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Abstract  In contemporary society, the increasing number of pet-owning households has 
significantly heightened interest in companion animal health, expanding  the probiotics 
market aimed at enhancing pet well-being. Consequently, research into the gut microbiota 
of companion animals has gained momentum, however, ethical and societal challenges 
associated with experiments on intelligent and pain-sensitive animals necessitate 
alternative research methodologies to reduce reliance on live animal testing. To address 
this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as 
an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering 
a means to study gut microbiota while minimizing animal experimentation. The FIMM 
system explored interactions between intestinal microbiota and probiotics within a 
simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus 
faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated 
strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced 
into the FIMM system with gut microbiota from a beagle model. Findings highlight the 
system’s capacity to mirror and modulate the gut environment, evidenced by an increase 
in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the 
pathogen Clostridium. The study also verified the system’s ability to facilitate accurate 
interactions between probiotics and commensal bacteria, demonstrated by the production 
of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-
aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system 
that authentically simulates the intestinal environment, presenting a viable alternative for 
examining gut microbiota and metabolites in companion animals. 
  
Keywords  in vitro culturomics, lactic acid bacteria, canines, Fermenter for Intestinal 
Microbiota Model (FIMM), microbiome  
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Introduction 

The gut microbiome, an intricate community of microorganisms inhabiting the gastrointestinal tracts of animals, exerts a 
profound influence on the health and well-being of its hosts. The critical role of the gut microbiome in human health has been 
well-documented, leading to a parallel increase in research focusing on the microbiological aspects of both industrial and 
domestic animal health (Lee et al., 2023; Song et al., 2023). This burgeoning field, situated at the intersection of microbiology 
and veterinary science, explores how dietary components, particularly probiotics, influence the gut microbiota, contributing 
to enhanced health and growth in animals (Lee et al., 2023; Quinn et al., 2015). The incorporation of probiotics into pet diets 
aims not only to maintain a balanced microbial ecosystem but also to enhance immune function and provide therapeutic 
benefits in various conditions, including gastrointestinal disorders and resistance to antibiotics. The rising awareness of these 
benefits has spurred a notable expansion in the probiotics market, tailored to meet the nutritional needs of companion 
animals, with a significant emphasis on gram-positive bacterial strains like Bacillus, Enterococcus, Lactobacillus, Pediococcus, 
and Streptococcus (Harel and Tang, 2023; Lee et al., 2022; Mugwanya et al., 2021). 

Despite the valuable insights gained from animal-based microbiological research, such studies are fraught with ethical, 
logistical, and financial challenges (Lee et al., 2022; Mun et al., 2021). The ethical debate surrounding animal experimentation, 
especially with animals that exhibit high levels of intelligence and sensitivity to pain, underscores the necessity for humane 
and sustainable research methodologies. Additionally, the limitations inherent in animal models, particularly in their ability to 
accurately replicate complex human diseases or conditions, highlight the need for innovative research approaches that can 
offer reliable and ethically sound alternatives. 

In response to these challenges, this study introduces the Fermenter for Intestinal Microbiota Model (FIMM), an advanced 
in vitro tool engineered to replicate the physiological conditions of the animal gastrointestinal tract, including optimal pH, 
temperature, and resistance time. The FIMM system offers a distinctive platform for examining the interactions between 
probiotics and gut microbiota under controlled conditions, allowing for the exploration of these intricate relationships without 
the ethical and logistical complexities associated with live animal testing. 

In this study, a meticulous selection of probiotic strains was employed to elucidate the operational dynamics of the FIMM 
system. Two commercial probiotic strains, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301 (Kang 
et al., 2024), along with Lactobacillus acidophilus SLAM AK001 (Kang et al., 2022), a strain newly isolated from domestic 
dogs, were integrated into the FIMM system. This integration was performed alongside gut microbiota sourced from a 
laboratory beagle model, selected for its uniform living conditions, diet, and species consistency, which are crucial for 
minimizing experimental variability. The incorporation of diverse probiotic species aims to provide a comprehensive 
understanding of the FIMM’s capability to simulate the canine gastrointestinal environment accurately. This approach is 
designed to not only test the system’s efficacy in replicating complex gut microbial interactions but also to evaluate the 
potential influence of these probiotics on the gut microbiota within a controlled, in vitro setting. Through this strategic 
selection of probiotic strains and a well-defined animal model, the study endeavors to enhance the precision and applicability 
of the FIMM, contributing valuable insights into the interplay between probiotics and gut microbiota, and ultimately 
facilitating the development of more targeted and effective strategies for animal health and nutrition. 

 

Materials and Methods 

Bacterial cultivation and study design 
In this study, fecal samples were collected from domestic canines (n=3; Maltese and Jindo) aged between 6–8 years old. 
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These samples were subsequently pooled for analysis. The strain L. acidophilus SLAM AK001 (LA), isolated from domestic 

canines, was identified in a prior investigation (Kang et al., 2022). Additionally commercial strains E. faecium IDCC 2102 

and B. lactis IDCC 4301 were supplied by ILDONG Bioscience (Pyeongtaek, Korea). To culture these probiotic strains, de 

Man, Rogosa & Sharpe (MRS; BD Difco, Franklin Lakes, NJ, USA) medium was utilized. The culturing process lasted 48 

hours at a temperature of 37℃ under aerobic conditions. The collection of samples and subsequent experimentation involving 

domestic canines and laboratory-raised beagles were carried out with the endorsement of the Institutional Animal Care and 

Use Committee (IACUC) at Chungnam National University (202109A-CNU-149). 

 

Culturomic analysis 
In this research, culturomic and metagenomic techniques were employed to identify prevalent lactic acid bacteria within 

the gut microbiota of domestic dogs, specifically Maltese and Jindo breeds (n=3), aged between 6 to 8 years. Fecal samples 

were meticulously collected, with 10 grams from each sample being aseptically transferred into a sample bag (3 M, St. Paul, 

MN, USA). Each sample was then diluted with 90 mL of 0.1% buffered peptone water (Oxoid, Hampshire, UK) and 

subjected to homogenization by stomaching for two minutes at speed level 10. The resulting homogenate was serially diluted 

and inoculated onto various selective media, including MRS (BD Difco), phenylethyl alcohol agar (PEA; BD Difco), and 

Bifidobacterium selective agar (BS; BD Difco) plates, which were further enriched with 7.5% BactoTM Agar medium (BD 

Difco). These plates were incubated under both aerobic and anaerobic conditions at 37℃ for 48 hours to promote bacterial 

growth (Cho et al., 2022; Choi et al., 2016; Sornplang and Piyadeatsoontorn, 2016). The lactic acid bacteria isolated were 

then prepared for further experimental use, underpinning the study’s objective to explore the gut microbiota dynamics and 

probiotic interactions within the FIMM system. 
 

Fermenter for Intestine Microbiota Model  
The FIMM is an advanced in vitro system designed to simulate the canine gastrointestinal environment, facilitating 

detailed studies of gut microbiota interactions. This system was developed based on methodologies outlined in our previous 

study (Kang et al., 2022), and took inspiration from the well-established Simulator of the Human Intestinal Microbial 

Ecosystem (SHIME) model (Van de Wiele et al., 2015). For the incubation of canine fecal samples within the FIMM system, 

pooled feces of laboratory raised beagles (n=6) were aseptically homogenized in filter bags using a stomacher (JumboMix, 

Interscience, Saint-Nom-la-Bretèche, France). Following homogenization, the supernatant was collected and introduced into 

the FIMM medium at a 10% inoculation rate. Concurrently, the selected probiotics—L. acidophilus SLAM AK001, E. 

faecium IDCC 2102, and B. lactis IDCC 4301—were inoculated to achieve a final concentration of 1% within the system. 

The FIMM medium employed in these experiments was based on a modified Gifu Anaerobic Medium (mGAM; HiMedia, 

Maarn, The Netherlands), recognized for its suitability in cultivating anaerobic bacteria (Javdan et al., 2020). To closely 

mimic the conditions of the canine gut, the medium’s pH was adjusted to 7.3, and the temperature was maintained at 38℃, 

aligning with the physiological parameters noted in canine intestinal research (Sagawa et al., 2009; Tochio et al., 2022). 

Through this meticulous replication of the canine gut environment, the FIMM system provides a robust platform for 

investigating the complex dynamics of gut microbiota and the impact of probiotics on gastrointestinal health. 
 

Metagenomic analysis 
After the FIMM incubation, the cultivates were collected, and genomic DNA was extracted with the DNeasy PowerSoil 
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Pro Kit (Qiagen, Hilden, Germany). The 16S rRNA gene (Edgar, 2018), including the V4 region, was amplified, and the PCR 

product was sequenced using iSeq 100 (Illumina, San Diego, CA, USA) following the manufacturer’s protocols. The amplicon 

primer sequences were as follows: 515F, TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCG 

GTAA; 806R, GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT for the 16S rRNA 

gene including the V4 region. The correlations and taxonomy of the obtained pair-end sequences were analyzed using Mothur 

v. 4.18.0 following the standard operating procedure suggested by the Schloss laboratory (Kozich et al., 2013; Son et al., 

2021) and demonstrated using GraphPad Prism v. 9.4.1 (GraphPad Software, San Diego, CA, USA). For the comparative 

analysis, the study utilized alpha diversity metrics, notably the Chao and Shannon indices, to reveal patterns of relative 

abundance across different groups. This approach provided a deeper understanding of microbial diversity. Additionally, 

Principal Coordinates Analysis (PCoA) diagrams, based on both weighted and unweighted UniFrac distances, were 

developed to illustrate the spatial distribution of the fecal microbiome samples. 

 

Metabolomic analysis 
The samples were cultivated in triplicate on FIMM medium before being separated into pellets for metagenomics analysis 

and supernatants for metabolite analysis. A PVDF syringe filter with a pore size of 0.2 m was used to filter the supernatants. 

Samples of 200 μL of the filtered supernatant were dried in a vacuum concentrator and kept at –81℃ for GC‒MS analysis. 

Derivatization of the extract involved 30 µL of 20 mg/mL methoxyamine hydrochloride in pyridine (Sigma-Aldrich, St. 

Louis, MO, USA) at 30℃ for 90 min, followed by 50 µL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA; Sigma-

Aldrich) at 60℃ or 30 min. The internal standard fluoranthene was added to the extract. A Thermo Trace 1310 GC (Thermo 

Fisher Scientific, Waltham, MA, USA) and Thermo ISQ LT single quadrupole mass spectrometer were used for GC‒MS 

analysis. A 60-m DB-5MS column (Agilent, Santa Clara, CA, USA) with 0.2-mm i.d. A 0.25-µm film thickness was utilized 

for separation. The sample was injected at 300℃ with a 1:60 split ratio and 90 mL/min helium split flow for analysis. The 

metabolites were separated using 1.5 mL continuous flow helium in an oven ramp from 50℃ (2 min hold) to 180℃ (8 min 

hold) at 5℃/min, 210℃ at 2.5℃/min, and 325℃ (10 min hold) at 5℃/min. The mass spectra were obtained at 5 spectra per 

second from 35–650 m/z. Electron impact and 270℃ ion source temperature were used in ionization mode. The metabolites 

were identified by comparing the mass spectra and retention indices of the NIST Mass spectral search tool (version 2.0, 

NIST, Gaithersburg, MD, USA) with Thermo Xcalibur software’s automatic peak detection. The fluoranthene internal 

standard intensity standardized the metabolite data (Jung et al., 2023; Ku et al., 2023; Liu et al., 2024; Muhizi et al., 2022). 

 

Isolation of primary intestinal epithelial cells and adhesion assay 
The experiment began with the retrieval of intestines, which were then placed in ice-cold HBSS devoid of Mg and Cl ions 

(Gibco, Grand Island, NY, USA). These intestines underwent meticulous cleaning to eliminate mesenteric fat and external 

mucus. Subsequently, the duodenal tract was harvested, longitudinally opened, cut into 1–2 mm pieces, and rinsed in ice-cold 

HBSS. The prepared tissue pieces underwent a 30-minute digestion at 37℃ using digestion medium. After the digestion 

process, the tissue was subjected to centrifugation at 100×g for 3 min, and the resulting pellet was resuspended in a 37℃ 

washing medium. The resuspended pellet was subsequently filtered through a 100 µm cell strainer, followed by a second 

filtration using a 40 µm cell strainer in reverse. The aggregates recovered from the filtration were resuspended in basal 

medium. These aggregates were then diluted to a concentration of 0.8 mg/mL, with a density of 1,000 aggregates per well, 

and plated in 24-well plates coated with a Matrigel matrix (Corning, New York, NY, USA). The cells were cultured at 37℃ 
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with 5% CO2 for 24 h. During this time, the cell clusters were identified, and the degree of endothelial cell contamination was 

assessed. The cultures were meticulously washed with HBSS to eliminate unattached and dead cells, and any foci of 

proliferating enterocytes were replenished with fresh medium. Different growth factors were introduced at specific time 

points following seeding. For passaging, trypsin-EDTA was employed, and the cells were seeded into newly coated wells at a 

density of 3.5×105 cells per cm² (Ghiselli et al., 2021; Marks et al., 2022). 

Before the adhesion assay, primary cell monolayers were washed 3 times with PBS to remove culture medium and 

nonattached cells. Bacterial strains were treated with medium without FBS and incubated at 37℃ for 2 h in an atmosphere of 

5% CO2. After 2 h, the monolayers were washed 5 times with PBS to remove the nonattached bacteria. The attached cells 

were lysed using trypsin-EDTA. Serial dilutions of the mixture were plated on MRS agar and incubated at 37℃ for 48 h. The 

adhesion ability was determined by counting colony-forming units (CFU)/mL. Lacticaseibacillus rhamnosus GG was used as 

a positive control. 

 

Statistics 
This study used triplicate data points, expressed as the mean±SD, and determined significant differences using Student’s t 

test, one-way ANOVA, and SigmaPlot 13 (GraphPad Software), followed by Tukey’s post hoc test. The abundance of 

metabolites of each sample was analyzed using the M2IA server (http://m2ia.met-bioinformatics.cn/) and MetaboAnalyst 5.0 

(https://www.metaboanalyst.ca). 

 

Results and Discussion 

Metagenomic and culturomic analysis of domestic canines 
To identify prospective probiotic candidates that may be beneficial to canines, we compared the culture-dependent and 

culture-independent gut microbiota of domestic canines. In pursuit of practical insights in culturomic analysis, an assortment 

of 138 distinct lactic acid bacteria was collected from three distinct media types. These isolates belonged to twenty different 

species. Fig. 1A illustrates that the four predominant bacterial species were as follows: Enterococcus hirae (5.1%), L. 

acidophilus (21.7%), Lactobacillus agilis (13.8%), and Ligilactobacillus animalis (6.5%). We determined that the potential 

spectrum of probiotics should be restricted to Lactobacillus species, as they comprised the majority of the bacteria that were 

isolated (Figs. 1B and C). To achieve this, we monitored the number of Lactobacillus species that overlapped between the 

culturomic and metagenomics methodologies. As shown in a Venn diagram (Fig. 1D), four species of Lactobacillus (L. 

acidophilus, L. amylolyticus, L. fermentum, and L. murinus) were identified through both culturomic and metagenomics 

analyses. In light of this result, we sought to investigate what probiotic changes L. acidophilus SLAM AK001, which has the 

highest proportion, could make through FIMM incubation. 

 

Fermenter for Intestinal Microbiota Model incubation increased the microbial diversity 
The study meticulously analyzed the effects of FIMM incubation on microbial diversity by integrating specific canine-

derived probiotics, L. acidophilus SLAM AK001, and marketed probiotics, E. faecium IDCC 2102, and B. lactis IDCC 4301 

were integrated into the FIMM system with fecal samples from laboratory-raised beagles to simulate the gut environment and 

assess the ensuing microbial alterations. Utilizing next-generation sequencing, the research identified a comprehensive array 

of 46,016 operational taxonomic units and 872 distinct taxonomic bacterial entities. Through the application of the alpha-
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diversity index, specifically the Chao and Shannon indices, a significant elevation in species diversity was observed (Chao 

and Shen, 2003). The Chao index revealed a 46.9±7.4% enhancement in mean species diversity attributable to the FIMM 

incubation, with an additional increase of 103.6±31.6% following probiotic supplementation. Concurrently, the Shannon 

index recorded a 23.83±5.1% rise in diversity post-FIMM incubation, and a further augmentation of 66.1±1.8% with the 

introduction of probiotics (Fig. 2A). Moreover, the diversified microbiota was found to be unique to each other according to 

the beta diversity analysis. Unweighted and weighted UniFrac used in beta diversity represent qualitative and quantitative 

variants, respectively. Each plot represents a relative abundance of species of a group, and the distance between the plots 

represents distinctiveness (Koleff et al., 2003). From our study, the beta diversity analysis, employing both unweighted and 

weighted UniFrac methods, illustrated distinctive microbial assemblages resulting from FIMM incubation relative to the 

control, and a unique microbial configuration associated with the probiotic intervention (Fig. 2B). These results highlight the 

FIMM system’s capability to not only enhance microbial diversity but also to cultivate specific microbial community 

contingent on the introduced probiotic strains. 

The supplementation with probiotics plays a pivotal role in enhancing the diversity of gut microbiota, a factor that is 

 
Fig. 1. The comparison of culturomic and metagenomic characterization of domestic canine fecal microbiota. (A) This list presents the 
bacteria isolated from canine feces, utilizing the aforementioned medium. Subsequent to the isolation, the compositions specific to 
Lactobacillus were subjected to further examination employing (B) culturomic and (C) metagenomic analyses. (D) A Venn diagram
elucidates the distribution of Lactobacillus species, categorized by those identified through culturomics (purple), metagenomics (yellow),
and the species identified by both methods (orange). 
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intrinsically linked to the overall health of the host. The gut microbiota’s diversity is crucial, starting with its fundamental 

role in the digestion and absorption of nutrients. The myriad of microorganisms residing in the gastrointestinal tract play a 

critical role in breaking down a broad spectrum of dietary fibers and nutrients, leading to enhanced nutrient uptake and 

improved digestive efficiency (Yu et al., 2022; Zhong et al., 2023). This microbial diversity extends its benefits beyond 

Fig. 2. The diversity and richness of fecal microbiota was altered through FIMM incubation with probiotics. The metagenomic analysis 
was utilized to elucidate the alterations in bacterial relative abundance subsequent to FIMM cultivation. Comparative analysis was
conducted between FIMM cultivations subjected to probiotic interventions (LA, 2102, and 4301) and a control cohort devoid of any 
treatment (cont). (A) Indices of alpha diversity and (B) Principal Coordinates Analysis (PCoA) diagrams were constructed to elucidate the 
spatial distribution of fecal microbiome samples. These diagrams plot individual samples, with axes representing the principal dimensions 
capturing the maximal variance in microbial community structure across the groups. (C) The comparative representation of bacterial 
relative abundance at phylum, family, and genus levels across all groups was meticulously quantified. All values are expressed as the 
mean±SD; significant differences were determined using Student’s t test and ANOVA compared to the cont at * p<0.05 and *** p<0.001. 
2102, Enterococcus faecium IDCC 2102; 4301, Bifidobacterium lactis IDCC 4301; LA, Lactobacillus acidophilus SLAM AK001; NMDS, non-
metric multidimensional scaling; FIMM, Fermenter for Intestinal Microbiota Model; ANOVA, analysis of variance. 
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digestion to bolster the immune system. It orchestrates a range of immune responses, strengthening the host’s defense 

mechanisms against opportunistic and pathogenic microbes. The balanced interplay among various microbial strains is also 

vital for regulating inflammatory processes, potentially reducing the incidence of inflammation-related disorders and 

supporting metabolic health and weight management (Kim et al., 2020; Liu et al., 2018; Ritchie and Romanuk, 2012; 

Sánchez et al., 2017). The FIMM experiments provided insightful data, demonstrating that the in vitro fermentation process 

could enrich the diversity of bacterial strains within the canine gut microbiota. This enhancement closely mirrors the 

beneficial effects observed with probiotic consumption in vivo. The distinctive clustering patterns observed in the FIMM 

system, which varied with each bacterial strain, offer evidence of the system’s ability to foster specific interactions and 

associations within the microbial community. These findings underscore the potential of FIMM as a valuable model for 

exploring the intricate dynamics of gut microbiota and the impact of probiotics, offering a deeper understanding of how 

probiotic supplementation can modulate microbial ecosystems to support host health. 

 

Fermenter for Intestinal Microbiota Model incubation altered the microbial composition 
The investigation into the impact of the FIMM incubation on microbial composition revealed significant alterations in the 

fecal microbiota, which might have been affected during sample collection. An in-depth examination of the 15 most abundant 

genera demonstrated that FIMM incubation induced notable changes in microbial composition. Specifically, when the FIMM 

system was supplemented with probiotics L. acidophilus SLAM AK001, E. faecium IDCC 2102, and B. lactis IDCC 4301, 

there was a substantial shift in microbial communities compared to the control group. Probiotics significantly increased the 

populations of Ruminococcus, Blautia, Dorea, and lactic acid bacteria, such as Lactobacillus and Faecalibacterium (Grześkowiak 

et al., 2015; Lee et al., 2022). These genera are recognized as beneficial commensal probiotics in canines. Concurrently, there 

was a reduction in the abundance of potential opportunistic pathogens, including Clostridium (Ghose, 2013), Streptococcus 

(Xu et al., 2007), and Prevotella (Larsen, 2017; Fig. 2C), showcasing the probiotics’ ability to modulate the gut microbiota 

favorably. Noteworthy is the observation that the microbial changes induced by L. acidophilus SLAM AK001 were in 

alignment with those noted in an in vivo canine model previously studied by our group (Kang et al., 2022, Kang et al., 2024), 

suggesting that this strain’s effects are consistent across different experimental settings. This consistency enhances the 

validation of the FIMM system as a reliable model for studying probiotic effects. 

Lactobacillus, Bifidobacterium, and Enterococcus are well-established probiotics. In a prior study, supplementation with 

Lactobacillus and Bifidobacterium was found to reduce Clostridium and increase commensal bacteria such as Faecalibacterium 

and Lactobacillus in individuals with conditions such as diarrhea, inflammatory bowel diseases, and colorectal cancer (Alcon-

Giner et al., 2020; Gerasimov et al., 2016; Lopez-Siles et al., 2017). While research in canines is relatively limited compared to 

human studies, the administration of E. faecium and Bifidobacterium in canines also resulted in an increase in Lactobacillus, 

Enterococcus, and Enterobacteriaceae while reducing the presence of Salmonella, Campylobacter, and Clostridium (Sabbioni et 

al., 2016; Vahjen and Männer, 2003). The FIMM cultivation method employed in this study mimics the probiotic effects of L. 

acidophilus SLAM AK001, E. faecium IDCC 2102, and B. lactis IDCC 4301, as observed in real-life scenarios where they are 

administered to mammals. This underscores the reliability of the FIMM in vitro cultivation system. 

Overall, the FIMM system’s ability to mimic real-life probiotic effects in an in vitro setting underscores its potential as a 

valuable tool for exploring the intricate dynamics of gut microbiota and assessing the impacts of various probiotic strains on 

microbial communities. This system offers a promising avenue for advancing our understanding of probiotic interactions 

within the gut ecosystem, providing insights that could inform the development of targeted probiotic therapies for canines. 
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Fermenter for Intestinal Microbiota Model incubation can imply changes in intestinal robustness 
Additionally, the FIMM incubation process not only influenced the microbial composition but also significantly impacted 

the metabolic profile within the system, suggesting changes in intestinal robustness. Detailed metabolic analysis categorized 

nine distinct types of metabolites: alcohols, alkylamines, amino acids, carbohydrates, fatty acids, indoles, lipids, nucleotides, 

organic acids, and others. Remarkably, compared to the control group, the introduction of probiotics led to an overall increase 

in these metabolites, with notable surges in amino acids and organic acids, including 4-hydroxybutyric acid, L-norleucine, 

and isovaleric acid. This metabolic enhancement, particularly in essential amino acids such as isoleucine, leucine, lysine, 

methionine, phenylalanine, and valine, underscores the broad-reaching impact of probiotics on metabolic processes. These 

amino acids are vital for protein synthesis across all living organisms, indicating a systemic effect of probiotic treatment on 

fundamental biological functions (Amorim Franco and Blanchard, 2017; Neis et al., 2015; Oh et al., 2021; Yoo et al., 2022). 

Organic acids, integral to primary metabolism, play pivotal roles in various biochemical pathways (Ramachandran et al., 

2006; Sauer et al., 2008; Vasquez et al., 2022). The FIMM incubation results showed that probiotic administration could 

influence the production of key organic acids like propionic acid, acetic acid, and lactic acid (Fig. 3). These acids are crucial 

for numerous metabolic processes, including energy production and regulatory functions within the gut environment. 

Bifidobacterium plays a significant role in the fermentation of dietary fibers and carbohydrates, resulting in the production 

of short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. These SCFAs offer various health benefits, 

including serving as an energy source for colonocytes, promoting gastrointestinal health, and exhibiting anti-inflammatory 

properties (Kim et al., 2022). Bifidobacterium, as a type of lactic acid bacteria, generates lactic acid as a metabolic byproduct, 

which contributes to the maintenance of an acidic gut environment, thereby restraining the proliferation of pathogenic 

microorganisms (de Souza Oliveira et al., 2012; Pokusaeva et al., 2011). Moreover, select strains of Bifidobacterium have the 

capacity to synthesize gamma-aminobutyric acid, a neurotransmitter with potential anxiolytic and calming effects on the 

central nervous system (Duranti et al., 2020). 

Likewise, E. faecium, another beneficial gut bacterium, also generates lactic acid as a predominant metabolic byproduct, 

reinforcing the acidic conditions of the gut, which can inhibit the proliferation of pathogenic bacteria. In addition, E. faecium 

can participate in the production of various SCFAs, including acetate, propionate, and butyrate, each of which has multiple 

health advantages, particularly in the context of gut health. E. faecium is also involved in the digestion and metabolic 

breakdown of dietary proteins, giving rise to the production of diverse amino acids (Allameh et al., 2017; Wang et al., 2020). 

Finally, L. acidophilus primarily produces lactic acid as part of its metabolic processes, supporting the creation of an acidic 

gut environment that impedes the growth of detrimental bacteria and pathogens. While L. acidophilus SLAM AK001 may not 

be as widely recognized for its SCFA production as certain other bacterial strains, it does contribute to the production of 

SCFAs, particularly acetate and propionate (Chamberlain et al., 2022; Hossain et al., 2021). These findings underscore the 

significance of the metabolites generated within the FIMM cultivation system, demonstrating that the in vitro cultivation 

system provides the conditions necessary for proper metabolite production by different bacterial species. 

The observed metabolic changes within the FIMM system, prompted by probiotic supplementation, mirror the potential 

enhancements in intestinal robustness and metabolic activity, which could have significant implications for gut health and 

overall organismal well-being. This insight into the metabolic alterations provides a deeper understanding of the multifaceted 

impacts of probiotics, extending beyond microbial diversity to include metabolic function, thereby offering a comprehensive 

view of the probiotic influence on the gut ecosystem. 
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Fig. 3. Comparative analysis of unique metabolite production by probiotics in FIMM. Following the FIMM cultivation, variations in 
metabolite profiles across different groups were examined. (A) In the PCA score plots, the analysis revealed that fecal samples from 
groups subjected to probiotic interventions (LA, 2102, and 4301) clustered together, indicating a shared metabolic response. In contrast, 
the control group was distinctly clustered, highlighting significant metabolic differentiation from the treated groups. (B) The partial least 
squares discriminant analysis (PLS-DA) further analyzed these differences, identifying metabolites that drove the separation between
treated and untreated groups. Additionally, the colored boxes in (B) and (C) categorized the top 50 abundant metabolites, with varying
colors denoting concentration levels, offering an understanding of metabolite fluctuations resulting from FIMM cultivation and probiotic
treatments. 2102, Enterococcus faecium IDCC 2102; 4301, Bifidobacterium lactis IDCC 4301; LA, Lactobacillus acidophilus SLAM AK001;
PC, principle component; VIP, variable importance plots; GABA, gamma-aminobutyric acid; FIMM, Fermenter for Intestinal Microbiota 
Model; PCA, principle component analysis. 
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Probiotics for canines were very specific for canine primary intestinal epithelial cells 
In the conclusive segment of the study, an in-depth evaluation was conducted to ascertain the host specificity of the lactic 

acid bacteria used, a factor that is paramount in determining their potential effectiveness as probiotics in canine hosts. Host 

specificity is a critical attribute that influences a bacterium’s ability to colonize and thrive within a specific host, impacting its 

probiotic efficacy and interaction with the host’s gut microbiome (Chaib De Mares et al., 2017; Dogi and Perdigón, 2006). To 

assess this, a series of host specificity tests were carried out using primary intestinal epithelial cells derived from a diverse 

array of species, including but not limited to dogs, chickens, laying hens, humans, and pigs. The aim was to investigate the 

cell adhesion capabilities of the probiotic strains, which is indicative of their potential to colonize and establish within the 

host’s gastrointestinal tract effectively. The study utilized the control strain, L. rhamnosus GG, known for its broad host 

specificity, as a comparative baseline, exhibiting an 88.3±0.7% specificity rate across various cell types. A significant affinity 

for primary intestinal epithelial cells sourced from canines was observed among the probiotic strains, an insight depicted in 

Fig. 4. This pronounced host specificity suggests these probiotics are well-suited for adherence and potential colonization 

within the canine gut. Specifically, L. acidophilus SLAM showcased the most substantial host specificity, with a rate of 

81.3±2.7% when interacting with canine cells. Similarly, E. faecium IDCC 2102 and B. lactis IDCC 4301 exhibited host 

specificity rates of 86.2±1.9% and 88.3±0.6%, respectively, with canine cells (Fig. 4A). Notably, these strains maintained cell 

counts comparable to the original CFU before inoculation, underscoring their strong adherence capabilities to canine primary 

intestinal cell lines. Further analysis revealed that beyond canine cells, L. acidophilus SLAM AK001, E. faecium IDCC 2102, 

and B. lactis IDCC 4301 displayed host specificity rates of 74.5±6.2%, 64.4±13.4%, and 75.0±9.5%, respectively, towards 

other primary intestinal epithelial cells. A marked decrease in cell adhesion capacity was noted in avian primary enterocytes 

compared to the initial CFU counts, highlighting a more constrained host specificity in these cell types (Figs. 4B, C, and D). 

This detailed examination underlines the significant host specificity of canine-derived probiotics, positioning them as potent 

candidates for in-depth in vivo studies. Their targeted adherence to canine intestinal cells intimates that these probiotics may 

confer specific health benefits tailored to canines, underscoring their potential value in veterinary care and probiotic 

formulation development. 

 

Conclusion 

To conclude, this study was initiated with the objective of mitigating the limitations associated with microbial research in 

live animals while identifying potential probiotics beneficial for canines. Although animal studies are pivotal in scientific 

discovery and pharmaceutical advancements, they are fraught with ethical dilemmas and practical challenges. There’s a 

pronounced emphasis on animal welfare, emphasizing the reduction of animal distress and the pursuit of alternatives to 

circumvent the need for animal sacrifice, a subject of considerable ethical discourse. Yet, the development of in vitro 

methodologies capable of fully emulating the living conditions of organisms remains nascent, with a clear demand for further 

exploration and standardization in this domain.  

Thus, the core ambition of this research was to introduce and validate a standardized in vitro cultivation approach, termed 

the FIMM system. This research effectively showcased the FIMM system’s capability to replicate the complex interactions 

between gut bacteria and their host, reflecting the dynamics observed when probiotics, specifically L. acidophilus SLAM 

AK001, E. faecium IDCC 2102, and B. lactis IDCC 4301, derived from canine fecal samples, were introduced into the 

system. To claim that the FIMM system perfectly emulates the canine gut microbiota system, it would have been ideal to 
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administer these strains to actual canines and observe the resultant effects, a step that represents a limitation in this study. 

Nonetheless, the findings highlight the FIMM system’s efficacy as a potent tool for in-depth gut microbiota research, 

enhancing our comprehension of probiotics’ impacts on animal health. This advancement not only facilitates a more nuanced 

understanding of the gut microbiome but also opens avenues for developing targeted and efficacious probiotic interventions 

in veterinary practice. 
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