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Abstract: Folic acid (FA) is the synthetic surrogate of the essential B vitamin folate, alternatively
named folacin, pteroylglutamic acid or vitamin B9. FA is an electroactive compound that helps
our body to create and keep our cells healthy: it acts as the main character in a variety of synthetic
biological reactions such as the synthesis of purines, pyrimidine (thus being indirectly implied in
DNA synthesis), fixing and methylation of DNA. Therefore, physiological folate deficiency may be
responsible for severe degenerative conditions, including neural tube defects in developing embryos
and megaloblastic anaemia at any age. Moreover, being a water-soluble molecule, it is constantly
lost and has to be reintegrated daily; for this reason, FA supplements and food fortification are,
nowadays, extremely diffused and well-established practices. Consequently, accurate, reliable and
precise analytical techniques are needed to exactly determine FA concentration in various media.
Thus, the aim of this review is to report on research papers of the past 5 years (2016–2020) dealing
with rapid and low-cost electrochemical determination of FA in food or biological fluid samples.

Keywords: folic acid; real samples; analytical methods; electrochemical tools

1. Introduction

Folic acid (FA) or pteroylglutamic acid is a water-soluble B-complex vitamin and, due
to its extremely important functions, represents an essential constituent of the human diet.
It is the synthetic substitute of the essential B vitamin folate, also known as pteroylglutamic
acid, folacin or vitamin B9. The IUPAC name of FA is (2S)-2-[[4-[(2-amino-4-oxo-1H-
pteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid.

Beginning in the 2000s, FA and folate derivatives received increasing interest due
to their importance for human well-being and due to growing understanding of the
consequences of deficiency [1,2]. These molecules are considered essential compounds,
because precursors of fundamental coenzymes are needed in many crucial biochemical
reactions. FA molecular structure is made up of three components: a pteridine portion
linked by through p-aminobenzoic acid to L-glutamic acid (Figure 1). The acyl group
coming from the pteroic acid is a pteroyl group [3].
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Figure 1. Schematic representation of folic acid (mono-glutamate derivate). 

FA, though, has no biological activity itself but acts as fundamental precursor of a 
group of crucial coenzymes. Furthermore, FA is not produced by human body, and thus 
it must be obtained through diet (in the folate form), including liver, yolk, kidney beans, 
green leafy vegetables and fresh fruits [4]. Due the extreme importance of FA in cell pro-
liferation, its assimilation is more and more frequently achieved by taking food supple-
ments [5]. Indeed, all cells need folate in its reduced form in order to renew their cellular 
components. Tetrahydrofolate, for instance, acts as a cofactor in some essential metabolic 
pathways, such as DNA synthesis and biological methylation [6]. Different organisms ex-
ploit different strategies to obtain folate: plants and some microorganisms can produce 
folate from scratch with minimal variations of the same biosynthetic pathway [7–9]. Con-
versely, mammals, being auxotrophs, obtain folate through their diet or by exploiting in-
testinal bacteria capable of synthesizing it [10,11]. Despite all the different functions of the 
folate coenzyme, the main one is to transfer one-carbon groups in a variety of synthetic 
reactions. This capability varies depending upon the state of oxidation of the transferred 
group. Furthermore, FA can participate in a plethora of key reactions for fundamental cell 
functions: among the most important reported are the synthesis of purines, pyrimidines 
(and thus, indirectly, in the synthesis of DNA) and methionine, and the repair and meth-
ylation of DNA. Folate deficiency may result in degenerative conditions, such as neural 
tube defects in developing embryos and megaloblastic anaemia at any age [12]. Being wa-
ter-soluble, folate cannot be stored in the human body and consequently is continuously 
lost. Therefore, its deficiency is one of the most commonly found vitamin deficits. The 
effective folate lack in the world is not well understood even though it appears a usual 
condition for many vulnerable classes. The use of so-called FA antagonists in certain dis-
ease (such as cancer [13], leukaemia [14], psoriasis [15], rheumatoid arthritis [16,17], pol-
ymyositis [18,19], dermatomyositis [20,21] and so on) may seem to suggest that a folate 
surplus in the diet would be harmful. Moreover, there have recently been rising concerns 
that FA supplementation could actually increase the risk of cancer frequency [22], as ani-
mal and human studies have indicated that high folate status may promote the progres-
sion of preneoplastic and undiagnosed neoplastic lesions [23,24]. There is little evidence 
to support such a view, nor it is well understood if FA supplements hamper the therapeu-
tic effectiveness of these medications. Due to FA’s ability to itself act as dihydrofolate re-
ductase inhibitor, it could quite possibly be not only reliable but even advantageous in the 
treatment of these disorders [25,26]. For this reason, FA supplements are widely used to 
prevent and handle folate deficiency in at-risk groups and also to prevent adverse events 
associated with antifolate medications [27]. A daily intake of FA, through the commer-
cially available supplements, is recommended to fertile and pregnant women in order to 
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FA, though, has no biological activity itself but acts as fundamental precursor of
a group of crucial coenzymes. Furthermore, FA is not produced by human body, and
thus it must be obtained through diet (in the folate form), including liver, yolk, kidney
beans, green leafy vegetables and fresh fruits [4]. Due the extreme importance of FA in
cell proliferation, its assimilation is more and more frequently achieved by taking food
supplements [5]. Indeed, all cells need folate in its reduced form in order to renew their
cellular components. Tetrahydrofolate, for instance, acts as a cofactor in some essential
metabolic pathways, such as DNA synthesis and biological methylation [6]. Different
organisms exploit different strategies to obtain folate: plants and some microorganisms can
produce folate from scratch with minimal variations of the same biosynthetic pathway [7–9].
Conversely, mammals, being auxotrophs, obtain folate through their diet or by exploiting
intestinal bacteria capable of synthesizing it [10,11]. Despite all the different functions
of the folate coenzyme, the main one is to transfer one-carbon groups in a variety of
synthetic reactions. This capability varies depending upon the state of oxidation of the
transferred group. Furthermore, FA can participate in a plethora of key reactions for
fundamental cell functions: among the most important reported are the synthesis of
purines, pyrimidines (and thus, indirectly, in the synthesis of DNA) and methionine, and
the repair and methylation of DNA. Folate deficiency may result in degenerative conditions,
such as neural tube defects in developing embryos and megaloblastic anaemia at any
age [12]. Being water-soluble, folate cannot be stored in the human body and consequently
is continuously lost. Therefore, its deficiency is one of the most commonly found vitamin
deficits. The effective folate lack in the world is not well understood even though it appears
a usual condition for many vulnerable classes. The use of so-called FA antagonists in certain
disease (such as cancer [13], leukaemia [14], psoriasis [15], rheumatoid arthritis [16,17],
polymyositis [18,19], dermatomyositis [20,21] and so on) may seem to suggest that a folate
surplus in the diet would be harmful. Moreover, there have recently been rising concerns
that FA supplementation could actually increase the risk of cancer frequency [22], as animal
and human studies have indicated that high folate status may promote the progression
of preneoplastic and undiagnosed neoplastic lesions [23,24]. There is little evidence to
support such a view, nor it is well understood if FA supplements hamper the therapeutic
effectiveness of these medications. Due to FA’s ability to itself act as dihydrofolate reductase
inhibitor, it could quite possibly be not only reliable but even advantageous in the treatment
of these disorders [25,26]. For this reason, FA supplements are widely used to prevent and
handle folate deficiency in at-risk groups and also to prevent adverse events associated
with antifolate medications [27]. A daily intake of FA, through the commercially available
supplements, is recommended to fertile and pregnant women in order to limit possible
neural disorders in developing fetuses [28]. Folate is highly recommended also in subjects



Sensors 2021, 21, 3360 3 of 15

with heart failure due to its ability to lower the blood-homocysteine level, which has
been linked to increased risk of cardiovascular events [29,30]. Moreover, FA promotes the
formation of vigorous and healthy red blood cells [31,32]. However, some countries decided
to not adopt FA fortification, being afraid of the possible negative consequences [33,34].
All these different benefits and disadvantages have led the research world to develop
and optimize analytical methods, which can dependably and accurately monitor the FA
concentration in natural sources, fortified foods, and multivitamin dietary supplements.
In Europe, the EFSA (European Food Safety Authority) balances the fortification of flour
(wheat and maize), establishing a minimum and maximum of 140 and 220 µg of FA per
100 g. For women with a history of congenital malformation, the recommended daily
dose is 5 mg to reduce the risk of recurrence of the problem. A plethora of different
analytical methods have been applied to determine FA in natural sources, using laboratory
instrumentation as thermogravimetry [35], spectrophotometry [36,37], high performance
liquid chromatography (HPLC) [38,39] with mass spectroscopy [40,41], colorimetry [42,43],
fluorescence [44], electrophoresis [45,46] and so on (Table 1). Recently, an interesting
overview about the future trends in the market for electrochemical biosensing has been
proposed in [47], in which the current outline of the sensors and biosensors market is
summarized. Some of the most recent advances are discussed, along with future prospects
for biosensing development that could make an impact on the future global market. This
short review reports on research papers of the past 5 years (2016–2020) dealing with the
electrochemical determination of FA in food or biological fluid samples.

Table 1. Summary of analytical methods for the determination of FA in various samples.

Analyte Technique LR * LOD Sensitivity RSD% Ref

FA in pharmaceutical
preparations

Spectrophotometric determination by
coupling reaction 0.1–8.0 µg mL−1 0.0469 µg mL−1 0.0066 µg cm−2 0.2805 [36]

FA in vegetables HPLC-UV-Vis 0.3–100 ng mL−1 0.1 ng mL−1 / 0.3 [39]

FA in beer LC-MS/MS / 0.3 µg L−1 1.2 µg L−1 / [40]

FA in egg yolks Modified EMR-lipid method
combined with HPLC-MS/MS 0.1–100 ng mL−1 18.3 ng mL−1 /

3.9 (HC)
[41]8.1 (MC)

10 (LC)

FA in commercial
preparations

Chemiluminometric procedure 6.0–114 µg mL−1 2.0 µg mL−1

/
1

[44]
Fluorimetric procedure 0.02–1.1 µg mL−1 0.002 µg mL−1 0.7

FA in human urine Capillary electrophoresis 0.5–6.0 mg L−1 0.30 mg L−1 /
0.4–0.7(MT)

[45]2.0–3.9 (PA)
1.2–1.7 (PH)

FA in pharmaceutical
tablets

Capillary electrophoresis with
chemiluminescence determination 5.0 × 10−8–10−5 M 2.0 × 10−8 M /

1.1 (MT)
[46]1.5 (PA)

4.9 (PH)

FA in pharmaceutical
preparations

Flow-injection/chemiluminescence
determination 2.5 × 10−5–3 × 10−7 M 2.3 × 10−8 M / 3.5 [48]

* LR (linear range), LOD (limit of detection), RSD (relative standard deviation), HC (high-concentration), MC (medium-concentration),
LC (low-concentration), MT (migration time), PA (peak area) and PH (peak height).

2. Electrochemical Determination

In recent decades, the growing interest in FA, due to its physiological importance,
has involved the development of a plethora of methods for its determination [49]. Thus,
a sensitive, specific and easy-to-use way to quantify FA is crucial. In this section, a
collection of the most relevant and original electrochemical sensors of the past 5 years
for FA determination is reported. In particular, two different subsections are mentioned:
traditional and screen-printed based sensors.

2.1. Traditional Sensors

In 2018, Mohammadi et al. [50] aimed to fabricate an FA-sensitive platform based on
manganese ferrite nanoparticles modified by means of trimethoxy silane (3-amynopropyl).
In particular, in this study, core shell magnetic nanoparticles (CMNP) were involved in
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order to produce 2FTNE ((2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)-1-(naphthalen-2-yl) ethanone),
successively used in the modification of CMPE paste electrodes (2FTNE-modified CMNP
paste electrodes), whereby this platform has been carefully characterized. The main goal of
this research study was the concurrent measurements of epinephrine (EP), uric acid (UA)
and FA. For this purpose, the concentrations of these analytes were simultaneously changed
over time. The analysis was conducted using 2FTNE-modified CMNP paste electrodes
(2FTNEMCPPE) and square wave voltammetry (SWV) as electrochemical technique, as
reported in Figure 2. It is possible to observe that three well-distinguished anodic peaks at
defined potentials of 430, 730 and 930 mV, corresponding to the oxidation peaks of EP, UA
and FA, respectively, were obtained, which confirmed that the concurrent measurements of
these analytes was possible (Figure 2). With the use of bare CPE, an overlapping voltammo-
gram for the analytes was obtained. The sensitivity of the 2FTNEMCNPPE toward EP was
1.813 µA µmol−1 L, while without UA and FA, it was found to be 1.839 µA µmol−1 L. As a
consequence, it is possible to have the independent or the concurrent measurements and
quantification of EP, UA and FA. Finally, 2FTNEMCNPPE was applied to measure EP, UA
and FA in an EP ampoule, an FA tablet and urine samples. All the different outcomes are
summarized in Table 2. In addition, the recovery of EP, UA and FA of the samples spiked
with known amounts of EP, UA and FA was assessed.
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L−1) of EP, UA FA in a mixed solution: (1) 5.0 + 5.0 + 10.0, (2) 50.0 + 25.0 + 10.0, (3) 150.0 + 100.0 + 
20.0, (4) 400.0 + 300.0 + 40.0, (5) 700.0 + 550.0 + 60.0. (A–C): plots of peak currents as a function of 
EP, UA and FA concentration, respectively [50]. 

Figure 2. SWVs of 2FTNEMCNPPE in 0.1 M PBS (pH 7.0) with various concentrations (µmol L−1)
of EP, UA FA in a mixed solution: (1) 5.0 + 5.0 + 10.0, (2) 50.0 + 25.0 + 10.0, (3) 150.0 + 100.0 + 20.0,
(4) 400.0 + 300.0 + 40.0, (5) 700.0 + 550.0 + 60.0. (A–C): plots of peak currents as a function of EP, UA and
FA concentration, respectively [50].

Back in 2016, Lavanya et al. [51] developed a selective electrochemical sensor based on
Mn doped SnO2 nanoparticles (NPs) modified glassy carbon electrode (Mn-SnO2/GCE). In
particular, this platform was employed for the simultaneous determination of ascorbic acid
(AA), uric acid (UA) and FA. These nanoparticles were synthesized by microwave irradia-
tion and fully characterized using different spectroscopical and morphological techniques:
X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron
spectroscopy (XPS), vibrating sample magnetometer (VSM), EIS, CV and SWV, respectively.
AA is an important interfering analyte, which coexists with FA and UA in real body fluids.
For this reason, the concentrations of UA and FA were determined in presence of a very
high concentration of AA. The SWVs, reported in Figure 3, were obtained from the mixture
of UA and FA in the presence of 200 µM AA.
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Table 2. The use of 2FTNEMCNPPE in simultaneous quantification of EP, UA and FA in an EP ampule, an FA tablet and
urine samples (n = 5). The amounts of EP and FA in ampoules and tablets were found to be equal to 0.98 mg mL−1 and
1.01 mg/tablet, respectively. These outcomes show no significant difference between the results of the 2FTNEMCNPPE and
the nominal value on the ampoule label and tablet label (1.00 mg mL−1 and 1.00 mg/tablet, respectively) [50].

Sample Spiked (µM) Found (µM) Recovery (%) R.S.D. (%)

EP UA FA EP UA EP EP UA FA EP UA FA

EP ampoule 0 0 0 9.0 - - - - - 2.7 - -
2.5 15.0 17.5 11.4 15.5 17.1 99.1 103.3 97.7 3.2 1.9 2.8
5.0 25.0 27.5 14.3 24.8 27.9 102.1 99.2 101.4 3.1 2.3 2.7
7.5 35.0 37.5 17.1 35.1 37.3 103.6 100.3 99.5 1.9 3.3 2.4

10.0 45.0 47.5 18.5 45.6 48.8 97.3 101.3 102.7 2.2 1.8 3.1
FA tablet 0 0 0 - - 17.0 - - - - 3.4 -

5.0 17.5 2.5 5.1 17.1 19.7 102.7 97.7 101.0 2.3 1.9 3.2
10.0 2.5 5.0 9.8 22.9 21.9 98.0 101.8 99.5 3.1 2.3 1.9
15.0 27.5 7.5 15.1 27.1 24.3 100.7 98.5 99.2 1.7 2.8 2.7
20.0 32.5 10.0 19.8 33.5 27.5 99.0 103.1 101.8 2.8 3.1 1.8

0 0 0 - 10 - - - - - - -
7.5 10.0 30.0 7.4 20.2 30.9 98.7 101.0 103.0 2.9 3.2 1.6

12.5 20.0 40.0 12.7 29.5 39.1 101.6 98.3 97.7 3.4 2.7 2.6
17.5 30.0 50.0 18.1 41.2 49.5 103.4 103.0 99.0 1.6 2.6 3.1
22.5 40.0 60.0 22.4 49.8 61.5 99.5 99.6 102.4 2.2 1.8 2.9Sensors 2021, 21, x FOR PEER REVIEW 6 of 16 
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Figure 3. SWVs obtained for various concentrations of UA (5 to 500 µM) (A) and FA (1 to 800 µM)
(B) at Mn SnO2/GCE in the presence of 200 µM AA in 0.1 M PBS (pH 6.0) and inreal samples (C).
(insert of A–C): plots of the oxidation peak currents as a function of various concentrations of UA
and FA, respectively [51].

It can be easily noticed (Figure 3A) that simultaneously increasing the FA and UA
concentrations a corresponding linear increase in the anodic peak currents have been
obtained. Thus, a linear relationship between analytes concentration and their anodic
peak currents is established. Furthermore, using different concentrations of UA and FA
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(in the range 5.0 to 500 µM for UA and 1.0 to 500 µM for FA), detection limits of 0.025 and
0.038 µM, respectively, have been obtained. To verify the applicability of this platform (Mn-
SnO2/GCE sensor) to real samples, AA and FA have been determined in pharmaceutical
products. A recovery value corresponding to 99.4% (labeled content of FA mg/tablet 5,
observed content of FA mg/tablet 4.88) was found using 3 wt% Mn-SnO2/GCE. Thus,
the method studied could be reliably applied for the determination of FA and AA in
commercial samples.

Another important work, published in 2020 by Sadeghi et al. [52], proposed an electro-
chemical amplified FA sensor based on paste electrode (PE) modified with CuO-CNTs and
1-butyl-2,3-dimethylimidazolium hexafluorophosphate (BDHFP). Specifically, this device
is based on the FA oxidation current registered by means of DP voltammograms, which
increased 2.8 times using PE/M/CuO-CNTs-BDHFP with respect to PE. The modification
produced an increase in the active surface area of PE (from 0.11 cm2 to 0.18 cm2 after
modification with CuO-CNTs and BDHFP). DP voltammograms of different concentrations
of FA were recorded on the surface of PE/M/CuO-CNTs/BDHFP with a linear dynamic
range between 3.0 nM and 250 µM with a detection limit of 0.8 nM using PE/M/CuO-
CNTs/BDHFP as an electrochemical sensor (Figure 4).
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The ability of PE/CuO-CNTs/BDHFP was also tested in real samples. To this purpose,
it is employed in the determination of FA in orange and apple juices by applying the
standard addition method (data repeated in Table 3). The results, summarized in Table 3,
confirmed the powerful performances of this sensors for real sample analysis.

Table 3. Real sample analysis of FA using PE/CuO-CNTs/BDHFP (n = 4) [52].

Sample FA Added (µM) FA Expected (µM) FA Found (µM) Recovery %

Orange Juice
/ / 9.89 ± 0.54 /

10.00 19.89 20.21 ± 0.87 101.6

Apple Juice
/ / 8.51 ± 0.34 /

10.00 18.51 18.38 ± 0.65 99.29

Mollaei et al. [53] in 2019 reported an electrochemical sensor for FA detection based on
the adsorption of a cationic surfactant (n-dodecylpyridinium chloride, DPC), at the surface
of carbon paste electrode (CPE). The electrochemical performances in FA detection were
compared with cetyltrimethylammonium bromide (CTAB). This quantitative analysis is
performed using different voltammetric techniques: the differential pulse voltammetry
(DPV), cyclic voltammetry (CV) and chronocoulometry (CC). Moreover, the determination
of FA in urine and pharmaceuticals were performed in order to demonstrate the capability
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of the improved method and its reproducibility in real sample matrix (Figure 5). To over-
come the matrix effect drawback, in both cases, the conventional standard addition method
was utilized. The results are summarized in Table 4, indicating acceptable recoveries
(ranging between 94.1 and 103.5) and working range.
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Looking at Figure 5, it can be noticed that CPE in the presence of DPC has good
operating properties such as selectivity, sensitivity, stability, repeatability, low detection
limit (2.9 nM) and wide linear concentration range (0.01–10.69 mM). Finally, Tahernejad-
Javazmi et al. [54] in 2019, using previous experience with electrochemical sensor em-
ploying CuO nanoparticle decorated on single wall carbon nanotubes (CuO/SWCNTs)
nanocomposite and 1-butyl-3-methylimidazolium hexafluorophosphate [55], developed
an electroanalytical sensor based on reduced graphene oxide (GO) modified carbon paste
electrode (CPE). In particular, the GO modified platform were functionalized with FeNi3
(FeNi3)/rGO-ionic liquid n-hexyl-3-methylimidazolium hexafluoro phosphate (HMPF6).
This platform was then employed for the simultaneous determination of FA and TBHQ
(the antioxidant additive tertbutylhydroquinone), respectively. The modification process of
CPE with FeNi3/rGO and HMPF6 was followed by EIS measurements (Figure 6A) and
using 1.0 mM [Fe(CN)6]3/,4− as an electrochemical probe. Using this technique and going
from bare electrode to FeNi3-modifed platform (FeNi3rGO/HMPF6/CPE), an important
decrease in the charge transfer resistance (Rct) value (from 6480 Ω to 870 Ω) was observed.
This confirmed that the FeNi3/rGO and HMPF6 based modification improved conduc-
tivity and the electron transfer process at CPE’s interface. The FeNi3/rGO/HMPF6/CPE
performances have been compared to previous published methods [56,57]. The results,
displayed in Table 5, show the applicability of this modified CPE for real sample analysis.
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Figure 6. (A): Nyquist diagrams of (a) CPE, (b) FeNi3/rGO/CPE, (c) HMPF6/CPE and (d) FeNi3/rGO/
HMPF6/CPE in 1.0 mM [Fe(CN)6]3−,4−. (B): SW voltammograms of solution containing TBHQ and
FA at the FeNi3/rGO/HMPF6/CPE; (a) 35.0 + 50.0; (b) 45.0 + 70.0; (c) 60.0 + 80.0; (d) 70.0 + 100.0;
(e) 90.0 + 140.0; (f) 110.0 + 170.0; (g) 135.0 + 200.0 and (h) 165.0 + 240.0 µM. (C): The Ipa vs. TBHQ
concentration obtained from SW voltammograms. (D): The Ipa vs. folic acid concentration obtained
from SW voltammograms [54].
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Table 5. Determination of TBHQ and FA in real samples (n = 4) [54]. The different results are compared to those from
previously published methods for TBHQ [57] and FA [56], respectively.

Sample TBHQ Added FA Added Found TBHQ
Proposed Method

Found TBHQ
Published Method

Found FA
Proposed Method

Found FA
Published Method

Soybean oil - - 2.6 ± 0.2 2.6 ± 0.2 - -
5.00 - 7.5 ± 0.3 7.7 ± 0.4 - -

Sesame oil
- - 5.7 ± 0.4 5.8 ± 0.6 - -

10.00 - 15.4 ± 0.5 15.3 ± 0.6 - -

Apple juice - - - 10.4 ± 0.7 10.2 ± 0.8
- 10.00 - - 20.6 ± 0.7 20.1 ± 0.8

Drinking water 10.00 10.00 9.8 ± 0.7 10.5 ± 0.6 10.5 ± 0.5 9.8 ± 0.8

2.2. Screen Printed Electrodes (SPEs)-Based Sensors

Screen printed electrodes (SPEs)-based sensors are an improvement of traditional
sensors for performing rapid and accurate in situ analyses and for the development of
portable devices. In the past 5 years, few biosensors based on SPEs were developed for the
detection of FA in pharmaceutical and biological products, as summarized in Table 6.

Table 6. Summary of biosensors based on SEPs for the determination of FA in various samples.

Analyte Technique LOD Working Range Sample Ref.

Vitamin B9 in real specimens. SPE modified with La+3/Co3O4
nano-cubes. 0.3 µM 1–600 µM Human urine

samples, tablet. [58]

N-acetylcysteine in the presence
of paracetamol and folic acid

CPE modified with Pt-Co nanoparticles and
2-(3,4 dihydroxy phenethyl)

isoindoline-1,3-dione
0.04 µM 0.08–650 µM Human urine

samples, tablet. [59]

Simultaneous determination of
sulfisoxazole and folic acid.

CuO Nanoparticles decorated on SWCNT
nanocomposite modified CPE. 0.8 µM 0.07–500 µM Human urine and

tablet. [59]

Folic acid in real specimens. SPE modified with Graphene Oxide
Nanoribbons 0.02 µM 0.1–1600 µM Human urine

samples, tablet [60]

Folic acid in real specimens. Mn-zeolite/Graphite modified
Screen-printed Carbon Electrode 0.003 µM 0.004–1 µM Pharmaceutical

samples [61]

Folic acid in real specimens. SPE modified using GNS-MoS2-AuNPs 38.5 nM 50 nM–1150 µM Human urine [62]

Simultaneous determination of
folic acid and epinephrine Graphite SPE modified with Fe3O4@SiO2 1 µM 5–1000 µM Human blood

serum and urine [63]

Folic acid in real specimens. SPE modified with NiFe2O4 nanoparticles 0.034 µM 0.1–500 µM Human urine [64]

The great results have been achieved in the application of SPEs for the detection of FA
and the main results are described below in detail.

In 2016, Mani et al. [62] developed a facile method to determine FA in real samples.
In this work, the preparation of a ternary nanocomposite made of graphene nanosheets
(GNS), molybdenum disulfide (MoS2) and gold nanoparticles (AuNPs) were detailed and
its electrochemical sensing suitability studied. This ternary nanocomposite, GNS-MoS2-
AuNPs, characterized by particle sizes of about 10–50 nm, is deposited onto the surface
of screen-printed electrodes (SPE) and applied for the quantification of FA. Due to the
good synergic effect between GNS, MoS2 and AuNPs, the composite shows excellent
electrocatalytic ability. Impedance and electrochemical attributes of the nanocomposite
were carefully studied: charge transfer resistance (Rct) compared (Figure 7) for unmodified
SPE, MoS2/SPCE, GNS–MoS2/SPCE and GNS–MoS2–AuNPs/SPE. The Rct values are
reported in the following order: unmodified SPE > MoS2/SPE > GNS–MoS2/SPE > GNS–
MoS2–AuNPs/SPE, respectively. In particular, Rct obtained at GNS–MoS2–AuNPs/SPE
is the lowest compared with control electrodes, indicating lowest resistance at this elec-
trode interface. Thus, the electrochemical impedance spectroscopy (EIS) results revealed
that the GNS–MoS2–AuNPs composite interface presents a better electrical conductivity
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than the other platforms. Furthermore, this EIS study was followed by a potentiometric
investigation in amperometry. Using this technique, the determination of FA in human
urine sample occurs in a wide linear range of 50 nM–1150 µM and displays low detection
limit of 38.5 nM. To apply these platforms in real samples, a recovery study was conducted,
obtaining satisfactory results (values range from 97.16 to 98.55%). The sensor performance
of the GNS–MoS2–AuNPs is either superior or comparable to the previously reported
electrodes [65–67].
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Safaei and co-workers [63] in 2019 proposed a device for the simultaneous determina-
tion of FA and epinephrine (EP). This sensitive and convenient electrochemical sensor is
based on Fe3O4@SiO2/GR nanocomposite modified graphite SPE using cyclic voltammetry
as detection tools. In particular, cyclic voltammograms (CVs) were recorded in the presence
of analytes after having cycled the potential 20 times at a scan rate of 50 mV s–1. The peak
potentials were unchanged and the currents decreased by less than 2.3%. Therefore, at the
surface of Fe3O4@SiO2/GR /SPE, not only the sensitivity increases, but the fouling effect of
the analyte and its oxidation product also decreases. To ascertain the analytical applicability
of the proposed method, real samples matrices were evaluated. In particular, the simultane-
ous determination of epinephrine and FA, using the standard addition method and DPV
as analytical technique, in human blood serum, urine, epinephrine injection and folic acid
tablets samples, were analyzed in depth. In Table 7, the relative results are reported.

Satisfactory recoveries were found for epinephrine and FA, as reported in the above
table. Reproducibility is reported as mean relative standard deviations (RSD%). The sensor
exhibited notable electrochemical activity towards the oxidation of epinephrine and FA, and
solved the overlapping anodic peak outcomes of EP and FA into two well-defined peaks.

Safaei et al. [64], in 2019, successfully synthesized and used NiFe2O4 (NFO) nanopar-
ticles in order to develop a modified novel voltammetric sensor for determination of FA
in urine samples. The morphological characterization of NFO nanoparticles was exam-
ined by means of scanning-electron microscopy (SEM), and it was observed that all the
particles are nearly spherical, not agglomerated and less than 10 nm. In Figure 8C, cyclic
voltammograms (CVs) are depicted, obtained using NFO-modified SPE. Analyzing equal
concentration of substrate, NFO/SPE shows much higher anodic peak currents for the
oxidation of folic acid compared to the unmodified SPE. This indicates that the modification
of bare SPE with NiFe2O4 nanoparticles has significantly improved the performance in
terms of electron transfer process between the electrode and the folic acid. In Figure 8C,
the effect of potential scan rates on the oxidation currents of FA is described.
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Table 7. Determination of epinephrine and FA in human blood serum, urine, epinephrine injection and folic acid tablet
samples. All the concentrations are in µM (n = 5) [63].

Sample
Spiked Found Recovery, % Rsd %

Epinephrine FA Epinephrine FA Epinephrine FA Epinephrine FA

Human blood serum
0 0 - - - - - -

10.0 5.0 10.3 4.9 103.0 98.0 3.2 2.4
20.0 60.0 19.8 61.6 99.0 102.7 17 2.7

Urine
0 0 - - - - - -

12.5 45.0 12.3 45.3 98.4 100.7 2.4 3.1
22.5 55.0 23.1 53.7 102.6 97.6 1.8 2.8

Epinephrine Injection
0 0 10.5 - - - 3.2 -

2.5 30.0 12.7 30.3 97.7 101.0 1.9 2.6
5.0 39.7 15.9 40.3 102.6 99.2 2.4 3.3

Folic Acid Tablet
0 0 - 15.0 - - - 2.7

5.0 25.0 4.9 0.9 98.0 102.2 2.4 1.6
10.0 35.0 10.1 49.2 101.0 98.4 2.7 3.0
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Figure 8. (A): SEM Micrograph of NiFe2O4 and its EDX. (B): deposition of NPs on SPE with drop casting. (C): CVs of
NFO/SPE in 0.1 M PBS (pH 7) containing 150 µM of FA at various scan rates; numbers 1–12 correspond to 10, 25, 50, 75,
100, 200, 300, 400, 500, 600, 700 and 800 mV s−1, respectively. Inset: variation of anodic peak current vs. square root of
scan rate [64].

Since differential pulse voltammetry (DPV) has the advantage of having an increase
in sensitivity and better characteristics for analytical applications, DPV technique was
performed in order to determine various FA concentrations; a dynamic range between
1.0 × 10−7 and 5.0 × 10−4 M and a detection limit of 3.4 × 10−8 M were found. This proto-
col has been applied to real samples—FA tablets and urine samples—by using standard
addition method. The results for the determination are summarized in Table 8.
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Table 8. Determination of FA in FA tablet and urine samples. All the concentrations are in µM
(n = 5) [64].

Sample Spiked Found Recovery (%) Rsd (%)

Folic acid tablet

0 15.0 - 3.2
2.5 17.8 101.7 1.7
5.0 19.5 97.5 2.8
7.5 23.3 103.5 2.2

10.0 24.8 99.2 2.4

Urine

0 - - -
10.0 10.3 103.0 3.4
20.0 19.9 99.5 1.7
30.0 29.1 97.0 2.3
40.0 40.5 101.2 2.8

Satisfactory recovery and reproducibility values of the experimental were found for
FA, as demonstrated by the mean relative standard deviation (RSD%).

3. Conclusions

FA has a crucial role in some extremely important biochemical processes including
synthesis of nucleic acid, cell division, growth and development of fetuses. For this reason,
FA supplements are widely used to prevent and handle folate deficiency in at-risk groups
and also to prevent adverse events associated with antifolate medications. Due to the
critical rule of FA in human health, during the past years, many efforts have been made in
the analytical field in order to develop reliable and precise sensors for its determination.

In more detail, the aim of this short review is to report the most interesting and original
electrochemical tools proposed in the past 5 years for FA determination in pharmaceutical
preparations, food supplements and other real samples. In conclusion, all the proposed
analytical platforms can be applied to the determination of FA in a plethora of real samples:
human urine, blood serum, pharmaceutical or commercial preparations. Remarkable
recovery values and relative standard deviations have been found in all the proposed
research papers. Among all, particularly interesting is the device based on Fe3O4@SiO2/GR
nanocomposite modified graphite SPE, which shows good recovery values and RSD%
in the simultaneous determination of FA by means of convenient electrochemical sensor.
Among traditional sensors, noteworthy is the electrochemical behavior of 2FTNE-modified
CMNP paste electrodes (2FTNECMNPPE). Using SWV, the concurrent measurement of
epinephrine, uric acid and FA has been realized and no significant differences between the
results of the 2FTNECMNPPE and the nominal values of real samples have been observed.
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