic simulation; (B) CG simulation
with ELNEDYN network (spring constant: 200 kJ mol21nm22); (C) CG simulation with IDEN elastic network. Projections of the X (left panels), Y (middle
panels), Z (right panels)-axis of capsomer 2 on the xy plane when capsomer 1 is aligned to the z axis (see Methods section). Coloring according to the
normalized probability of finding these relative orientations. The blue circles are drawn with a radius of the longest internal axis of the capsomer.
doi:10.1371/journal.pone.0060582.g007
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reference) and IDEN. We performed several simulations with

varying speeds of indentation to identify its influence on the force/

indentation curves (more details see Methods section). Experi-

ments had been carried out at very slow indentation speeds, in fact

so close to reversible/equilibrium condition that no significant

influence of the indentation speed on the results had been

observed. In the simulation the indentation speed had been kept as

slow as feasible (given the enormous computational expense),

albeit sill much faster than in experiment. Nevertheless, for the

indentation simulations reported in this paper, no dependence of

the results on variations of the indentation speed were found, i.e.

these simulations were sufficiently close to equilibrium conditions.

Figure 9 shows the force/indentation curves obtained from

both CG models and the corresponding experimental values. Both

elastic networks reproduce the experimental data well – with

a slightly better agreement for the IDEN model. The simulated

virus particles show a largely reversible behavior for small

indentations and a stronger hysteresis for larger indentations,

with the degree of hysteresis agreeing very well with experimental

observations. It should be noted that this irreversible deformation

could not be predicted using continuum models as reported in

[57].

A previous study by Arkhipov et.al. reproduced the irreversible

deformation of a viral capsid in experiments by performing shape

based coarse graining (SBCG). The SBCG method effectively

reduced each monomer to 15 beads [58], thus eliminating the

possibility of tracking back the indentation induced changes in the

capsid to the residue level interactions. At the other end of the

scale, Zink et.al. performed high resolution (all-atom) indentation

simulations of SBMV, albeit at a relatively high indentation speed

Figure 8. ROMs of outer dimers in simulation of POD+CC complex (see right side of Figure 6). (A) atomistic simulation; (B) CG simulation
with ELNEDYN network (spring constant: 200 kJ mol21nm22); (C) CG simulation with IDEN elastic network. Projections of the X (left panels), Y (middle
panels), Z (right panels)-axis of capsomer 2 on the xy plane when capsomer 1 is aligned to the z axis (see Methods section). Coloring according to the
normalized probability of finding these relative orientations. The blue circles are drawn with a radius of the longest internal axis of the capsomer.
doi:10.1371/journal.pone.0060582.g008
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due to limitations imposed by computational resources [59]. Due

to kinetic reasons resulting from the large indentation speeds, this

procedure predicted an elastic constant for the capsid that is an

order of magnitude larger than experimentally estimated value.

These two studies are nicely complementary to the level of

resolution employed in the present study which has residue-level

interactions while being at the same time coarse enough to

perform long simulations.

It is highly encouraging that the model refinement based on local

(monomer) properties helps to predict global properties of the

analyzed system. It seems therefore possible to define a valuable

elastic network without any free fitting parameters.

Discussion

In coarse grained protein models, elastic networks are often

used as a support to compensate for essential interactions which

are lost due to the coarse graining process. We have evaluated how

the parameters of these networks influence the properties of

CCMV capsomer aggregates and the elastic behavior of entire

CCMV capsids.

In the case of the ELNEDYN network we attribute the low

flexibility of the capsomer, and consequently of the dimer, to

a combined effect of uniform elastic network strength, high value

of the elastic network spring constant and ‘‘wrongly constrained’’

regions in the elastic network. When we defined the heterogeneous

elastic network we included additional criteria and modifications

to the standard ELNEDYN elastic network. Instead of using

a simple distance cutoff for defining elastic network bonds and

using the initial (crystal) structure as the reference, we defined the

network on the basis of average distances between atom pairs within

the individual proteins obtained from an atomistic MD simulation

of a free dimer in solution. We augmented the usual cutoff

criterion by two extra conditions: for a bond to be set, the putative

bonding partners must either move in a highly correlated fashion

or the distance fluctuations between the bonding partner must be

small.

Combined with an iterative scheme to match all distance

fluctuations with their atomistic counterparts we have arrived at

a heterogeneous network that not only captures – by construction

– the local elasticity of a capsomer, but also the larger scale

fluctuations of capsid fragments, such as the POD+CC complex

shown in this paper. Note that while the resulting CG model, i.e.

the combination of the MARTINI forcefield and the IDEN elastic

network is by construction specific to the protein of interest the

approach presented in this paper is easily transferable to other

systems. Note also that even though this parameterization

demands carrying out atomistic simulations as an input for the

iterative procedure, the all-atom resolution simulation is not

carried out on the whole complex (viral capsid in our case). Since

the CG model should on purpose be based on properties inherent

to the individual proteins, only a small subsystem (dimer in our

case) needs to be simulated which is relatively ‘‘inexpensive’’.

Moreover, the time scale needed for this reference simulation has

to be just long enough to sufficiently sample the (intra) protein

fluctuations.

In our atomistic and CG simulations we have observed a wide

range of mobility and comparatively large fluctuations in the

relative orientations between the two monomers within a dimer.

These large fluctuations are greatly diminished when a dimer is in

contact with its neighbors. This raises the obvious question: how

important is this enormous flexibility of the dimer during the

capsid assembly pathway? At this point we can only speculate: for

instance, it is an intriguing possibility that this local adaptability is

in fact necessary to cover a wide range of dimer configurations that

are required during the aggregation process. At any rate, it seems

obvious that any computational study aiming to answer this

question must (a) reproduce this feature of the fundamental

building blocks and (b) be computationally very efficient to cope

with the large time scales. We believe that our systematic

construction of an efficient CG model with correct elastic

properties is an important step into this direction. In addition,

the choice of reference system for optimizing the ENM is as

important as optimizing the ENM itself. For instance, if we had

chosen a larger capsid fragment (such as POD+CC) as a reference

for optimizing the IDEN network, that would have resulted in

a more rigid ENM which unnaturally limits the capsomers to the

conformationally restrictive state within the complex.

We show that local modes of vibration can have a direct and

significant effect on protein-protein interactions. Though we have

not attempted to simulate the viral assembly process, we did

observe that the capsomer flexibility influences and is important in

predicting emergent properties like the force response of the capsid

under external stress.

In the future, it would be very interesting to see if an IDEN

refined elastic network is able to predict structural variations

between different units in protein aggregates where induced fit and

transitions between different folds upon aggregation plays a signif-

icant role.

Materials and Methods

We base our studies on the crystal structure (2.7 Å resolution) of

the salt stable point mutant (K42R) of CCMV (SS-CCMV, PDB

code 1ZA7) [60]. In view of keeping things simple (omitting the

highly flexible N-terminal tail), we choose the previously

mentioned deletion mutant, D1–36 (in addition to the point

mutation K42R) for this work. In case of chain A, the first 39

atoms are not resolved in the crystal structure of the capsid, so the

missing amino acids (residue 37 to 39) were introduced by

comparative modeling using MODELLER 9v7 (http://salilab.

Figure 9. Force distance indentation curves. Comparison of
experimental values reported for empty SubE mutants of CCMV [57]
(black) and computed values from simulations with an ELNEDYN elastic
network with a uniform spring constant of 200 kJ mol21nm22 (blue)
and a IDEN elastic network (green). Forces obtained for forward (solid
lines) and backward (dashed lines) indentation. The reported forces are
average values over the whole 1 ns simulation time of a step and the
shaded areas correspond to their respective standard deviation.
doi:10.1371/journal.pone.0060582.g009
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org/modeller) [61]. Dimeric complexes (starting from the AB

dimer structure) and a pentamer of dimers (POD) with adjacent

CC-dimers (POD+CC) were studied using atomistic and coarse

grained simulations. Finally, we performed indentation simulations

of an entire CCMV capsid using existing network models and our

newly developed IDEN network, and compared the results with

experimental AFM indentation studies [57].

Atomistic Simulations
The molecular dynamic simulations were performed using the

GROMACS simulation package version 4 (4.0.7 for dimer, 4.5.3

and 4.5.4 for higher aggregates) [62]. The system was parame-

terized using the GROMOS 53a6 force field [63] for protein

atoms and the SPC water model [64]. Each protein complex was

solvated in a rectangular box and made charge neutral by adding

sodium ions. The initial box size was defined such that the

minimum distance between the box edges and the protein is 2 nm.

All simulations were performed under constant temperature

(298 K) and pressure (1 bar). During the equilibration phase the

Berendsen weak coupling method was used to maintain the

pressure and temperature close to the target values. Coupling

constants tP~0:5 ps for the pressure and tT = 0.1 ps for the

temperature were applied during equilibration. For the production

phase, while the pressure was still maintained using the Berendsen

weak coupling method [65], the coupling constant tP was

increased to 5 ps, whereas the temperature was maintained using

a Langevin thermostat [66] with a friction coefficient of 1 ps21.

The non-bonded interactions were calculated with a twin-range

cutoff scheme. The short range van-der-Waals and electrostatic

interactions within a cutoff of 1.0 nm were evaluated every time

step, while the long-range van-der-Waals interactions within

1.4 nm were updated together with the neighbor list every 10

time steps. The long-range electrostatics was calculated by the

PME method [67,68] using the default value for Fourier grid

spacing of 0.12 nm. In order to allow a time step of 2 fs, all bonds

were constrained by the LINCS algorithm [69]. The system was

initially energy-minimized with position restraints on the protein

atoms (1000 kJ mol21nm22) and subsequently without restraints

by steepest descent and later by a conjugate gradient algorithm.

Then several 200 ps long equilibration simulations were per-

formed in which restraints were removed in three steps. First, all

protein atoms were restrained, then only the backbone atoms, and

finally only the Ca atoms. Finally, several simulations ranging

from 100 to 400 ns for the dimeric system were performed. The

bigger complex POD+CC, consisting of 20 capsomers, was

simulated for 100 ns.

Coarse-grained Simulations
The CG simulations were performed with the GROMACS

simulation package version 4 (4.0.7 or 4.5.4) using the MARTINI

force field combined with the ELNEDYN ENM (see below). The

atomistic starting structures were coarse grained with the tools

provided by the MARTINI developers (http://md.chem.rug.nl/

cgmartini).

The MARTINI+ELNEDYN simulations were performed un-

der NPT conditions. The temperature (300 K) and pressure (1 bar)

were maintained using the Berendsen method with coupling

constants tT = 0.5 ps and tP = 1.2 ps, respectively. The non-

bonded interactions were treated with a switch function,

electrostatic interactions from 0 to 1.2 nm and Lenard-Jones

interactions from 0.9 to 1.2 nm. The time step was set to 10 fs and

the neighbor list was updated every 5th time step. The box size

exceeded the protein outer surface by a minimum of 2.25 nm in

each direction. The coarse-grained protein was initially energy-

minimized in vacuum for 100 steps of steepest descent. The system

was then solvated with water and charge neutralized by addition of

sodium ions. The system was again energy-minimized with

position restraints applied on all protein beads (1000 kJ

mol21nm22). The equilibration step consisted of an initial 50 ps

long MD simulation with a time step of 1 fs while applying

position restraints to all protein beads. We remind the reader that

during setup the term ‘‘equilibration’’ is loosely used to describe

the step in the system setup, which is performed to ensure it is in

a relaxed state. It by no means suggests thermal equilibration. Then

a 1 ns long simulation with the same restraints but with increased

time step of 10 fs was performed. Subsequently, another 1 ns long

MD simulation with restraints applied to the backbone beads was

carried out. Finally, all restraints were lifted for executing

production simulations.

In any CG simulation an effective speed-up of the dynamics is

expected due to the smoothening of the free energy landscape.

Therefore, one typically determines the time-scaling factor that

relates the accelerated CG dynamics to realistic timescales

obtained from experiments or atomistic reference simulations.

According to the authors of the MARTINI forcefield and the

ELNEDYN ENM, this time-scaling factor is approximately 4 for

the MARTINI model (after analyzing the diffusion of CG water

and lipids) [55]. In the present paper, we do not generally rescale

the timescales reported for the CG simulations by this factor of 4,

only at some instances (for example to estimate the indentation

speed in the CG simulations) we report also these rescaled times

(indicated with an asterisk) to allow for an approximate

comparison with real world times and experiments.

Construction of Elastic Networks
In this paper we study two types of elastic network. The first

one, ELNEDYN, was proposed by the developers of the

MARTINI CG model. The second one, IDEN (Iteratively-refined

Distance-based Elastic Network), is a refined version of this, in

which both the question of whether or not a bond is placed and its

ultimate strength are determined by making use of information

from an underlying atomistic trajectory. Let us now describe the

two network models.

ELNEDYN. The ELNEDYN network [38] is defined as an

anisotropic elastic network [40,43]. ELNEDYN is also homoge-

neous, having a uniform bond strength assignment for all elastic

network bonds. Any two Ca beads i and j are connected by

a harmonic bond of spring constant K and rest length

dij,0~Dri,0{rj,0D (as measured in the crystal structure) when two

criteria are met: first, they are at least 2 steps apart along the

backbone, and second, Drij,0vRC , for some cutoff distance RC .

The value of both parameters is chosen such as to reproduce the

RMSF values of atomistic simulations with the CG model, as

described in Ref. [38] (see Figure S4 and S5 in File S1).

IDEN. We wish to go beyond the standard ELNEDYN

construction in two ways. First, we propose a more refined

criterion for when two Ca beads are connected by a spring; and

second, rather than using a single spring constant K for every

harmonic bond, we implement an iterative scheme to optimize the

spring constants individually, thus setting up a locally heteroge-

neous network. This possibility was first explored by Lyman et al.

[48], but these authors did not consider an additional CG force

field next to their elastic network.

The usual criterion for establishing a bond once two Ca beads

are closer than some cutoff can lead to erroneous bonds, because

these beads might just be accidentally close in the crystal structure

(or an ensemble average), but in fact show large dynamic

excursions away from each other. For instance, part of a flexible
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tail of a protein might be close to the core in the available

structure, but it indeed explores a wide phase space away from

that conformation and permanently linking it to the protein core

would un-physically restrict its motion. Hence, we need a criterion

to judge whether two neighboring beads should be linked that goes

beyond their mere distance. We propose that their positional

correlations and the variance of their distance, both measured for

instance through an MD trajectory, will help to address this issue.

For a list of atom coordinates frig taken from a trajectory (or

indeed any other ensemble we wish to average over) the (scalar)

covariance of an atom pair i and j is given by

Cij~S½ri(t){SriT�½rj(t){SriT�T,

where ri(t) and rj(t) are the coordinates of atoms i and j at time t

and S . . . T denotes an average over the trajectory (or ensemble).

To eliminate overall factors, we further define the correlation

coefficient, cij~Cij=
ffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
which is bounded between 21 and 1

(by virtue of the Cauchy-Schwarz inequality). In the crystallo-

graphic literature this is often referred to as the ‘‘per atom

normalized covariance’’ (PANC) [70], but we see no need to

introduce a new name here.

To define and calculate cij , we must first fit all protein frames to

a reference (e.g. initial) frame, in order to remove overall

translations and rotations. Unfortunately, this also removes any

significant correlation between the fairly rigid core atoms and

would erroneously suggest that they are uncorrelated. We resolve

this issue by additionally monitoring distance fluctuations between

atoms as a secondary criterion for bonding. Hence, define the

(scalar) distance dij(t)~Dri(t){rj(t)D between two atoms i and j and

its variance

s2d (i,j)~S(dij(t){SdijT)2T,

which can be computed without the fitting procedure necessary to

obtain cij . Our procedure to identify the network is now as follows:

A harmonic bond will be established between all pairs of Ca beads

i and j which satisfy the following criteria:

1. They are at least 2 residues apart along the backbone sequence.

2. Their average distance dij is less than a pre-specified cutoff

distance RC . We follow the ELNEDYN choice of setting

RC = 0.9 nm.

3. In addition:

– Their correlation coefficient is sufficiently high; we used

cijwcmin~0:7:

– OR

– The variance of their distance is smaller than a maximum;

we used sd (i,j)vsmax~0:176RC .

The criterion for selecting an RC cutoff value of 0.9 nm follows

the recommendation by the authors of MARTINI and ELNE-

DYN elastic network [34,35]. They tested various cutoff values

and established 0.9 nm and an elastic network bond strength of

500 kJ mol21 nm22 to be the best compromise between the

network density and its stiffness. We tested various values for the

correlation coefficient and the distance fluctuation criteria.

Additional information regarding the choice of these parameters

can be found in File S1 (see Figures S6 and S7).

After having identified the bonds, we now determine the spring

constants. We first scale the initial value Kinitial = 500 kJ

mol21nm22, as typically used for ELNEDYN networks [38],

according to the following procedure:

Kij,0~Kinitial

mini,jfs2d (i,j)g
s2d (i,j)

This implies that the strongest bond we place will have spring

constant Kinitial, and that for every specific bond this value is scaled

down inversely proportional to the fluctuations of that bond. The

latter were taken from a 400 ns atomistic reference trajectory of

a dimer. Since we aimed to create one universal elastic network for

all capsomers, the two chains (A and B) from the atomistic dimer

simulation were separately extracted and averaged for the analysis.

In other words, a 400 ns long atomistic simulation of the dimer

converts to 800 ns of statistics for a capsomer.

In the next step we iterated the strength of all spring constants

Kij in order to reproduce the fluctuations of the atomistic reference

simulation. In contrast to a pure elastic network construction this

cannot be done analytically (say, by some matrix inversion),

because the (non-harmonic!) CG force field also contributes to the

distance fluctuations. We investigated two different update rules:

The first one is inspired by the one proposed by Lyman et al. [48]:

1

Kij,nz1
~

1

Kij,n
{a

s2d,atom(i,j){s2d,CG(i,j)

kBT

This suggests itself because (i) dimensionally the spring constant

should be inversely proportional to the variance and (ii) the latter

proportional to the thermal energy. We used the value a= 0.05.

We also tried a direct iteration according to

Kij,nz1~Kij,n{a
kBT

R4
C

½s2d,atom(i,j){s2d,CG(i,j)�,

where we used a~1050:
For the studied CCMV system we observed that the conver-

gence was faster with the direct scaling method. We declared

convergence for our refinement procedure once the difference

between atomistic and coarse-grained simulation in the distance

variances s2d,atom(i,j){s2d,CG(i,j) averaged over all pairs (i,j) is

converged (for details see the corresponding section in File S1
including Figure S8, S9 and Table S3). This was typically the

case after 11 iteration steps, further iterations did not improve the

agreement.

We emphasize once more that we introduce a supporting elastic

network only within single capsomers, not between them (i.e., we

do not link dimers or higher order aggregates). One may suspect,

and our simulations supported this, that the much slower inter-

capsomer fluctuations would necessitate bonds that are extremely

weak and not necessarily harmonic. If we wish to understand

genuinely nonlinear responses, such as the breaking of a capsid

upon major compression, it is impermissible to string the entire

capsid together and thereby eliminate putative failure modes for

irreversible damage.

Coarse Grained Indentation Simulations
The setup of the whole capsid followed the general procedure

described above and used two different kinds of elastic network

(ELNEDYN and IDEN) as described. Unlike the procedure

described above, for the indentation simulations the last step in the
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equilibration scheme was extended from 1 to 10 ns in order to

allow for a solvent exchange between the inside and outside of the

virus. We performed these indentation simulations to compare

with experiments performed on CCMV by Michel et al. [57]. Our

indentation simulations were repeated for indentation speeds of

0.04–0.02 nm ns21 corresponding to 0.01–0.005 nm ns21* in

‘‘real time’’. These checks were necessary to verify that these large

indentation speeds nevertheless had no major effect on the force/

indentation curves, recalling that the indentation speeds reported

for experiments are much slower, between 20–2000 nm s21. On

the other hand, experiments do not report any influence of varying

the speed by two orders of magnitude on the force/indentation

curves [57].

Forward indentation. We performed indentation by adapt-

ing a method developed for the calculation of osmotic pressure

[71]. In this method, two semi-permeable repulsive walls (10-4

Lennard Jones potential interacting only with the protein beads

and not with the solvent molecules or counter ions) are used to

laterally constrict the capsid. Initially, the walls are placed just

beyond the viral capsid surface, but behind the interaction cutoff

of the wall potential. The indentation process was simulated by

subsequent stepwise shrinking of the distance between the walls

from 29 nm to 20 nm in 0.04 nm steps and simulating for 1 ns for

each step. To replicate the experimental setup of Michel et al.

[57], two indentation setups, one starting from a wall distance of

29 nm to 25 nm and the other starting from 29 nm to 20 nm were

devised. The difference being, the former indentation is ‘‘reversible’’

and the later ‘‘irreversible’’. An indentation is ‘‘reversible’’ if the force

versus indentation curve of the viral capsid under external stress

returns to the starting state, when the external stress is released.

These indentation setups were simulated on IDEN and ELNE-

DYN networks.

Relaxation. Relaxation of the ‘‘fully squeezed’’ viral capsid was

performed by slowly expanding the distance between the walls in

0.04 nm steps and simulated for 1 ns at each step. Two relaxation

simulations with the initial state starting from reversibly and

irreversibly squeezed capsid were performed, for both the CG

MARTINI forcefield combined with ELNEDYN and IDEN

elastic networks. The simulations were terminated when the

separation between the semi permeable walls was 29 nm.

Reported forces are either running averages over 10 or 50 values

(10 ps steps) from simulation or an average over the whole 1 ns

simulation time.

Analysis: Relative Orientation Maps
In order to distinguish between the relatively rigid core of the

capsomer and the flexible N-terminal and C-terminal tails, a core

region spanning from residue 14 to 142 was defined omitting the

flexible tails (see Figure 1D). Within each capsomer, an internal

reference frame was defined to facilitate the calculation of relative

spatial orientations between capsomers in aggregates. Figure 1D
visualizes the capsomers with our choice of internal axes, which is

the following: The center of mass of the capsomer was chosen as

the origin of the internal frame of reference. The X, Y and Z axis

of the internal frame were defined by guides connecting the origin

and the centers of mass of clusters of Ca-atoms within the protein

(X-axis: Ca-atoms of residues 69–71, 92, 122–124; Y-axis: Ca-

atoms of residues 19–21,136; Z-axis: Ca of residues 55–57, 137–

139). These atoms were chosen such that the resulting axes were

approximately orthogonal to each other. Using Ca-atoms to define

the three internal axes has an inherent disadvantage of loss of

exact orthogonality between the axis due to atom fluctuations

during the course of the simulation. This was done since using the

eigenvectors of the gyration tensor instead is difficult, because the

two smaller eigenvalues are so close that their corresponding

eigenvectors easily swap identity or rotate uncontrollably around

the axis defined by the largest eigenvalue. We verified that this has

only a negligible effect on the observables in our analysis (data not

shown).

Since the dimer is the smallest stable structural component and

forms the basis of the CCMV capsid assembly, we chose dimers as

the basis of our analysis. Figure 10 illustrates the procedure:

Vectors M1 and M2 are two corresponding axes of the internal

frame (M takes the value of either X, Y or Z) for capsomer 1 and

capsomer 2, respectively, for each dimer. Non-capitalized x, y and

z-axes refer to the global external frame of reference. D is the

distance between the center of mass of the capsomers and h is the

angle between the axes M1 and M2 and t is the current time step of

the data being plotted. The analysis procedure is outlined below.

1. One of the two capsomers in a dimer (capsomer A in the case

of an AB dimer and an arbitrarily chosen one in the case of

a CC dimer) is denoted as ‘‘capsomer 1’’ and is fit to the

starting structure of the AB dimer (using rigid core atoms) from

the 400 ns reference simulation, thus eliminating rotational

and translational motions of the dimer system in the trajectory.

It should be noted that all coarse-grained and atomistic

simulations were fitted to the same starting structure.

2. For every frame of this fitted trajectory, each pair of internal

axes is rotated as a rigid body such that the M1-axis aligns with

the global zz direction (in case of Z1 and Z2 in the {z
direction, for better visualization). As elaborated above, all

arbitrary rotations about the z-axis are eliminated because of

fitting to the same reference structure.

3. The projection M ’2 of M2 on the xy-plane is calculated.

4. The points in the scatter plot of projections are colored

according to the probability density.

Supporting Information

File S1 Supplementary material regarding the struc-
ture of the capsomers and dimers on the different

Figure 10. Illustration of the procedure to analyze the relative
orientation between the capsomers within a dimer as de-
scribed in the main text. M1 and M2 are the corresponding axes (X,
Y or Z) of each capsomer in the dimer. D is the distance between the
center of mass of the capsomers and h is the angle between the axisM1

and M2 and the lightly shaded vectors indicate the original axis
orientations in the dimer before aligning and rotating the internal
frames.
doi:10.1371/journal.pone.0060582.g010

A Coarse Grained Model for CCMV Capsid Deformation

PLOS ONE | www.plosone.org 16 April 2013 | Volume 8 | Issue 4 | e60582



symmetry inequivalent sites of the CCMV capsid is
shown. In addition, further technical details of the setup and

parameters of the IDEN elastic network and the convergence of

the iterative optimization of the strength of the IDEN elastic bonds

are presented. Furthermore, to better characterize the relative

orientations between the two capsomers in the atomistic and CG

simulations of the free dimers and the dimers in the POD+CC

complex, the spread in the relative orientation maps (ROMs) is

analyzed quantitatively.

(PDF)
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