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Abstract: Cancer is one of the common diseases. Quantitative biomarkers extracted from standard-
of-care computed tomography (CT) scan can create a robust clinical decision tool for the diagnosis of
hepatocellular carcinoma (HCC). According to the current clinical methods, the situation usually
accounts for high expenditure of time and resources. To improve the current clinical diagnosis
and therapeutic procedure, this paper proposes a deep learning-based approach, called Successive
Encoder-Decoder (SED), to assist in the automatic interpretation of liver lesion/tumor segmenta-
tion through CT images. The SED framework consists of two different encoder-decoder networks
connected in series. The first network aims to remove unwanted voxels and organs and to extract
liver locations from CT images. The second network uses the results of the first network to further
segment the lesions. For practical purpose, the predicted lesions on individual CTs were extracted
and reconstructed on 3D images. The experiments conducted on 4300 CT images and LiTS dataset
demonstrate that the liver segmentation and the tumor prediction achieved 0.92 and 0.75 in Dice
score, respectively, by as-proposed SED method.

Keywords: deep learning; liver lesion segmentation; 3D segmentation display; U-Net; hepatocellular
carcinoma; successive Encoder-Decoder

1. Introduction

According to the health data and statistics of World Health Organization (WHO),
hepatocellular carcinoma (HCC) is one of the most common cancer diseases in the world,
which causes a large number of deaths every year [1]. The detection of lesions as well as the
estimation of their size and number is still widely used by visual inspection of computed
tomography (CT) [2] and magnetic resonance (MR) images in the clinical examination,
which can be subjective. The high tumor variability generally requires reliance on the
operator’s subjectivity, making it susceptible to diagnosis misinterpretations. In radiomics
studies [3], all observations underline the need for automatic and reliable tools dedicated
to tumor segmentation in order to finely characterize liver cancer. However, automatic
segmentation [4–8] of liver tumor is challenging not only due to the highly variable shape
of liver tumors but also because of the similar intensity values of nearby liver parenchyma.

Image segmentation is the process of dividing a digital image into multiple segments.
It is a classic problem in image processing and computer vision and is widely used in med-
ical imaging research [1–40]. In the early years, many algorithms were proposed to fulfill
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image segmentation. Otsu et al. [41] proposed a method based on dynamic thresholding.
Vincent et al. [42] proposed a region base growing method based on computing watersheds.
Those works are considered to be early studies of image segmentation.

In the medical field, Klinder et al. [9] proposed a comprehensive solution for au-
tomatically detecting and segmentation to construct compound rule-based systems for
vertebra CT images. Later, machine learning (ML) [41–45] techniques were applied to CT
images for organ segmentation. The ML-based segmentation methods did achieve superior
performance than traditional ones. However, the performance of ML-based methods relies
on the design of hand-crafted features, which tends to be human-defined rules, resulting in
high error in the results.

In the recent years, Deep learning (DL) [5,46,47] has received increasing attention in
the field of computer vision, which is an advanced branch of artificial neural network in
ML. Various types of deep networks have been proposed, in which Convolutional Neural
Network (CNN) [14] is one of the most popular in the image processing applications. Also,
in recent years, systematic templates for DL identification processes have also emerged [48],
providing researchers with a standardized rule to refer to when performing DL of such
medical images. With sufficient training data, CNN can automatically learn objective
and useful spatial features without any human-defined rules. Thus, CNN would be
able to an appropriate solution to overcome the above-mentioned problems of tumor
variability and feature design issues. Thus, the technologies and applications of CNN
performing on organ/lesion segmentation would be of great interest to the medical imaging
community [15–40], as this approach would have achieved superior performance in medical
imaging challenges [30–36].

In contrast to the ML methods based on human-defined features, CNN can automati-
cally learn discriminative features, and the learned features contain hierarchical informa-
tion. Many CNN-based methods have been applied to segmentation tasks. For instance, Li
et al. [16] proposed an automatic method based on 2D CNN to segment lesions from CT
slices, and compared the CNN approach with other traditional ML techniques including
AdaBoost [44], random forests (RF) [45], and support vector machine (SVM) [49]. The
results showed that the CNN method performed significantly better than other compared
methods in both qualitative and quantitative analysis. Zhang et al. [18] established a deep
CNN for segmenting brain tissues on multi-modality magnetic resonance images (MRI).
Lee et al. [13] proposed a CNN-based architecture for learning brain parcellation features
from labelled data. However, those methods essentially perform pixel-wise classification
by cropping the input. Learning of global spatial correlation is limited, which results in the
failure of tumor segment with inhomogeneous densities or unclear boundaries.

To tackle this issue, other types of CNN structure have been proposed. Long et al. [15]
proposed a method called Fully Convolutional Network (FCN) for semantic segmentation.
FCN uses full image as input, which can further output a full resolution segmentation map
with labeled colors. He et al. [20] proposed Mask-RCNN for instantaneous object segmen-
tation, which is an extension of an object detection method called Faster-RCNN. The Mask-
RCNN was then applied to uterine cervix segmentation [32]. Ünver et al. [31] combined
the efficient CNN-based object detection algorithm, You Only Look Once (YOLO), with
GrabCut algorithm to achieve accurate skin lesion segmentation. Ronneberger et al. [19]
proposed the U-Net architecture for biomedical image segmentation. The U-Net employs
two symmetric networks that performs feature extraction and segmentation map gener-
ation, respectively, which revolutionarily increases extended paths for precise targeting.
This type of architecture was given a name: Encoder-Decoder (ED). Due to the dramatic
segmentation performance provided by U-Net, many variants of U-Net were proposed for
different applications, such as E-Net [50,51], Res-UNet [38], V-Net [23], Dense U-Net [34],
One-shot Learning [52] and SD-Unet [36]. Although E-Net [50,51] has a faster training
speed, there is a trade-off in terms of accuracy to improve the speed (slightly less accurate
learning) by using a large Encoder and a small Decoder, there is still a difference in image
detail learning compared to SegNet’s symmetric Encoder/Decoder. Further, the One-shot



Diagnostics 2021, 11, 11 3 of 18

Learning [52] is trained by using a sample, and this kind of training with very small amount
of data has excellent effect compared with other training methods.

ED has become the most popular network structure for segmentation over the past few
years. Most works adopted a single ED for segmentation task for two reasons: (a) Efficient
implementation and (b) end-to-end training. However, using a single ED for accurate
segmentation usually requires a large amount of training data, and the performance
would be sensitive to network architecture. In the case of CT imaging, the images are
monochromatic and the pixel values between each tissue and organ are highly similar.
Thus, this property further imposes the difficulty of the network to identify lesions in
the absence of sufficient training data. Under such circumstances, a stratified strategy to
partition the tumor prediction task into multiple fragments, with a single network to deal
with each fragment would be a viable solution. Theoretically, this approach can reduce the
difficulty of model learning and further improve the quality of segmentation.

Based on the assumption, we propose a two-stage segmentation approach, called
Successive Encoder-Decoder (SED), for automatic liver tumor segmentation from CT
images. The SED consists of two independent encoder-decoders, SED-1 and SED-2, which
perform different segmentation tasks. The purpose of SED-1 is to localize the liver, while the
purpose of SED-2 is to predict the liver lesions based on the region of interest (ROI) obtained
by SED-1. More specifically, SED-1 excludes out the tissues other than liver, while SED-2
focuses on the preserved liver region to precisely extract the tumor location. SED-1 can be
regarded as a pre-processing step of SED-2, which ensures that SED-2 does not segment the
non-liver tissues. In terms of network composition, two different EDs for SED-1 and SED-2
were adopted, U-Net serves as the main architecture of SED-1 to localize the liver. On the
other hand, tumor segmentation is a more challenging task due to irregular distribution
of tumors within the liver. Thus, dense U-Net [34] was used in this project as the main
network of SED-2 to achieve more efficient extual information extraction. Regarding the
training of SED, the SED-1 and SED-2 must be trained independently using CT images
with liver ground truths and tumor ground truths, respectively. For this purpose, we have
built a liver CT dataset consisting of LiTS images [53] with a total of 4300 CT images. The
experiments conducted on this dataset will demonstrate the performance on liver lesion
segmentation for both quantitative and qualitative analysis. The SED segmentation results
of adjacent slices as a 3D visualization image will be visualized, which is likely to assist
surgeons rapidly identify the location, shape, and size of the tumors, further improving
the quality of surgical treatment.

2. Proposed Method
2.1. The Overview of SED

As shown in Figure 1, the SED consists of two stages: Liver localization (Stage 1) and
tumor extraction (Stage 2). Stage 1 uses SED-1 to exclude unwanted voxels and organs and
produces a liver mask that indicates the location of liver in the CT image. Once the liver
mask is obtained, the original CT image was multiplied with the mask to produce the liver
image, which would be used as input for Stage 2. Then, Stage 2 uses SED-2 to extract the
lesion (tumor) from the liver image. (IRB code: 201801581B0).

2.2. SED-1: Liver Localization Network

U-Net was adopted as the main architecture of SED-1, which is shown in Figure 2. The
upper part of SED-1 is the encoder network responsible for feature extraction. The encoding
process of U-Net consists of five scaling levels. Each level performs twice convolution and
one pooling operation at a specific resolution. When passing through a pooling layer, a
down-sampling operation is carried out to reduce image size. In order to preserve more
feature information, the number of output feature maps from the convolution layer will be
doubled after each down-sampling operation.
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On the other hand, the lower part is the decoder network, which performs de-
convolution and up-pooling. The purpose of the decoder is to restore the high-level
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feature maps obtained by the encoder to an output image with the same resolution of
input. It is worth mentioning that the feature maps of the same level in the encoder will be
concatenated to the feature maps of the up-sampling result through skip connections (gray
dash lines) after each up-sampling operation. Such design can ensure that the restored
feature maps contain more low-level features, thus improving the final segmentation result.
Table 1 shows the definition of SED-1.

Table 1. Architecture of SED-1 (Conv. stands for convolution, UP means up-sampling, [ ] denotes
long range connection, [ ˆ ] denotes superscript, and [ , ] denotes concatenate operation).

Encoder Output Size Decoder Connecting
Operation Output Size

Input 256ˆ2 × 1 UP 1 32ˆ2 × 256
Conv. block 1 256ˆ2 × 32 Copy 1 [Conv. block 4] 32ˆ2 × 256

Pooling 128ˆ2 × 32 Conv. block 6 [UP1, Copy1] 32ˆ2 × 128
Conv. block 2 128ˆ2 × 64 UP 2 64ˆ2 × 128

Pooling 64ˆ2 × 64 Copy 2 [Conv. block 3] 64ˆ2 × 128
Conv. block 3 64ˆ2 × 128 Conv. block 7 [UP2, Copy 2] 64ˆ2 × 64

Pooling 32ˆ2 × 128 UP 3 128ˆ2 × 64
Conv. block 4 32ˆ2 × 256 Copy 3 [Conv. block 2] 128ˆ2 × 64

Pooling 16ˆ2 × 256 Conv. block 8 [UP3, Copy 3] 128ˆ2 × 32
Conv. block 5 16ˆ2 × 512 UP 4 256ˆ2 × 32

Copy 4 [Conv. block 1] 256ˆ2 × 32
Conv. block 9 [UP4, Copy 4] 256ˆ2 × 16

Conv. 256ˆ2 × 1

2.3. SED-2: Tumor Extraction Network

Relative to the liver area, tumors are tiny structures which are difficult to be detected
due to the variability of appearances, fuzzy boundaries, uneven densities, and irregular
shapes and sizes. In this case, it is required to have a more powerful encoder-decoder
to localize the tumor. Therefore, the SED-2 adopted FC-DenseNet [39] (or called Dense
U-Net) as the basic architecture for accurate tumor extraction. FC-DenseNet is an improved
version of ED networks based on U-Net. The architecture is shown in Figure 3. As can
be seen that the overall architecture consists of three types of modules: Dense block (DB),
transition down (TD), and transition up (TU). DB is a core module developed in [40],
which utilizes dense connections between all layers so that each layer can use feature
maps of all previous layers. This design promotes feature propagation, makes features
re-use efficiently, and mitigates the vanishing gradient problem. Since each layer contains
the output information of all previous layers, fewer calculations of feature maps are
required, thus reducing the computational complexity. As the result, the use of dense
block can improve the performance of feature extraction. TD is a down-sampling operation
used during the encoding process, while TU is an up-sampling operation performed
by transposed convolution during the decoding process. During the decoding process,
DenseNet performs feature concatenation through the skip connections (gray dashed lines)
to ensure that the restored feature maps have more low-level features. Table 2 shows the
architecture of SED-2.

2.4. Loss Function

Loss function is used to evaluate the difference between the output and the target
(ground truth) in the training of deep neural network. Choosing an appropriate loss
function is essential to the effectiveness of the model. In the training of SED, Dice Loss [23]
was adopted as loss function to optimize the network parameters of both SED-1 and SED-2,
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instead of cross entropy. Dice Loss is calculated based on Dice Coefficient, which measures
the similarity between two samples. The formulas of Dice Coefficient is expressed by

Dice Coefficient =
2∑N

i=1 AiBi

∑N
i=1 Ai

2 + ∑N
i=1 Bi

2
(1)

where A presents the network output whose value of each pixel denotes the probability of
belonging to the target, and B presents a binary mask (ground truth).

Dice coefficient can also be presented by 2×|A∩B|
|A|+|B| , where |A∩ B| presents the number

of the intersecting pixels of A and B, and |A| and |B| presents the numbers of total pixels of
A and B, respectively. The range of Dice Coefficient is [0,1]. The prediction result is more
similar to the target if the value is closer to 1.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 18 
 

 

 

C

C

C

Layer

Layer

Layer

Layer

C

Input

Output
 

(a) (b) 

Figure 3. The network architecture of SED-2 (Dense U-Net): (a) Main architecture and (b) defini-
tion of dense block (DB) (Orange circle C means direct copy). 

Table 2. Architecture of SED-2 (Conv. stands for convolution, UP means up-sampling, [ ] denotes 
long range connection, [ ^ ] denotes superscript, and [ , ] denotes concatenate operation). 

Encoder Output Size Decoder Connecting Operation Output Size 
Input 256^2 × 1 TU 1  16^2 × 240 
Conv 256^2 × 48 Copy 1 [DB 5] 16^2 × 656 

DB 1 (4 layers) 256^2 × 112 DB 7 (12 layers) [TU 1, Copy 1] 16^2 × 192 
TD 1 128^2 × 112 TU 2  32^2 × 192 

DB 2 (5 layers) 128^2 × 192 Copy 2 [DB 4] 32^2 × 464 
TD 2 64^2 × 192 DB 8 (10 layers) [TU 2, Copy 2] 32^2 × 160 

DB 3 (7 layers) 64^2 × 304 TU 3  64^2 × 160 
TD 3 32^2 × 304 Copy 3 [DB 3] 64^2 × 304 

DB 4 (10 layers) 32^2 × 464 DB 9 (7 layers) [TU 3, Copy 3] 64^2 × 112 
TD 4 16^2 × 464 TU 4  128^2 × 112 

DB 5 (12 layers) 16^2 × 656 Copy 4 [DB 2] 128^2 × 192 
TD 5 8^2 × 656 DB 10 (5 layers) [TU 4, Copy 4] 128^2 × 80 

DB 6 (15 layers) 8^2 × 880 TU 5  256^2 × 80 
  Copy 5 [DB 1] 256^2 × 112 
  DB 11 (4 layers) [TU 5, Copy 5] 256^2 × 1 

 

Figure 3. The network architecture of SED-2 (Dense U-Net): (a) Main architecture and (b) definition
of dense block (DB) (Orange circle C means direct copy).



Diagnostics 2021, 11, 11 7 of 18

Table 2. Architecture of SED-2 (Conv. stands for convolution, UP means up-sampling, [ ] denotes
long range connection, [ ˆ ] denotes superscript, and [ , ] denotes concatenate operation).

Encoder Output
Size Decoder Connecting

Operation Output Size

Input 256ˆ2 × 1 TU 1 16ˆ2 × 240
Conv 256ˆ2 × 48 Copy 1 [DB 5] 16ˆ2 × 656

DB 1 (4 layers) 256ˆ2 × 112 DB 7 (12 layers) [TU 1, Copy 1] 16ˆ2 × 192
TD 1 128ˆ2 × 112 TU 2 32ˆ2 × 192

DB 2 (5 layers) 128ˆ2 × 192 Copy 2 [DB 4] 32ˆ2 × 464
TD 2 64ˆ2 × 192 DB 8 (10 layers) [TU 2, Copy 2] 32ˆ2 × 160

DB 3 (7 layers) 64ˆ2 × 304 TU 3 64ˆ2 × 160
TD 3 32ˆ2 × 304 Copy 3 [DB 3] 64ˆ2 × 304

DB 4 (10 layers) 32ˆ2 × 464 DB 9 (7 layers) [TU 3, Copy 3] 64ˆ2 × 112
TD 4 16ˆ2 × 464 TU 4 128ˆ2 × 112

DB 5 (12 layers) 16ˆ2 × 656 Copy 4 [DB 2] 128ˆ2 × 192
TD 5 8ˆ2 × 656 DB 10 (5 layers) [TU 4, Copy 4] 128ˆ2 × 80

DB 6 (15 layers) 8ˆ2 × 880 TU 5 256ˆ2 × 80
Copy 5 [DB 1] 256ˆ2 × 112

DB 11 (4 layers) [TU 5, Copy 5] 256ˆ2 × 1

3. Liver CT Dataset

The CT dataset in this project consists of LiTS dataset [53], which is a publicly acces-
sible benchmark dataset for tumor segmentation challenge. It contains 8000 CT images,
which were provided by clinical institutions around the world. From the LiTS dataset,
3900 images with 512 × 512 resolution containing the ground truth of liver and tumor
location were selected, which were combined with 400 Kaohsiung Chang Gung Memorial
Hospital (KCGMH) images to build an experimental CT dataset. The ground truth maps of
KCGMH images were annotated and plotted by KCGMH radiologists. The data provided
by the hospital involved a total of three physicians who participated in the study, with the
lesion section being discussed and the MASK file was created by doctors. The 4300 images
were randomly split into 4000 training images and 300 test images. Referring to [10], the
intensity values of all LiTS images were truncated to the range of [−100, 200] HU to remove
the irrelevant details and enhance their contrast.

In order to fit the size of model as well as avoid the size limitation of GPU memory, all
images were downscaled to 256 × 256 resolution to improve computational efficiency. In
fact, the 256 × 256 resolution is sufficient to clearly illustrate the segmentation results of
the liver and tumor.

4. Results and Discussion
4.1. Training Method, Environment, and Parameter Setting

Each training image consists of a raw CT, a liver mask, and a tumor mask. For training
SED-1, the input and output are the paired data in the form of [raw CT, liver mask]. For
training SED-2, the input and output are the paired data in the form of [raw CT*liver mask,
tumor mask]. Two networks were trained independently.

For SED-1, the epoch and batch were set to 50 and 16, respectively. The initial learning
rate was set to 10−4, and then reduced by 10% per two epochs. For SED-2, the epoch and
batch were 100 and 4, respectively. The initial learning rate was also set to 10−4, and then
multiplied by e−0.9 per two epochs (exponential decay). Both SED-1 and SED-2 adopted the
ADAM optimizer for updating network parameters. Before training, 20% of the training
images were randomly selected as the validation set, there is only a slight difference
between testing and validation datasets. After each epoch, the model was validated once,
and the model with the lowest validation loss throughout the training process is retained.
Finally, the model with the lowest validation loss is designated as final model for testing.
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SED training and testing were implemented on the environment: Intel® Core™ i7-8700
CPU, DDR4 32 GB memory, NVIDIA GeForce 2080 Ti GPU, and Windows 10. The software
was Keras 2.3.1 and Python 3.6. The training time of SED-1 and SED-2 were 1.66 and 30 h,
respectively.

4.2. Evaluation Metrics

The performance of the proposed SED was evaluated using the following metrics:
Accuracy, Intersection over Union (IoU), Similarity Coefficient (DSC), and Area Under
the ROC Curve (AUC). Those metrics could be computed by four measures: TP (true
positive), TN (true negative), FP (false positive), and FN (false negative). The accuracy is
expressed by:

Accuracy =
TP + TN

TN + FP + TP + FN
(2)

The IoU and DSC are defined by:

IoU =
TP

FP + TP + FN
(3)

DSC =
2TP

2TP + FP + FN
(4)

Finally, the AUC is obtained from a ROC curve. For each test result, a ROC curve can
be created by plotting the true positive rate TP

TP+FN against the false positive rate. FP
FP+TN at

different threshold settings. In the following section, the averaged values of four metrics of
total 300 test images are reported.

4.3. Tumor Segmentatiuon Results

This section conducts both qualitative and quantitative studies for the proposed SED.
Three state-of-art methods, U-Net [19], C-UNet [27], and ResNet [29] were selected for
comparison of tumor segmentation capability. Table 3 tabulates the tumor extraction results
of all the methods in ACC, IoU, DSC, and AUC. It can be seen that the proposed SED has
the best overall performance in all metrics. In ACC, all methods achieved values above
0.9 due to the fact that both positive (tumor) and negative (background) samples were
counted in ACC. Thus, ACC is not an ideal metric for segmentation where the positive
and negative samples are unbalanced. On the contrary, IoU, DSC, and AUC were better
metrics for the segmentation task. The result showed that SED significantly outperformed
U-Net, ResNet, and C-UNet, corresponding to values of 0.87, 0.75, and 0.95, respectively.
The ROC curves for all methods are shown in Figure 4, which were plotted by multiple
pairs of (TP, FP) calculated by different threshold values.

Table 3. Evaluation result by different methods.

Methods ACC IoU DSC AUC

U-Net [19] 0.92 0.53 0.65 0.73
ResNet [29] 0.98 0.62 0.67 0.77
C-UNet [27] 0.99 0.67 0.67 0.87

Our SED 0.992 0.87 0.75 0.95
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Figure 5 shows both liver localization and tumor segmentation results of SED per-
formed on eight selected CT samples. It can be seen that the SED provided satisfactory
results for both liver localization and tumor segmentation. Compared Figure 5d with
Figure 5b, SED-1 almost preserved the liver region except for those small regions where
the boundaries were difficult to define. According to the results, the DSC value of SED-1
was 0.92, which implies that the liver segmentation task can be well handled using a single
U-Net. In the part of tumor extraction, SED-2 also achieved ideal results. Compared
Figure 5g with Figure 5e, it can be seen that most of the tumor regions were successfully
captured by SED-2. Although the results indicate that the proposed SED still generate
few tiny FP and FN parts, SED still provides remarkable tumor prediction capability. The
contours of those parts are somehow ambiguous, low-contrast, and not clearly visible.

For comparison, Figure 6 shows the tumor segmentation results of U-Net, C-UNet,
ResNet, and the proposed SED. It is apparent that SED outperformed the other methods,
which implies that SED utilized a two-stage stratified strategy to segment liver and tumor
successively, while U-Net and ResNet are one-stage end-to-end approaches, in which the
rules and features of tumor cannot be effectively learned under limited training samples.
Further, it should be noted that C-UNet adopts a stratified strategy to segment the liver
and tumor separately. However, the presence of FPs and FNs can be observed in Figure 6e,
which indicates that the corresponding tumor segmentation results are not as good as those
of SED. Conversely, the segmentation result of SED produced less segmentation errors,
indicating that the primary parts of tumor were predicted more accurate.

Figures 7 and 8 show the comparison of IOU value and accuracy for the four cases
of U-Net, ResNet, C-UNet, and our proposed SED. It can be seen that our proposed SED
has higher IOU values and accuracy for Case 3 and 4. Further, it can also be noted that the
recognition rate of the SED model is excellent for tumor segmentation for extremely tiny
particles (Case 1 and 2) and irregular shapes (Case 3). In particular, the SED model has an
excellent recognition rate for the multi-sided irregular shape in Case 3 compared to U-Net
where the TP portion is oversized, and to ResNet where the TP is undersized.

In the evaluation of the generalization capability of the model, Segnet is a well-known
and widely used recognition and training module, which is designed to be efficient both
in terms of memory and computational time. Further, Segnet is often used for view or
larger scale recognition tools, and its architecture has more similarities to UNet, which is
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used as a control group. Segnet [6] and U-net with the same Encoder-Decoder framework
were added to evaluate whether the two models could effectively segment the liver tumor
region. Dice Score was used to compare the two models with Expanded Densely U-net,
(EDU) and the result of Dice Coefficient calculated by Equation (1) is shown in Figure 9.
For each model, the training Dice Score was based on the fluctuation of the training data,
with approximately 20 Epochs as observation throughout the training process. The Dice
Score results show a similar trend for both the EDU and U-net networks, which indicates
that both EDU and U-net could predict more accurate region for tumor imaging.
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The proposed SED was compared with the other five selected methods proposed in
ISBI 2017 challenge [53], as shown in Table 4. In this comparison, only the LiTS dataset was
used in the experiment under the same challenge rules. It can be seen that the proposed
SED can achieve 0.75 in DSC while the performance of the other models achieved in the
range between 0.64 and 0.7 according to the challenge report, which validates the SED.

In the field of image segmentation, image prediction is usually considered as a simple
classification. However, the model does not directly output 0 or 1 predicted value classifi-
cation, but outputs it into a probability graph. Thus, Sigmoid is added at the end of the
model to output each category, where AUC can analyze such probability graphs. Further,
AUC can be used as an indicator to judge the overall performance of the model. The more
convex the curve is towards the (0, 1) point, the better the overall performance of the model.
It can be simply divided as follows:

1. AUC = 0.5 (no discrimination);
2. 0.7 ≤ AUC ≤ 0.8 (acceptable discrimination);
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3. 0.8 ≤ AUC ≤ 0.9 (excellent discrimination);
4. 0.9 ≤ AUC ≤ 1.0 (outstanding discrimination).

Table 4. DSC performance comparison with five models on ISBI 2017 Challenge.

Ranking Methods Institution DSC

1 Our SED - 0.75
2 IeHealth [53] - 0.702
3 superAI [53] - 0.674
4 X. Han [53] Elekta Inc. 0.67
5 E. Vorontsov et al. [53] MILA 0.65
6 L. Bi et al. [53] Uni Sydney 0.64

Comparison of generalization capabilities on different models is shown in Table 5. As
can be seen that the performance of Segnet in ACC, IoU, DSC, and AUC is relatively poor.
However, the proposed SED has a significant improvement in IoU and DSC, indicating
superior generalization capabilities of SED.

Table 5. Comparison of generalization capabilities on different models.

Methods ACC IoU DSC AUC

U-net [19] 0.87 0.53 0.65 0.73
ResNet [29] 0.90 0.62 0.67 0.77
C-UNet [27] 0.85 0.67 0.67 0.87

Segnet [6] 0.5 0.51 0.53 0.5
Our proposed 0.898 0.75 0.83 0.957

Training performance using a mix of LiTS and KCGMH with a total of 4000 images
has been shown in Figure 10. Excellent learning results (curve fitting) were obtained after
training 100 epochs with 4000 randomly mixed LiTS and KCGMH datasets. Among the
300 randomly mixed images, the result showed that an IoU value of 0.70 and an ACC value
of 0.88 after eliminating the data of 5 patients with abnormal recognition due to burned
liver or abnormal edema.
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4.4. 3D Visualization

Reconstruction of three-dimensional (3D) tumor contour from two-dimensional (2D)
segmentation results can be used as an alternative tool to aid clinical practice. Due to the
advancement of medical imaging equipment, the slice spacing and pixels were gradually
reduced, enabling the improvement of the 2D contour stitching method. In this study,
Photoshop CC 2018 was used to achieve the 3D volume reconstruction of liver tumor. In
the 3D reconstruction process, the 3D contours are composed of the curved surfaces formed
by adjacent 2D tumor segmentation maps.

Figure 11 shows 3D reconstruction results of liver tumors by SED generated tumor
segmentation maps. Each row presents an individual case. For each case, 15 slices were
used with the interval 1mm. The result shows that 3D visualization reconstructed from
the SED segmentation maps can clearly represent the size, shape, and relative position of
the tumor regions, in which the volume of the tumors could be estimated. Further, the
translucent 3D images facilitate the physicians’ interpretation.

Figure 12 shows the reconstructed transparent 3D view of liver region. The 3D image
created by this method can be adjusted in translucency and color to create better image
for a better clinical contrast. The image can be closer to reality, and further the orientation,
position and size of the images can be freely adjusted. Further, the distance and location
of the 3D view can be more realistic as the original DICOM image contains thickness
information of each slice.

Figure 13 illustrates the reconstructed transparent 3D view of liver tumors. The 3D
image reconstructed by this proposed method can facilitate doctor to rapidly capture the
size and dimension of the tumors. In addition, the reconstructed 3D tumor image can be
manually rotated in any direction, position, and orientation for various perspectives. With
this method, the 3D view of the tumors can be presented more concrete and specific.
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Right view.
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5. Conclusions

With the advent of the era of artificial intelligence, the use of computer-based auto-
mated medicine as an aid will be one of the future trends. Using an appropriate algorithm
with a computer will assist surgeons to quickly identify lesion area, reduce labor costs,
and further improve medical services. Followed by this trend, many deep learning-based
segmentation algorithms have been proposed for medical image processing. However,
most of the existing methods only adopt a single encode-decoder (ED) as the main network
architecture, which has limited performance. In this paper, a two-stage liver tumor segmen-
tation framework, called SED, was proposed for the automatic prediction of hepatocellular
carcinoma based on CT imaging. SED consists of two independent and successive encoder-
decoders. The first one aims to localize the liver region through a classical ED network,
while the second one performs accurate tumor segmentation through a stronger ED net-
work. The result showed that the proposed two-stage SED method provided satisfactory
liver localization and tumor segmentation performance in both quantitative and qualitative
analysis, with liver segmentation and the tumor prediction reaching 0.92 and 0.75 in the
Dice score, respectively. To validate the segmentation performance of the proposed SED,
4300 liver CT images composed of LiTS dataset and KCGMH dataset were conducted.
Among the 300 randomly mixed LiTS and KCGMH images, the result showed that an IoU
value of 0.70 and an ACC value of 0.88 after eliminating the data with abnormal recognition
due to burned liver or abnormal edema. The 3D visualization images generated from the
2D segmentation results of SED could indeed provide more realistic estimates of the shape
and location.
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