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ABSTRACT
....................................................................................................................................................

Background Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algo-
rithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that
detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for
human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM).
Methods A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and exist-
ing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass
a broader category of algorithms.
Results We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend
use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-
readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype
algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized
terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing;
(9) provide interfaces for external software algorithms; and (10) maintain backward compatibility.
Conclusion A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems.
These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages.

....................................................................................................................................................
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INTRODUCTION
Electronic health records (EHRs) are increasingly used for clinical and
translational research through the creation of phenotype algorithms,
consisting of structured selection criteria designed to produce re-
search-quality phenotypes.1–7 These algorithms operate on diverse
classes of EHR data to select individuals with given traits (e.g., identi-
fying records for continuous trait analyses or marking records as a
case, a control, or neither for given conditions).8,9 Examples include
identifying patients with hypothyroidism matched to hypothyroidism-
free controls,5 evaluating cardiac conduction duration in electrocardio-
grams of “heart-healthy” individuals,10 and determining medication
responses.11–18 Typically, these algorithms define the workflow for
querying clinical data regarding diagnoses, procedures, medications,
laboratory or radiology reports, and other EHR data, and can require
natural language processing (NLP) or text mining. Multi-site studies
have shown that these algorithms often are portable between
sites.5,19,20 Currently, most phenotype algorithms are recorded as hu-
man-readable descriptive text documents that can be shared via
knowledge bases such as the Phenotype KnowledgeBase (PheKB,

http://phekb.org) and PhenotypePortal (http://phenotypeportal.org).
Algorithms described via text and flowcharts (such as the type 2 dia-
betes mellitus [T2DM] algorithm shown in Figure 1 and the Desiderata
section) require human translation to computable formats and are of-
ten ambiguous. Implementation across different institutions requires
human experts to interpret the algorithm and translate it into execut-
able operations and queries. This situation has hampered cross-
institutional collaboration.21

To enable cross-site phenotype execution, we suggest two needed
initiatives: (1) creation of a common phenotype representation model
(PheRM) as a computable representation of phenotype algorithms and
(2) development of infrastructure to allow standards-based authoring
and execution of PheRM-based algorithms for a variety of EHR sys-
tems. In this paper, we leveraged our experiences with the Electronic
Medical Records and Genomics (eMERGE) Network,22 Pharmacoge-
nomics Research Network (PGRN),23 Strategic Health IT Advanced
Research Project (SHARP),24 and the National Patient-Centered Clinical
Research Network (PCORnet)25 to propose desiderata for PheRM
(Table 1).
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BACKGROUND
With the implementation of Meaningful Use (MU),26 EHRs have been
increasing in ubiquity, functionality, and comprehensiveness. One re-
cent advance has been the coupling of DNA bio-repositories to EHR
data27–30 to enable genomic discoveries.31 In particular, the eMERGE
network, a large scale, multi-site network of research organizations
of 11 academic medical centers, has been at the forefront of mining
biobank resources (both EHRs and associated DNA samples) for
genomic medicine. Identification of research subjects from patient
populations using phenotype algorithms is the starting point for these
projects.

Data components in phenotyping may include the full range of clini-
cal data stored in the EHR, such as demographics, vital signs, laboratory
tests, medication, diagnoses, procedures, and other documentation.32

However, each EHR can have a different data model. One approach to
facilitate research interoperability among different sites has been the
Observational Health Data Sciences and Informatics (OHDSI) program,
which has built on the Observational Medical Outcomes Partnership
(OMOP) common data model (CDM).33–37 This CDM provides a

standardized data interface for a vibrant ecosystem of healthcare big-
data analyses (http://omop.org/OSCAR), including tools, web applica-
tions, and application program interfaces. Similarly, PCORnet25 and the
Informatics for Integrating Biology and the Bedside (i2b2) based Shared
Health Research Information Network38,39 are advancing common data
models among their groups. These CDMs typically cover more focused,
common data elements to enable a broad range of queries.

Phenotype algorithms are typically developed in an iterative fashion
with expert review for validation21 to rule-based models, but can also
utilize machine learning methods.40–42 The efficacy of a phenotype al-
gorithm is usually measured with information retrieval metrics, such
as sensitivity, specificity, positive predictive value, and F-measure.

At present, most existing phenotype algorithms are expressed in
pseudo-code and not directly executable, because there is no widely
adopted standards and underlying data structures. Thus, implementa-
tion requires human experts to translate descriptive algorithms from
documents to ad hoc queries in local EHR research repositories, a pro-
cess which is prone to inconsistencies or errors.43 One of the major
efforts in establishing a standard language for a related task is the

Figure 1: Phenotype algorithm for identifying type 2 diabetes mellitus (T2DM) from electronic medical records (EMR or
EHR). T1DM: type 1 diabetes mellitus; Dx: diagnoses, defined as recorded using International Classification of Diseases, 9th
Revision (ICD-9) codes; med: medication; physcn: physicians; Rx: prescriptions. More details can be found in the appendix
and on PheKB.org.
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Quality Data Model (QDM) from National Quality Forum, which has
been designed to represent electronic clinical quality measures.44

QDM has been shown to be capable of representing many phenotype
algorithms from PheKB.45,46 Systems such as i2b2 system,47

SHARP,24 and Eureka! Clinical Analytics48 all have internal data and al-
gorithm representations, some of which may be shared across sites.
In general, these systems provide graphical interfaces that can stan-
dardize queries, but complex scoring metrics, counting rules, and
nested temporal references or sequencing of events—such as found
in many eMERGE algorithms49—often exceed their capability.

Phenotype algorithms have adopted a variety of logical and computa-
tional modalities.9,50 Modalities (e.g., scoring rules, counting rules)
adopted in clinical diagnostic criteria51–53 have potential application in
phenotype algorithms. In addition, machine learning and statistical
model-based phenotype algorithms have been increasingly reported.54–57

Most current phenotype algorithms (CPT) use both structured and
unstructured EHR elements.9 Structured EHR data usually include demo-
graphic information (e.g., age, sex, race, death), billing codes (i.e.,
International Classification of Disease version 9 (ICD-9), Current
Procedural Terminology), most laboratory tests, vital signs, medications,
and more. Unstructured EHR elements usually include clinical notes
(e.g., history and physical examinations, progress notes, discharge sum-
maries, nursing notes), some non-billing medical problems and most
family history elements, some medications records and refills, diagnostic
reports (e.g., radiology, microbiology, pathology), and more.

METHODS
A group of clinicians and informaticians reviewed 21 eMERGE pheno-
type algorithms (Table 2) and several authoring tools (Measure
Authoring Tool [www.emeasuretool.cms.gov], i2b2, Eureka!,
PhenotypePortal, the Vanderbilt Synthetic Derivative,27 and the
Marshfield Personalized Medicine Research Project interface58) for
common features. These phenotyping algorithms were of different
complexity and included both disease and drug response phenotypes
using algorithms from the eMERGE22 and Pharmacogenomics of Very
Large Populations (PGPop) networks. We also evaluated the ability to
represent selected well-known diagnostic criteria (e.g., Duke criteria
for infective endocarditis,52 CHADS2 criteria for anticoagulation ther-
apy in atrial fibrillation (AF)51) as potential phenotypes (see
Supplementary Appendix Part 2). After proposal by a smaller team of
investigators, the desiderata were evaluated and refined by all authors,
which included investigators from eMERGE, PGRN, PGPop, SHARPn,
PCORNet, and HMO Research Network.

DESIDERATA
Based on our review, we propose the following desiderata for PheRM
and its software implementation (see Figure 2 and Table 1). We ac-
knowledge that phenotyping is not a standalone practice, and, instead,
is closely coupled with EHR infrastructure and clinical practice.
Therefore, we have included recommendations (representing the phe-
notyping community) to the EHR development community (Desiderata
1 and 2) as well as those regarding PheRM itself (Desiderata 3–10).

Recommendations for clinical data representation to support
phenotype
1. Structure clinical data into queryable forms
Clinical data are practically structured to promote efficient queries of
all clinical information for an individual patient. On the other hand,
phenotyping requires population-wide searching of individuals with
similar characteristics (e.g., elevated LDL for a hyperlipidemia pheno-
type). Relational databases have been widely used for data storage as

parts of enterprise data warehouse solutions. To further facilitate que-
rying, where possible, clinical data stored in such data warehouses
should be atomized (as first normal form59), such as storing a blood
pressure into a systolic reading and a diastolic reading. Precalculating
commonly derived observations (e.g., periods of drug exposure, as im-
plemented in the OMOP drug era model33–37) also facilitate more effi-
cient querying. Currently available documents are mostly poorly
structured, and require information extraction or indexing60 to make
them queryable.

2. Recommend a common data model, but also support customization
for the variability and availability of EHR data among sites
To achieve a common PheRM, a common EHR data representation
should be implemented where possible. Huser and Cimino analyzed
three public integrated data repositories (IDRs) and proposed desider-
ata for their common design patterns.61 Potential candidates for
CDM include Clinical Information Modeling Initiative,62 Mini-Sentinel
Common Data Model (recommended by US Food and Drug
Administration, www.mini-sentinel.org), i2b2 Star Schema,63 and
OMOP CDM.33,35,36,64 Additionally, the Institute of Medicine has re-
cently initiated an effort to standardize structured capture of social and
behavioral domains in the EHR.65

EHR implementations and systems are heterogeneous, and
CDMs must have the flexibility to adapt to a variety of institutional
IDRs. One challenge in standardization is labeling and referencing
of specific document types, and many EHR sites may have specific
but nonstandard documents that address a particular question.66

Custom approaches can generically circumnavigate this limitation.
For example, the colon polyp phenotype in the eMERGE network67

used colonoscopy surgical and pathology reports, which are not
yet labeled in a standard manner or mapped to CDMs in most of
the IDR systems in the network. This algorithm separates the im-
plementation into transportable tasks (e.g., concept extraction
through NLP, grouping, extraction of covariates) implemented as a
fully executable Konstanz Information Miner (KNIME) package with
institutional adaptation tasks (i.e., database querying for the proper
document types). Creating a portable infrastructure that implements
the algorithmic rules and thus only requires the user to build the
“last mile” of the solution can accelerate algorithm implementation
across other sites.

Recommendations for phenotype representation models
3. Support both human-readable and computable representations
The investigators and initiators for most phenotype projects are clinical
experts, epidemiologists, geneticists, and other subject matter experts.
As important communication tools among researchers of different
expertise, the phenotype representations should support a human-
readable format or transformation for clinical experts to ensure medi-
cal accuracy. Additionally, phenotype algorithms should include clear
scientific and clinical definitions to enable creation of gold standards
for evaluation and to facilitate reuse. For example, one algorithm may
allow any cause of hypothyroidism when evaluating treatment efficacy
while another may focus on only on primary autoimmune hypothyroid-
ism when evaluating genetic causes. It is strongly preferable that the
human-readable format and computable formats be computationally
coupled such that one can be automatically generated from the other;
otherwise it would risk inconsistency between them. For example, the
QDM provides a transformation from machine-readable XML to hu-
man-readable HTML via automated Extensible Stylesheet Language
Transformations.
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4. Implement set operations and relational algebra
Phenotyping is a population level process, which includes intersection
(e.g., patients billed with ICD-9 codes for T2DM and patients treated
with oral hypoglycemic medications), union (e.g., patients treated with
angiotensin converting enzyme inhibitors or patients treated with an-
giotensin receptor blockers), or exclusion (e.g., patients who have dia-
betes but have never had retinopathy diagnosed). Relational algebra
in database theory is a typical set model. The capability to handle
set operations and seamless connections to rule-based models
(see Desideratum 5) will directly affect the usability of phenotype
algorithms.

Virtually all phenotype algorithms explicitly exclude certain other
conditions, exposures, or laboratory results operating on either the pa-
tient-level or on particular episode(s) of care. Such exclusions are
commonly present in control algorithms but also present in many case
algorithms. For example, the methotrexate toxicity algorithm68

excludes patients with known organic liver disease, and for cases,

excludes episodes of liver function test elevation while the patient is
taking leflunomide (another common rheumatoid arthritis medication
with liver toxicity as a side effect).

5. Represent phenotype criteria with structured rules
PheRM should support structured and rule-based logical representa-
tions, which has been successfully adopted in QDM, OMOP Health
Outcomes of Interest (HOI http://omop.org/HOI),34,37,69 and JBOSS

VR

Drools based phenotyping.45,70

Nested logical structure
Phenotyping algorithms can involve multiple complex logical steps, in-
tegrating various operations (e.g., Boolean, comparative, aggregative,
temporal). A complex, nested logical structure is supported by QDM.46

On the other hand, while interface tools such as i2b2 may limit the
number of nested levels, some allow users to reference prior patient
sets to support more complex workflows.

Figure 2: Schematic of desiderata for computable phenotype electronic health record-driven phenotyping. Numerals 1–9 in
the figure correspond to Desiderata 1–9 (Desideratum 10 is not depicted in this Figure).
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Boolean
Boolean values can be generated with comparative or temporal opera-
tions (see below), set projection (i.e., nonempty set as TRUE, empty
set as FALSE). Many of the phenotyping rules are Boolean opera-
tions.50 Common Boolean operators include AND, OR, and NOT (simi-
lar to intersection and union). For example, in the T2DM algorithm19

(Figure 1), every step generates a Boolean value for each patient to
follow a decision tree to determine if the patient is a case or control.

Comparative operations
In phenotyping, comparative operators can be used to threshold a vari-
able (e.g., the numeric result of a laboratory test, such as a white blood
cell count), or to compare a numeric variable to another numeric vari-
able (e.g., comparing the LDL value after statin treatment to LDL value
before treatment). In addition, important raw data are not always ready
to be used directly from an EHR. For example, body mass index (BMI) of-
ten needs to be calculated from weight and height. Thus, supporting ba-
sic arithmetic functions will broaden the application. Rules to exclude
nonbiologic values may also be needed, such as a BMI of 1000 kg/m2.

Aggregative operations
Aggregative functions (e.g., COUNT, FIRST) bridge across different lev-
els of clinical information (e.g., from events to patients). In addition,
more complex counting and scoring rules should be implemented.46 In
fact, these rules are extremely popular in clinical diagnostic criteria
(see Supplementary Appendix Part 2), including the Modified Duke
Criteria for diagnosis of infective endocarditis,52 the CHADS2 score for
antithrombotic therapy in AF,51 or the 2013 guidelines for cholesterol
management.71 In addition, most regression-based predictive models
in phenotyping can be represented as a scoring system, such as an al-
gorithm to find rheumatoid arthritis.54

Negation
In phenotyping, negation has two meanings. It can be a negative as-
sertion (e.g., “patient denies headache”), which can be extracted with
NLP,72–74 or an empty set from aggregation in many computer lan-
guages (e.g., Perl, Python), similar to exclusion (see Desideratum 5).
These two interpretations can be conflicting, and need to be distin-
guished. Care must be taken to not imply negation from missing val-
ues that are not available due to the variability of the EHR systems.

6. Support defining temporal relations between events
Temporal relationships are widely used in phenotype algorithms,75 es-
pecially for studying response and side effects of medications.11,14

The first type is sequential clinical events, such as an algorithm to
identify patients that have subsequent cardiovascular events while still
on clopidogrel,11 which requires ordered and appropriately spaced se-
quences of ischemic and medication events computed from the time-
stamps of records. On the other hand, temporality can also be
captured through narrative text, requiring advanced NLP to parse
grammatical features (past tense of verbs) and relative temporal ex-
pressions (“five years ago,” “1980s,” or location within a “past medi-
cal history” section). This strategy has been tested in the 2012 i2b2
challenge,75,76 and applied in a prior analysis of colorectal cancer
screening77 and in an identification of methotrexate-induced liver tox-
icity.68 Frequently in an EHR, the true incident date for a disease is not
defined even when using NLP, since it may precede the patient’s en-
rollment in the given clinic or hospital system.

7. Use standardized terminologies, ontologies, and facilitate reuse of
value sets
To allow phenotype algorithms in PheRM to be supported in different
EHR systems, accommodating non-standardized terminologies is im-
portant. Many EHR systems employ local ad hoc terminologies, but the
use of local terminology should be limited in PheRM, because it will
hinder the portability of algorithms. Both HL7 and OMOP CDM recom-
mend standardized coding systems for clinical terminology,78 such as
ICD-9/10 for billed diagnoses, RxNorm for medication, Logical
Observation Identifiers Names and Codes (LOINC) for laboratory tests,
and Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) for describing medical conditions. Therefore, EHR data-
bases should provide mapping between standardized terminology sys-
tems and their local systems.61

Phenotype algorithms and quality measures often enumerate lists
of concepts to define a medical condition, and these lists have been
conventionally called value sets, such as all the ICD-9 codes to define
T2DM. Authoring these value sets requires expertise and manual cura-
tion, and such sets should be available for reuse by other investiga-
tors. To facilitate authoring, i2b2 uses the intrinsic hierarchical
structure of medical ontology79 to allow a user to select all concepts
under the same semantic nodes. Local ontologies are supported in
i2b2 for the convenience that it offers for their research domain. Broad
pathophysiological groupings of ICD-9 codes have been developed for
genetic and clinical research, including codes designed to enable phe-
nome-wide association studies,80–82 and groupings designed for the
Agency for Healthcare Research and Quality Clinical Classifications
Software.83

The same value set sometimes can be reused in a variety of
projects. For instance, the value set of all the angiotensin-converting-
enzyme inhibitors can be used in research projects on diabetic
nephropathy, congestive heart failure, or adverse drug reaction. Such
information can be stored and managed in the Value Set Authority
Center (provided by the National Library of Medicine, https://vsac.nlm.
nih.gov/), and the Common Terminology Services 2 (an Object
Management Group standard, http://www.omg.org/spec/CTS2/).

8. Define representations for text searching and NLP
Documentation of a detailed description of a patient’s clinical presen-
tation and management in free text is indispensable in clinical care
and in validating that a patient has a given disease. Clinical documents
are commonly used for phenotype research.6 Text searching and
NLP are major strategies to validate coded data or define more

Table 1: A list of desiderata

Recommendations for clinical data representation to support
phenotyping

1. Structure clinical data into queryable forms.
2. Recommend use of a common data model, but also support

customization for the variability and availability of EHR data among
sites.

Recommendations for phenotype representation models
3. Support both human-readable and computable representations.
4. Implement set operations and relational algebra.
5. Represent phenotype criteria with structured rules.
6. Support defining temporal relations between events.
7. Use standardized terminologies, ontologies, and facilitate

reuse of value sets.
8. Define representations for text searching and natural language

processing.
9. Provide interfaces for external software algorithms.
10. Maintain backward compatibility.
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granular phenotypes than what is possible via structured data, such
as subtypes of multiple sclerosis,84 physical exam findings,85,86 or
the collection of all blood pressure measures.87 NLP-derived fea-
tures have been widely applied for machine learning-based phenotype
algorithms.88

PheRM should include NLP and text searching. Patterns of NLP recur-
ring in phenotype algorithms have included: identifying targeted docu-
ment types (e.g., colonoscopy reports), section location,89 concept
identification,90–92 and negation and context filtering.72–74 Here, we pro-
pose the PheRM should allow for specification of inclusion or exclusions
of elements based on: document type, section location, concept instances
(with removal of non-patient and negated concepts), and keywords.

In addition to NLP, keyword and regular-expression text searches
have been applied widely in phenotype algorithms. For example, an AF
algorithm includes a keyword search from electrocardiogram reports
for different variances in phrasing AF, such as “A-fib”, “Atr.
Fibrillation.”6,10 With assistance from section separators and negation
masks, text searching can achieve a higher accuracy and faster exe-
cution (than comprehensive de novo NLP) for many phenotypes.

9. Provide interfaces for external software algorithms
Development of phenotype algorithms is a rapidly evolving field, as are
complementary computational algorithms and tools, such as NLP and
statistical models. For example, the severe childhood obesity algo-
rithm2 requires age appropriate percentiles for BMI, which may require
an external calculator and/or additional percentile data. These dynamic
tasks are difficult to represent or program with static languages (such
as XML). Likely the optimal method to “interface” with external soft-
ware packages would be to allow inclusion of new specifications of
data elements that could be calculated external to the phenotype algo-
rithm. As a related endeavor, the eMERGE colon polyps algorithm67

was delivered as a standard executable KNIME workflow, with a sim-
ple Java Snippet unit connecting to a customized NLP package to
parse the colonoscopy reports. The T2DM algorithm has a KNIME
workflow implementation available on PheKB.

10. Maintain backward compatibility
A PheRM must be developed according to current existing EHR data,
but robust enough to evolve to make use of new clinical data and
standards. In addition, unlike a quality measure, which only focuses
on records of a limited and recent period, phenotype algorithms fre-
quently use information dated back to as early as the first day of utili-
zation of the EHR to obtain enough data for statistical significance. The
information usually comes from records across multiple distinct histor-
ical eras of EHR development, and from multiple generations of EHR
client software and templates. An obvious example is the need to sup-
port both ICD9 and ICD10, as well as different historical versions of
ICD9 (e.g., allergic bronchopulmonary aspergillosis was billed as
“518.89,” but has been billed as “518.6” since 199793). Since pheno-
type algorithms often examine historical data, such capabilities are still
required even after the United States formally adopts ICD10.

Acknowledging that robust data normalization across EHRs (espe-
cially for historical data) is also a difficult and yet unachieved task, we
recommend prioritizing the development of functionality and support
of data elements for PheRM. For example, data elements that have
been widely used in previous phenotype algorithms should be stan-
dardized first: billing codes, RxNorm codes for medications, Logical
Observation Identifiers Names and Codes for laboratory tests, and di-
agnoses on problem lists. Progressive normalization of EHR data with
CDMs may simplify backward compatibility.

An example: the desiderata applied to T2DM phenotype algorithm
The T2DM algorithm19 first ascertains T2DM diagnosis with grouped
T2DM ICD-9 codes, use of oral hypoglycemic medications represented
in grouped RxNorm codes (as Desideratum 7), or multiple mentions of
T2DM in clinical narratives (Desiderata 5 [a counting rule] and 8); then
it differentiates T2DM from type 1 diabetes mellitus (T1DM) patients
by excluding patients with T1DM ICD-9 codes (as Desideratum 4 [ex-
clusion]), enforcing absence of insulin use or oral medications should
preceded insulin use (as Desiderata 5 [aggregation function of first ap-
pearance] and 6); for some cases, it confirms diabetes diagnoses with
laboratory values. Its implementation and inter-institutional operation
requires supports of other listed desiderata (with details in
Supplementary Appendix A Part 1).

DISCUSSION
To develop these desiderata for a standardized PheRM, we have in-
vestigated phenotyping modalities adopted in algorithms from
eMERGE, PGRN, SHARPn, and PGPop networks (Table 2), and evalu-
ated popular clinical diagnostic and decision-making algorithms. We
have also investigated currently available phenotyping tools, and find
that these tools are evolving along with our proposed desiderata and
are able to perform increasingly complex phenotype queries. As tests
for the feasibility and sufficiency of these modalities, algorithms, and
tools, the ongoing Phenotype Execution Modeling Architecture
(PhEMA) (http://projectphema.org) collaboration has been actively im-
plementing these desiderata and delivering phenotype workflows
(Supplementary Appendix Part 3).

Since phenotyping is a knowledge-intensive process based on a
global evaluation of each patient,105 missing only a few features in a
phenotyping platform or standard language will result in difficulty rep-
resenting elementary algorithms. It is challenging to list all the techni-
cal requirements and details in one paper. Thus, ongoing collaboration
between developers of phenotype languages and tools, and user com-
munities (including both geneticists and clinicians) will be imperative.

The desiderata (D1–10) we proposed cover multiple domains:

1. Partnership with evolutions of EHR repositories (D1, D2);
2. A balance between human-readable and computational represen-

tations (D3);
3. Common computational elements in phenotype algorithms (D4–

D8);
4. Extensibility with external tools and modules (D9);
5. Flexibility in accommodating to different institutions and states of

the art (D2, D10).

While there are similarities between phenotype algorithms and
healthcare-focused algorithms like quality measures,106 eligibility cri-
teria for clinical trials, and clinical decision support rules, the imple-
mentation for each has differences. For example, quality measures
often are more focused on sensitivity while phenotype algorithms for
research studies, including EHR-based genomics studies, are typically
more focused on positive predictive value.21 In addition, many pheno-
type algorithms use NLP49,50 and corroboration with different data ele-
ments, whereas quality measures and clinical decision support utilize
predominantly structured data. For the purpose of this paper, “pheno-
type algorithm” typically refers to the application of decision logic ap-
plied for EHR-based biomedical research purposes. Nevertheless, we
anticipate most desiderata for phenotyping algorithms may apply to
other healthcare applications. For example, we have successfully
translated the “last mile” solution in phenotyping (described in
Desideratum 2) to electronic clinical quality measures.107 However a
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Table 2: Features of selected algorithms available on PheKB

Algorithms Data elements Challenges informing desiderataa

Atrial fibrillation CPT, ICD-9, ECG reports Text-based queries (complex regular expressions; D8)
Using specific clinical documents (ECG reports; D2)

Cardiac
conduction10,94,95

CPT, ICD-9, laboratories, medications, ECG
reports,

PL

Sequential timeline of events (D6);
NLP tasks: note section identification, concept extraction (D8)
Numeric readings (length of QRS interval) extracted from

text-based ECG reports (D1).

Cataract96,97 CPT, ICD-9, medications,
clinical documents,
ophthalmology image documents

(handwritten)

Complex exclusions for control group (D4)
Complex rule model (D5)
Concept extraction with NLP (D8)
Handwritten document recognition

Clopidogrel poor
metabolizers11

CPT, ICD-9, laboratories, medications,
H&P (with PMH), PL

Sequential events (D6)
Patient follow-up requirements (D5, 6)
NLP concept extraction (D8)

Crohn’s disease ICD-9, medications,
clinical documents,
pathology reports

Keyword search (D8)
Multiple groups (D4, 5)
Close relationship with ulcerative colitis

Dementia ICD-9, medication Code counts (D5)

Diabetic retinopathy CPT, ICD-9, medications, PL,
encounter with specialists

Initial population is from another algorithm (D4)
Concept extraction and negation detection with NLP (D8)

Drug-induced liver
injury14,98

ICD-9, medications, laboratories Concept extraction with NLP (D8)
Complex rule model (D5)
Complex temporality (D6)

Height ICD-9, laboratories, medications, height,

age

Complex temporality (D6)
Event selection (D4, 6)

HDL99,100 ICD-9, laboratories, medications Identification of the first occurrence of events (D5)
Complex rule model with temporality (D5, 6)

Hypothyroidism5 CPT, ICD-9, laboratories, medications, clin-

ical documents

Selection and exclusion of events (D4)
Follow-up requirements for control (D6)

Lipids ICD-9, laboratories, medications Event selection (D4, D6)

Multiple sclerosis ICD-9, medications, PL, H&P, discharge

summaries, other notes

Keyword search (D8)
Different levels of certainty (multiple groups, D4, 5)

Peripheral arterial disease CPT, ICD-9, laboratories, medications, clin-

ical notes, radiological reports

Multivariable logistic regression model (scoring, D5)
Extraction of ankle-brachial index from free-text (D9)
Keyword extraction (D8)

RBC indices101 CPT, ICD-9, laboratories, medications Event selection and exclusion (D4, 6)

Rheumatoid arthritis ICD-9, medications,
clinical notes

Concept extraction (D8)
Ambiguity of abbreviations (i.e., “RA”; D8)
Logistic regression54 (D9)

Severe early childhood
obesity

ICD-9, medications, vital signs, age Event selection (D4)
BMI calculation, and mapped to age appropriate percentiles (D9)

Type 2 diabetes
mellitus19,102

ICD-9, laboratories, medications Complex nested Boolean logic (D5)

Warfarin dose and
response103

Medications, laboratories, notes from anti-

coagulation clinics

Dosage extraction with NLP (D1, 8, 9)
Temporality of sequential events (D6)

WBC indices104 CPT, ICD-9, laboratories, medications Complex selection and exclusion of events (D4–6)

aD1–D10 in parentheses represent the desiderata elements corresponding to each challenge. All phenotype algorithms benefit from D1, D2, and D7.
BMI: body mass index; CPT: current procedural terminology; ECG: electrocardiogram; HDL: high-density lipoprotein; H&P: history and physical exami-
nation (notes); ICD-9: International Classification of Diseases, 9th Revision; NLP: natural language processing; PL: problem list; PMH: past medical his-
tory; QRS: the QRS complex which indicates ventricular depolarization in ECG; RA: rheumatoid arthritis; RBC: red blood cells; WBC: white blood cells.
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formal evaluation across all categories of algorithms is outside the
scope of this paper.

Strategies of phenotyping are evolving with new informatics and
data representation methods, new EHR data elements, and new medical
knowledge. A PheRM will also need to be able to evolve continually. A
persistent trend, however, has been the need to access detailed infor-
mation and the context of information from a variety of sources. For
example, “glaucoma” diagnosed or mentioned by an ophthalmologist (a
matched specialist) provides much higher confidence than when men-
tioned as self-report or by non-ophthalmologist clinicians.

In addition, a diagnosis is typically developed and confirmed by a
clinician over time. Thus, a standalone assertion in the medical re-
cords can be misleading. Computational reconstruction of the clinical
timelines and connecting diverse clinical elements using medical
knowledge may provide a more accurate capture of phenotypes. For
example, elevated liver function tests in a patient with rheumatoid ar-
thritis can be a side effect of a medication but may also result from a
primary viral infection, heart failure, sepsis, or other causes.
Designing computational medical knowledge maps to interrelate dif-
ferent information sources may improve phenotyping. Examples in-
clude historical expert systems such as INTERNIST-1108 and
DXplain.109 More recent, data-driven approaches include resources
such as Side Effect Resource -2110 and MEDication-Indication.111

Limitations caution interpretation of this work. First, these desiderata
are based on the experiences of the authors and the algorithms and sys-
tems explored to date. A robust community-based phenotyping ecosystem
will sustain the continuous evolution of these desiderata with ever expand-
ing knowledge and experience. Second, these desiderata mainly focus on
knowledge-driven phenotype approaches, and have not yet addressed
data-driven approaches, such as unsupervised or deep learning.112 Third,
these desiderata are written during a period of rapid EHR evolution and
adoption due to MU incentives. Availability of CDMs, standards, and data
types available will evolve similarly as the field continues maturing.
Fourth, it is unclear the degree to which these desiderata will apply to
international experiences with computable phenotypes. Finally, these
desiderata may not be addressable by any one single system, but repre-
sent an overarching series of goals for such work.

Our mission is to create research quality information from data gath-
ered in a non-research enterprise. Clinically-derived data comes
with the advantages of larger scale, reduced cost, repeated observa-
tions, and the ability to observe rare events. It is important to understand
that this is not just about technology; efforts by clinicians to record
quality data and robustly use EHRs enable greater secondary use poten-
tial. We are optimistic that this new endeavor will lead us to align
and expand the “research quality prospective data” from direct clinical
trials.
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