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This paper presents an innovative multisensor, multitemporal
machine-learning approach using remote sensing big data for
the detection of archaeological mounds in Cholistan (Pakistan).
The Cholistan Desert presents one of the largest concentrations
of Indus Civilization sites (from ca. 3300 to 1500 BC). Cholistan
has figured prominently in theories about changes in water avail-
ability, the rise and decline of the Indus Civilization, and the trans-
formation of fertile monsoonal alluvial plains into an extremely
arid margin. This paper implements a multisensor, multitemporal
machine-learning approach for the remote detection of archaeo-
logical mounds. A classifier algorithm that employs a large-scale
collection of synthetic-aperture radar and multispectral images has
been implemented in Google Earth Engine, resulting in an accurate
probability map for mound-like signatures across an area that cov-
ers ca. 36,000 km2. The results show that the area presents many
more archaeological mounds than previously recorded, extending
south and east into the desert, which has major implications for
understanding the archaeological significance of the region. The
detection of small (<5 ha) to large mounds (>30 ha) suggests that
there were continuous shifts in settlement location. These shifts are
likely to reflect responses to a dynamic and changing hydrological
network and the influence of the progressive northward advance of
the desert in a long-term process that culminated in the abandon-
ment of much of the settled area during the Late Harappan period.

multitemporal and multisensor satellite big data | machine learning |
archaeology | Indus Civilization | virtual constellations

Artificial mounds are a characteristic feature of permanent
and semipermanent settlement locations in past cultural

landscapes, particularly on sedimentary plains, but also in arid
and semiarid regions. These mounds can be readily visible due to
their prominence and shape, and the fact that they are composed
of accumulated debris such as mud bricks and pottery sherds,
which creates specific soil with distinct color and surface texture.
These characteristics make them detectable using different
methods, and their number and distribution have seen them play
an important role in addressing questions about the formation of
early urbanism, states, and economic systems.
The use of remote sensing (RS) to detect and map archaeo-

logical mounds has been attempted in many parts of the world
(1–4). Much research has focused on arid and semiarid areas in
the Levant and the Near East, where the geomorphological and
sedimentary properties of mounds make them highly visible in
digital elevation models and aerial and satellite imagery (5).
Mounds can also leave specific multispectral soil signatures in
highly anthropized landscapes with leveled or irrigated fields (6).
When available, the use of declassified historical photographs
such as CORONA imagery has been critical to the detection of

mounds (7–9). Georeferenced historical map series have also
been used solely or in combination with contemporary declas-
sified data (10–14). In recent years, RS-based archaeological
research has gradually incorporated machine-learning tech-
niques and algorithms that facilitate the automated detection of
sites and features. Most of those applications have focused on
the detection of small-scale features using high-resolution data-
sets such as lidar (15) or WorldView imagery (16–18). In the
Near East, Menze and Ur (19) applied a random forest (RF)
classifier over a multitemporal collection of ASTER imagery to
identify probable anthrosols. Some other attempts have used
multitemporal data to monitor archaeological sites and human
impact such as urban sprawl and looting (20–22). The detection
of anthropic signatures, such as those that characterize mounded
sites, across a very large area, remains seldom attempted, pre-
sumably due to the large computational resources, coding ex-
pertise, and large amount of satellite data required.

Significance

This paper illustrates the potential of machine learning-based
classification of multisensor, multitemporal satellite data for
the remote detection and mapping of archaeological mounded
settlements in arid environments. Our research integrates
multitemporal synthetic-aperture radar and multispectral
bands to produce a highly accurate probability field of mound
signatures. The results largely expand the known concentra-
tion of Indus settlements in the Cholistan Desert in Pakistan
(ca. 3300 to 1500 BC), with the detection of hundreds of new
sites deeper in the desert than previously suspected including
several large-sized (>30 ha) urban centers. These distribution
patterns have major implications regarding the influence of
climate change and desertification in the collapse of the largest
of the Old-World Bronze Age civilizations.
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This paper presents a machine-learning approach for the de-
tection of mounded sites across one such very large area. It
employs multitemporal data in a way similar to the approach
used by Menze and Ur (19), but rather than detecting anthro-
posols, which include modern towns, settlements, and other
areas of human use or occupation, this study outlines a method
for restricting the algorithm detection to archaeological mounds.
It does this by employing a multisensor and multitemporal ap-
proach that combines synthetic-aperture radar (SAR) data and
multispectral satellite imagery. The study area is the Cholistan
Desert in Pakistan, which is a large arid area that has long been
considered a core region of South Asia’s Indus Civilization (ca.
3300 to 1500 BC). The results of the analysis are evaluated,
compared to previous field survey data, and discussed in relation
to the prevailing interpretations of the trajectories of settlement
in the region, including the development and decline of the large
urban centers of the Indus Civilization.

Research Background
The Cholistan Desert and the Indus Civilization. The Cholistan De-
sert is the western extension of the Great Indian or Thar Desert
and stretches from the southern edge of the alluvial plains of
Punjab to the north of Sindh province in Pakistan (Fig. 1 A and
B). The area is usually described as a marginal arid region that is
highly sensitive to the annual variation of the Indian summer
monsoon (23), the intensity of which has significantly affected its
population and ecological diversity throughout the Holocene
(24). Today its landscape is characterized by fossilized sand
dunes with shrub vegetation, small patches of trees around ar-
tificial water tanks, called tobas, and saline mud flats called
dahars (ref. 25 and Fig. 1C). The region has played a significant
historical role in transcontinental mobility between central and
South Asia, as attested by the caravan routes that crossed the
area and the numerous forts that protected them (26). The area
has also been home to nomadic pastoralists who have moved
with their livestock near tobas (23, 27). In recent decades, how-
ever, major investment in irrigation schemes in the western

plains has changed the traditional subsistence strategies and
movement patterns of local populations (28–30). Cholistan has
figured prominently in discussions about the Indus Civilization,
and Possehl (31, 32) argued that it was the most important area
of settlement concentration during the Mature Harappan period
(also Harappa phase; ca. 2500 to 1900 BC), which is when South
Asia’s first cities flourished. There has been considerable dis-
cussion about the region’s hydrological network and its relation
to the former Ghaggar-Hakra River, and the date at which it
ceased to flow perennially is much debated (33–38). Despite its
perceived archaeological importance, at present only survey data
are available for the region.
The first archaeological explorations in Cholistan can be

traced back to the early European officials operating in the area
in the 1830s and 1840s, when sporadic mounded sites were
reported in traveler’s notes (39, 40). Oldham (41) was among the
first explorers to report scattered mounded sites in the desert in
the late 1890s, and these observations were reiterated in the
1940s and 1950s by Stein (42) and Field (43). The most extensive
work in the region was led by Mughal, who executed an extensive
survey between 1974 and 1977 (26). Additional areas of Choli-
stan were surveyed in the 1980s as part of an attempt to sys-
tematically survey the whole of Punjab (44). To date, Mughal’s
publications constitute the largest and most detailed archaeo-
logical legacy data for this area, and the reported sites have been
integrated into the corpus of Indus Civilization sites (45, 46).
Through field walking and random surface collection, Mughal’s
team noted 414 locations associated with different chronological
periods ranging from the early Indus phases to the early Islamic.
Petrie and Lynam (47) reviewed Mughal’s legacy data and in-
corporated sites reported by Stein in the 1940s, coming to a total
of 462 archaeological site locations in the Cholistan region.
Some of the largest mounds discovered during the Mughal-led

surveys have been the focus of recurrent visits by different teams
(48, 49), particularly Ganweriwala, which traditionally has been
considered one of the five major Indus cities together with Harappa,
Mohenjo Daro, Rakhigarhi, and Dholavira (ref. 46 and Fig. 1 A and
D), although its size and significance has been the focus of some
discussion (48–51). Since Mughal’s surveys no major large-scale field
surveys have been conducted in the region, despite the substantial
and continued interest that these sites have aroused (52–57).

Mughal’s Surveys: Site Distribution and Settlement Patterns.Mughal
found evidence for settlement distributions that varied across
what he characterized as the Hakra, Early Harappan, Mature
Harappan, and Late Harappan periods (26). The earliest, Hakra-
period sites appear to be clustered to the south of Cholistan.
There was a reduction of settlement in the south and displace-
ment to the north in the Early Harappan period, a reduction of
settlement in the north, and more extensive settlement in the
south in the Mature Harappan period and abandonment of the
south and a return to the north in the Later Harappan period.
This alternating pattern is illustrated in Fig. 2. Mughal argued
that these shifts in settlement concentrations were related to the
movement of river channels and water availability (refs. 23–26,
57, 58 and Figs. 3–6). While the Hakra-, Early Harappan–, and
Mature Harappan–period sites were distributed over the whole
of the area, the Late Harappan–period sites appear to have been
restricted to more northern locations. This displacement of set-
tlement was not reversed in the subsequent Painted Gray Ware
period, suggesting that during or at least after the Mature Har-
appan period the population made a major shift north.

Old Limitations, Novel Approaches. The Stein, Field, and Mughal
data are inevitably constrained by the technological limitations of
their time. The toponomy, location, and extension of mounded
sites and scattered materials were recorded using manual and
nonsystematic approaches, which makes it difficult to identify

Fig. 1. Location map of the Cholistan Desert. (A) Distribution of Indus sites
with the location of the five major Indus cities during the urban period (ca.
2500 to 1900 BC). (B) Distribution of Indus sites in the Cholistan Desert, after
Mughal (26, 47). (C) Inset showing characteristic fossilized sand dunes, mud
flats (dahars), and water ponds (tobas). (D) The well-known mound of
Ganweriwala, partially covered by a sand dune.
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existing mound-site locations and to quantify their extension, exact
distribution, and pattern (59, 60). A second problem is the lack of
quantitative parameters that can help evaluating their significance.
These data were usually published in the form of lists or gazetteers
(e.g., refs. 26 and 46), lacking a quantified description of surface
materials. Moreover, Mughal’s data (table 11 in ref. 26) include
both mounded locations and other types of short-term occupation,
such as industrial sites or campsites, and therefore many sites do
not correspond to long-term mounded settlements. In addition,
reported coordinates are often inaccurate and duplicated.
The lack of more systematic field surveys in recent decades is largely

due to the remote location of most of these mound sites, the harsh
desert conditions of the area, and its proximity to the India–Pakistan
border. These limitations, along with the unique physiographic char-
acteristics and archaeological significance of the region, make the
Cholistan Desert an ideal scenario for testing new RS approaches.

Materials and Methods
RS-based archaeological research in marginal or remote areas has often
been limited by poor satellite coverage and limited temporal and spatial
resolution. These limitations are changing thanks to 1) the availability of
time series of global, medium-resolution satellite imagery from Earth

Observation missions, such as the Landsat and Copernicus programs, and 2)
the implementation of multipetabyte image catalogs and geospatial data-
sets in cloud computing environments that allow for planetary-scale analysis.
For the analysis presented in this paper, the Copernicus Sentinel open access
satellite series, in particular Sentinels 1 (both ascending and descending
sensors) and 2, have been employed as they offer a higher resolution and
greater number of bands than are available in other noncommercial satellite
imagery. The original spatial resolution of the sensor bands employed, 10
and 20 m per pixel (m/px), is adequate for the detection of mound signa-
tures in the area. These present a minimum diameter of around 100 m and,
therefore, could incorporate enough number of pixels in sentinel imagery to
be clearly identified. The Sentinel collections have been accessed and ana-
lyzed using Google Earth Engine (GEE) in order to investigate and auto-
matically identify surface sediments potentially related to archaeological
mounds. The methodological workflow is illustrated in Fig. 3. This combi-
nation of purposely built multisource multitemporal data and methods
based on big data analysis has allowed the examination of a very-large-scale
study area of ca. 36,000 km2.

GEE Cloud Computing Geospatial Platform. GEE is a fast-growing web-based
geospatial platform seeing application within several academic disciplines,
and in recent years it has boosted the emergence of RS-based automated
applications at the continental and planetary scale of analysis (61). The ar-
chaeological application of GEE has been greatly extended only recently (12,
62–67). GEE is particularly suitable for implementing large-scale multi-
temporal data analysis as it provides access to a 20-petabyte catalog of
satellite imagery and geospatial datasets, which includes the Sentinel series
and most other publicly accessible satellite data acquired since the 1970s.
GEE parallelizes and executes code developed in JavaScript or Python using
Google’s cloud computing infrastructure, permitting work with intensive
computational processes at unprecedented scales. GEE is also very useful for
developing machine-learning processes as it allows the computation of
partial machine learning-based classifications within a few seconds
(or minutes if large training sets and many bands are employed) using screen
map area and resolution. This is an important advantage to traditional
machine learning processes as it allows the evaluation of the results of new
training data without having to compute a full-resolution classification of an
entire area and reduces the number of necessary iterations to achieve sat-
isfactory results. GEE also incorporates high-resolution imagery (equal to
that of Google Earth) that allows the evaluation of the results of the clas-
sification and the selection of new training data without needing to export
them to GIS software. Furthermore, GEE provides vector drawing tools that
simplify training data selection.

Multisensor Sentinel Series. Sentinel 1 is a dual-polarization C-band SAR with
several scanning modes. The analysis presented here selected interferometric
wide swath mode, which is the mainland operational mode with a ground
resolution of 10 m/px and produces data in single (HH or VV) or double (HH +
HV or VV + VH) polarization in both ascending and descending modes. Each
scene available at GEE had been preprocessed using Sentinel-1 Toolbox to 1)

Fig. 2. Spatial distribution of Mughal’s sites per period. Approximate dis-
tribution of previously known Indus sites in the area (see ref. 26, recently
revised by ref. 47). The smooth regression lines represent the spatial trends
in the distribution of sites. Although many of these coordinates need
revisiting in the field, the chronological distribution of Mughal’s sites evi-
dences continuous shifts in settlement.

Fig. 3. Schematic workflow used in this study. The code available within SI Appendix follows the three main steps of this research performed in GEE: 1)
development of a multisensor, multitemporal image composite, 2) train and apply the RF classifier, and 3) export the resulting probability raster field. In
addition, data validation and statistics were performed using R software.
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remove low-intensity noise and invalid data on scene edges, 2) remove ther-
mal noise, 3) radiometric calibration, and 4) terrain correction using SRTM 30
(spatial resolution of ∼30 m, 1 arcsecond at equator, absolute horizontal ac-
curacy ≤20 m, absolute vertical accuracy ≤16 m, and relative vertical accu-
racy ≤10 m). Sentinel 1 provides data starting from October 2014.

Sentinel 2 multispectral imagery incorporates 13 bands from which only
the visible/near-infrared bands (VNIR B2–B8A) and the short-wave infrared
bands (SWIR B11–B12) were employed. Bands B1, B9, and B10 (60 m/px each)
correspond to aerosols, water vapor, and cirrus, respectively, and they are
not employed in this study except for the use of the cirrus-derived cloud
mask applied. Visible (B2–B4) and NIR (B8) bands provide a ground resolu-
tion of 10 m/px, while red-edge (B5-B7 and B8A) and SWIR (B11–B12) bands
present a 20 m/px spatial resolution. Specifically, for this research Sentinel 2
Level 1C products representing top of atmosphere (TOA) reflectance were
preferred due to the larger span of its mission (starting from June 2015) and
excellent resolution.

Machine learning-based approaches to the detection of archaeological
sites have previously employed a single type of multispectral imagery source.
This research has combined large multitemporal series of multispectral
(Sentinel 2) and SAR (Sentinel 1) satellite data for the detection of archae-
ological mounds. Its use responds to SAR’s capacity to reflect soil roughness,
texture, and dielectric properties (68) and other ground physical conditions
such as compactness. The characteristic compact soil of archaeological
mounds that have been formed by the decay of clay-based mud bricks was
assumed to provide a stark contrast with surrounding desert soil (68–71).
Another advantage of the use of SAR is that it has a certain amount of soil
penetration in very dry, sandy, loose soils, which makes it particularly ade-
quate for this specific area. Initial tests confirmed that known mound sites
provided a characteristic SAR signature that differentiates them from the
surrounding terrain (Fig. 4 A–D).

A notable drawback of single SAR images, which has been reduced here
with the use of multitemporal series, is the presence of noise (speckle), an

artifact of microwave scattering. Furthermore, SAR alone is not able to
provide enough information to isolate archaeological mounds from other
types of similar clayish soils (such as modern desert seasonal settlements and
dried-up water tobas) that produce analogous responses. Equally, optical
multispectral imagery is not single-handedly able to isolate mound spectral
signatures in some other areas such those presenting natural accumulation
of clays that produce similar spectral responses (Fig. 4 E and F). The different
nature of these sensors was an important factor for ensuring that those
elements that would produce values similar to those of mounds in one
source were discriminated in the other. Given the complementarity of SAR
and multispectral imaging, their combined use was conceived as a way of
providing discriminant values for mounded archaeological sites in the area.

Multitemporal Aggregates. The use of multiple images makes it possible to
consider short- and long-term environmental variability and different visi-
bility conditions, thereby reducing the impact that incidental circumstances
such as the presence of clouds have when using a single image. The only
previous instance of the incorporation of multitemporal images for the
machine learning-based detection of archaeological mounds has been by
Menze and Ur (19). They used multiple ASTER satellite images of the same
area acquired at different moments over a period of several years. Here, we
have superseded that approach by employing a multitemporal fusion that
averages 1,500 SAR images taken from 2014 to 2020 in the case of Sentinel 1
and 3,112 multispectral images acquired from 2015 to 2020 in the case of
Sentinel 2.

An algorithm was developed (SI Appendix) to combine all available
Sentinel 1 images for the study area and create a composite image inte-
grating polarization and look angles to increase the amount of information
available about the objects of interest. Median values were employed to
integrate the different images available to ensure that we obtained a stable
image and that radar speckle was eliminated. Medians were preferred to
mean values to minimize the effect of eventual outliers.

While Sentinel 1 SAR is unaffected by clouds, Sentinel 2 TOA values may be
affected by cloud cover. The S2 TOA collection reports coded information on
quality concerns for each pixel in the QA60 bitmask. We integrated all
multitemporal images of the Sentinel 2 collection into a single multispectral
image by averaging the pixel values per each band but ignoring those ob-
servations flagged as cloudy (opaque or cirrus) in the QA60 bitmask.

Sentinel 1 and 2 data aggregates made it possible to produce a 14-band
multitemporal andmultisensor image composite. The image integrates 4 SAR
bands (a single VV and a dual HH–HV band in both ascending and descending
modes) and 10 optical multispectral bands (B2–B8A, B11, and B12). The high-
quality optical and radar bands are not affected by particular environmental
or visibility conditions and therefore reflect average reflectance values for
the study area while significantly reducing the computational costs of the
process. While incorporating seasonal information might have produced
improved results (see, e.g., refs. 64 and 72), we preferred to test the most
straightforward approach of using aggregate averages, thus keeping com-
putational cost relatively low. This is a particularly important point as the
algorithm employs two sensors and a relatively high spatial resolution given
the very large size of the study area.

The creation of multitemporal and multisensor (active and passive) ag-
gregates for the detection of archaeological sites constitutes an important
development. Previous research has emphasized the current need for “the
harmonization and synergistic use of different sensors . . . to maximize the
impact of earth observation sensors and enhance their benefit to the sci-
entific community” (73). In this regard, this research constitutes one of the
first large-scale applications of the concept of virtual constellations, a “set of
space and ground segment capabilities that operate in a coordinated
manner to meet a combined and common set of Earth Observation re-
quirements” put forward by the Committee on Earth Observation Satellites
(ref. 74; see also ref. 75) and falls in line with current agendas for the ad-
vancement of archaeological RS (76, 77). Virtual constellations aim to com-
bine sensors with similar attributes to increase the efficiency of RS processes.
Here, we have gone beyond the initial definition to include sensors with very
different principles (active and passive), but with the combined potential to
produce superior results given the nature of our object of interest. The use
of a machine-learning algorithm provided a practical way to employ the
multiplicity and disparity of data present in the image composite bands.

Machine-Learning Algorithm. The steps for classification of mound-like sig-
natures included gathering training data, training the classifier model,
classifying the image composite, and then validating the classifier with an
independent validation set. We employ a selection of 25 mound sites
identified in Mughal’s survey on desert areas (26) as our training (n = 5) and

Fig. 4. SAR and multispectral mound visibility. (A) Google Earth basemap
showing the location of a well-preserved mound (yellow circle) and three
main land-cover types in the desert edge: dahars or mud flat surfaces, sta-
bilized sand dunes, and spots of irrigated lands. Note the differences in
mound and land-cover visibility in the following band combinations from
the multitemporal image composite: (B) dual Sentinel 1 band [VV,VH] in
ascending mode; (C) single Sentinel 1 band [VV] in ascending mode; (D)
Sentinel 1 false composite in RGB; (E) Sentinel 2 visible composite (B4-B3-B2);
and (F) Sentinel 2 false color composite (B8-B4-B3).
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validation (n = 20) sets. Despite the quality problems in Mughal’s data, we
selected those sites that could be clearly identified and accurately located in
high-resolution imagery available in GEE. These corresponded to large and
well-preserved sites. Polygons were drawn in GEE to define the areas of the
selected mounds from which the values of the pixels in the image composite
could be extracted for the training of the algorithm. The definition of
spectral signatures and the evaluation of training data are described in
detail in SI Appendix, Figs. S1 and S2.

An RF classifier was selected for the GEE machine-learning implementa-
tion. A RF classifier builds a number of decision trees on bootstrapped
training samples, but each time it considers a split in a tree. For each split, a
new random subset of predictors is considered when splitting nodes (78).
The average of the resulting trees helps to avoid overfitting and hence is less
variable and more reliable than other decision tree-based classifiers (17, 79).
Moreover, RF classifiers can handle a small number of training samples and it
is possible to get the number of votes (i.e., the probability density) for each
class. These are two advantages that are particularly useful for RS-based
archaeology with limited land-use/cover information.

In our GEE algorithm, the RF was composed of 128 trees, considered an
adequate number to obtain optimal results without increasing computa-
tional cost unnecessarily (80). The RF was set in probability mode so that the
results could be evaluated, filtered, and refined to improve the algorithm’s
detection capabilities. The machine-learning process underwent three iter-
ations. The original iteration of the algorithm produced satisfactory results
in that it was possible to clearly identify the 20 well-known mounds used as
test data and many more potential mounds through their higher RF prob-
ability values. Nonetheless, two more iterations were necessary to tune
pixels with higher percentages that did not correspond to mound sites, thus
ensuring a good balance between low presence of nonmound pixels with
high RF probability values and a high mound detection rate. The output of
the RF classifier is a probability field in raster format, in which each value
records the probability of a given pixel being a “mound.”

In order to produce a map of archaeological mounds, a >0.55 RF proba-
bility threshold for mound values was selected after close inspection of the
training data on the high-resolution imagery, which produced a raster map
of clusters (“mounds”) on a background of “no mound.” A higher threshold
resulted in the better delineation of big and clear mounds, but many small
clusters of pixels corresponding to partially covered or small mounds were
lost. We considered the >0.55 threshold a good compromise between a high
mound detection capacity and a minimal inclusion of false-positive pixels
(mainly scattered, isolated pixels). The algorithm’s validation and quality
assessment methods are outlined in SI Appendix, Figs. S3 and S4.

Integration of Complementary Data, Area Estimates, and GIS Database. The
resulting clusters of high-RF-probability pixels representing mounds were
vectorized to reconstruct the areas of the mounds currently covered by sand
dunes or desert shrubs. Photointerpretation used high-resolution satellite
imagery provided by several map services (including Google Earth and Bing
Maps) and a limited collection of available WorldView-2 and -3 imagery. The
combination of these sources provided enough temporal and environmental
variability to evaluate and delineate the possible extent of the mounds
identified by the algorithm. A final mound geodatabase was prepared in a
GIS environment and compared with previous coordinates from legacy data
(see refs. 26 and 44).

Data Availability.All satellite data used in this study are freely available under
the open data policy adopted by the Copernicus program of the European
Space Agency. The code developed for this research, which has been used to
produce the results discussed in the paper, is provided within SI Appendix.
This code has been written for GEE’s implementation of JavaScript. GEE
provides free access to the satellite data and the processing necessary to
conduct the analysis upon registration. The code is ready for the direct ex-
ecution of the analysis discussed in this paper (including the gathering and
treatment of Sentinel data) and it only requires pasting into the GEE Code
Editor and pressing the “run” button. It includes instructions on how to use
and modify it to be applied to other research needs or areas. The code is also
available in an online repository at https://github.com/horengo/Orengo_
et_al_2020_PNAS, where future updates will be implemented.

Results
RF Probability Field. Thresholding the RF probability field
at >0.55 resulted in a map of 337 clusters that we propose as
archaeological mound soil surfaces (Fig. 5 A–E). This set in-
cludes the 25 mounds selected from Mughal’s surveys (26) used as

training (n = 5) and validation (n = 20) data, which were all
successfully identified by the algorithm. The newly proposed
mounds are similar to the previously known mounds used as
training data (Fig. 6A). The capacity of the algorithm to detect
mound-like signatures is probably related to 1) the high contrast in
Sentinel 1 single and dual polarization bands (81), 2) the ability of
the SAR C-band to penetrate loose, dry sand (82–84), and 3) the
specific reflectance in the Sentinel 2 red-edge, NIR, and SWIR
bands of anthropic sediments in mounded sites (85, 86).
Due to vegetation and sand cover the RF probability only

produced a few well-defined rounded shapes. Most of the newly
proposed mounds present fragmentary rounded shapes, elongated
strips, or shapeless groupings of pixels (Fig. 6B). It is entirely
possible that beside these 337 detected mounds there are also
remains of archaeological mounds partially covered by sand or
shrub vegetation with low RF probability values. It is worth
stressing that the algorithm helped to identify small clusters of

Fig. 5. Results of the RF classifier. (A) In red, extent of the study area,
showing the distribution of new RF probability mounds. (B) Inset showing
the RF probability at the desert edge; note the white dots scattered through
the region indicating high-probability mounds. (C) Visible high-resolution
imagery (Google Earth basemap) with virtual absence of mounds. (D) The
same area as C, showing high RF probability mound-like signatures in dahar
surfaces. (E) Inset showing filtered pixels at >0.55 RF probability threshold,
suggesting the presence of mounds partially covered by sand dunes.
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mound-like pixels even when visible high-resolution images or
SAR backscatter alone do not show any significant change in
surface land cover.
When possible, the new features were matched with legacy

data from previous archaeological sites recorded by Mughal’s
team (26, 44). Out of a total of 337 clusters of high-probability

pixels identified as archaeological mounds by the algorithm, only
71 (including the 25 employed to train and test the algorithm)
could be linked with reasonable certainty to sites previously
recorded. However, it is possible that some other mounds in the
database were indeed recorded by Mughal, but their imprecise
coordinates make it difficult to establish any secure spatial
correlation.

Discussion
Detection and Distribution of Mound-Like Signatures. Despite the
intensity of the regional surveys conducted by Mughal’s teams in
the 1970s and 1980s, the automated detection of mounds in
Cholistan has significantly increased the number of mound-like
settlements over a much larger area of Cholistan than previously
thought. In particular, the distribution extends toward the south-
ern part of the region and the inner Thar Desert toward the east,
which was an area that was virtually inaccessible for previous
studies (Fig. 7).
As expected, the distribution of the detected mounds by the

algorithm was concentrated in the desert areas. Multispectral
contrast and SAR texture differences among classes are accen-
tuated in the desert, especially in the dahar flat surfaces, whereas
the environmental variability in the agricultural lands toward the
western edge of the desert is highly affected by several factors
(e.g., mechanized agriculture, irrigation canals, roads, and rail-
ways, and irrigation-supported agricultural villages). As a result,
the visibility of most existing archaeological mounds in this area
has been strongly influenced by present-day taphonomy.
There is also a clear decrease in site density toward the middle

of the overall site distribution (Fig. 7). This can be attributed to
an extended stretch of deeper dunes that potentially hides a
similar site density to those documented west and north of the
dune stretch. In a similar manner, the area where new mounds
have been identified is delimited to the south and southeast by
the presence of deep dunes. The distribution of documented
sites in relation to the presence of dunes (Fig. 7) strongly sug-
gests that many more sites could be lying below dunes in the
deeper desert, and therefore the depositional dynamics of aeo-
lian sediments in the Cholistan Desert may have played a crucial
role in both the settlement history of the region and visibility of
mounds. It is also interesting to note that the areas with a higher
concentration of sites are situated in open mud flats (dahars) that
are scattered through the region, although many of these
mounds are still partially covered by sand dunes. Some dahars
are used today to extract fine silty sediments or to excavate tobas
(25, 27). These activities have accumulated silty soils on the dahar
surface, leaving soil signatures and texture that are very similar to
those of mounds in single Sentinel 1 and 2 scenes and high-resolution
imagery. In all cases, the RF probability field was able to clearly dis-
criminate between dahars, tobas, and archaeological mounded areas.

Fig. 7. Distribution of newly detected mounds in relation to regional
landcover.

Fig. 6. RF probability outputs. (A) Example of detected mound-like surfaces in
well-known mounds used as validation set. (B) Clusters of high-probability pixels
in the area, photointerpreted as new archaeological mounds. Note the distinct
preservation of mounds due to partial coverage of sand dunes and desert shrubs.
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Only 71 of the mounds located by Mughal match the new
photointerpreted RF probability mounds, and usually these are
among the most well-preserved mounds in the landscape. A large
number of nomadic sites and pottery distributions not related to
long-term settlement were reported by Mughal, but they were
only distinguished on site by surface scatters of artifacts (27), and
the resolution of our sources is not sufficient to locate them. An
important aspect of the RF probability approach is that the new
locations represent areas with a specific mound-like sediment
signature, which suggests a relatively stable occupation, potentially
for some time, and the continued use of construction materials
such as mud brick. These characteristics are closely associated with
sedentary dwellings in similar Indus contexts (51).
For each new location, the extension, visibility, and preservation

of surface archaeological sediments can be now further explored
in relation to its immediate surroundings. Previous studies tended
to separate a unique multiphase location into several distinct lo-
cations based on the distribution of surface material culture, which
are largely biased by the terrain view that was used (no aerial
images were available) and the partial burying and occlusion of
sites. For example, the site of Bokhariyanwala was described as
having occupation during the Mature and Late Harappan periods
on two adjacent mounds. Our analysis shows that the ridge of a
fossilized dune crosses the area, suggesting that these sites formed
a single large mound (Fig. 8A). Similarly, the site of Changalawa
was reported to have two distinct Mature Harappan–period
mounds and a third Late Harappan–period mound. However, the
RF-probability field only returns a single mound in this area. In
this case, the distribution of materials may have been disturbed by
the presence of a 1920s irrigation canal crossing the site, and
different parts of the one site may have been occupied in each
period (Fig. 8B). However, until archaeological excavation can be
carried out at these sites, the possibility that some of these sites
may be composed of discontinuous occupations on multiple
overlapping mounds cannot be dismissed. These examples reflect
the high heterogeneity in terms of site visibility and preservation
across the study area and provide a cautionary tale on using the
previous data to study site density, distribution, and size.

Villages and Towns: Mound Size Estimates. An important result of
the automated site detection has been the delineation of the
estimated area size for the 337 mounds located in the area
(Fig. 9 A and B). Mound area estimates in the Near East (87)

have raised the question of whether these represent the total
habitation size of a settlement or wall debris and open-air spaces
outside the settlement. For the results presented here, area es-
timates should be used with caution and be considered only as a
tentative measure of the total mound area estimated through
visual inspection of the RF probability field and high-resolution
satellite imagery. A large proportion of the newly detected
mounds are less than 5 ha in size (n = 246, 72.99%). Estimated
site areas suggest a general pattern of small rural Indus settle-
ments distributed between medium- and large-sized sites that are
possibly urban in nature (26, 88), which is similar to other Indus
core areas in northwestern India such as Gujarat (89) and
Haryana (90). However, the area for most of the known sites that
we have identified is slightly different from those previously
reported (table 13 in ref. 26). For example, the Hakra-period site
of Lathwala was reported to be 26.3 ha, but the closest visible
mound is around 5 ha, although it should be noted that the site is
now clearly divided by a large sand ridge. The largest Early
Harappan–period site, Gamanwala, was reported as being 27.3
ha, but the closest mound to this location is a much smaller
mound of ca. 6.5 ha. Kudwala, the largest Late Harappan–period
mound at 38.1 ha, could not be detected remotely, suggesting
either that its original location was not correct or that it has since
been obliterated by the expansion of agricultural land. Signifi-
cantly, the RF-probability field detected six mounds that can
undoubtedly be considered as large Indus settlements, poten-
tially towns of more than 20 ha. The distribution of these mounds
is highlighted in Fig. 9 A and B. The Mature Harappan–period
settlement of Ganweriwala, initially estimated to be 80 ha in size
(26), has long been considered one of the major centers of the
Indus Civilization. However, recent reassessment has shown that
it was much smaller, between 20 and 40 ha (49–51). Our data

Fig. 8. Visibility of RF mounds and legacy data. Google basemaps and RF
probability fields showing (A) the vectorized new mound of Bokhar-
iyanwala, closely located to multiple legacy coordinates for the same site,
and (B) the vectorized new mound of Changalawa, also reported as multiple
locations in legacy data probably due to the partial obliteration of the site
by an irrigation canal.

Fig. 9. Mound area estimates. (A) Map showing the mound size estimates.
The location of Ganweriwala and the other five large mounds (>20 ha) lo-
cated in the region is highlighted. Note the extension of the Ghaggar-Hakra
River, as digitized from historical maps. (B) Histogram with the size density
for the mounds. Mean size is indicated by the red dashed line.
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suggest that the mounded area is ca. 33 ha, comparable to a large
town (90), although it may well have functioned as an urban
center (51). It is possible, however, that Ganweriwala was not the
only large town dating to the Mature Harappan period in the
region. Two more sites identified by Mughal as dating to this
period, Sanukewala and Rajbai, have a similar visible mound
extension (ca. 32 ha) and they could have been even larger in the
past. The northwest section of Sanukewala is largely affected by
an abandoned canal and Rajbai is partially covered by sand
dunes. The Late Harappan–period site of Siddhuwala also has
significant proportions (26.5 ha). The RF-probability field has
also brought to light two previously unknown large sites, named
Khundowala (29 ha) and Mulhiawala (20.5 ha) after the nearest
toponym shown on historical maps. Mulhiawala is in the south-
eastern margin of the desert, an area that was virtually empty of
Indus sites before the automated detection of mounds. The site
of Khundowala is unique in lying in the northeast margin of the
desert, and it is completely isolated from other visible mounds.
The site is partially covered by a fossilized sand dune, and indeed
the RF probability only showed a small portion of the total
mound that can be appreciated today in high-resolution satellite
imagery. The identification of this site is highly relevant, as it
documents the presence of a large mound in the northern parts
of the historical Hakra River basin. Despite previous evidence of
the presence of more Indus Civilization sites in this area (26, 44),
only a few small mounds have been detected by the algorithm
there. The implications of the northern expansion of the desert,
as evidenced by the large sand dunes that partially cover these
sites, is further discussed below.

Long-Term Landscape Dynamics.The new distribution of mounds in
the study area indicates that the Thar Desert has expanded
considerably since the Indus period. No current occupation ex-
cept for seasonal pastoral camps is known in the southern and
western sectors of the site distribution area. Medieval- and late
Medieval-period settlements such as the Cholistan forts known
in the area form an arc delimiting the northwestern limit of the
Thar Desert at a more northerly and westerly location (26).
These patterns might suggest that the expansion of the desert is a
long-term process that has been progressing over several mil-
lennia, contributing to the abandonment of settlements at the
desert margins.
At present, the lack of paleoenvironmental evidence such as

sedimentary records in the core area of the Cholistan Desert can
only be partially complemented by data from the adjacent Thar
Desert, especially in western and northern Rajasthan. Durcan
et al. (91) have suggested that the Holocene geomorphological
dynamics were highly dynamic and the distinct phases of fluvial
and aeolian deposition were not spatially or temporally instan-
taneous, but rather a synchronic alternation. Some studies have,
however, highlighted a drier climatic condition on the northern
margins of the Thar Desert sometime after ∼4.4 ± 0.1 ky B.P.
(24, 59, 92–94), a phase that is consistent in other northwestern
regions such as mainland Gujarat (95, 96). Nonetheless, the cy-
clic fashion of the Quaternary aeolian activities in the Thar
Desert started much earlier (ca. 150 ky B.P.), and Singhvi and
Kar (97) advocate for a phase of major aeolian activities during
the Holocene Climatic Optimum (ca. 5 to 3.5 ky B.P.), with
century-scale rates of spatial shifts in dune forming in west
Rajasthan up to 2 ky B.P. Existing sedimentary records for the
western margins of the Thar Desert, therefore, correlate well
with a potential enhanced aeolian activity ca. 4 ky B.P., followed
by declining rainfall, which, in turn, would have stabilized the
now subdued sand dunes. Another burst of aeolian activity
started ca. 2 ka while the latest aeolian active phase was in his-
torical times, when the rates of dune mobility in the desert in-
creased mainly due to human pressure (98, 99).

The new data on mound distribution can also be compared to
the documentation of multiple paleoriver channels and seasonal
streams in the study area. Just as with the mounds, these are
visible only in dahar surfaces and therefore it is difficult to offer a
continuous picture of their shape and length. Overall, the hy-
drological network in the area has been related to the course of
the former Ghaggar-Hakra River. Some authors have argued
that the Ghaggar-Hakra system ceased perennial flow through
this region before the Holocene (59, 100–103), thus suggesting
that the alluvial plains of northwestern India and eastern Paki-
stan were characterized by a continuum of fluvial environments
interrelated through a seasonal precipitation gradient and local
aeolian dynamics (36, 104). The river basin is well-documented
in historical 19th-century maps and narratives (Fig. 9), showing
recurring seasonal flooding during episodes of extreme rainfall
such as in 1804, 1805, and 1871 (105). However, previous RS-
based attempts to identify the former channel network across
Cholistan have suggested several potential interconnected
waterflows (106–109), but little is known about their chronology.
Moreover, the detected relict network of fluvial environments
across the region has several characteristics that differ from a
major Ghaggar-Hakra course, specifically 1) these paleochannels
form multiple courses with roughly similar orientation, 2) their
morphology is relatively straight, at least by comparison with
those documented to the north of the study area, where they
tend to be very sinuous given the low slope of the alluvial plain
(see refs. 64, 65, and 110), and 3) their orientation is coincident
with that of the fossilized dunes and not with that of the alluvial
plains just north of the desert edge. In this regard, it is important
to note that while river flow follows the aspect of the terrain,
dunes are mostly influenced by wind direction in plain areas.
Therefore, the flow of many of the rivers detected must have
been influenced by the presence of earlier relict sand dunes. The
many subparallel, ephemeral river traces in the area might be
related to a process of river migration toward the northeastern
region as dunes expanded from the south. Consequently, it is
possible to propose that water was still available, at least sea-
sonally, in streams and flooded fertile dahars until recent his-
torical times, as attested by the nomadic migration traditions in
the area (27, 111). The monsoonal-fed hydrological network
changed dramatically from 1897 onward with the construction of
the Ottu Barrage on the northern Indian course of the Ghaggar
River, which increased desertification in the southern desert
edges and led to the development of large irrigation schemes
through the desert lands early in the 1930s (112).

Indus Settlement Trends.Although at the moment it is not possible
to provide chronological information for the newly detected
mounds, they can be combined with those previously identified
and dated by Mughal (26) to attempt to understand changes in
settlement distribution over time. The surveys of Cholistan
documented all of the mounds that were encountered, including
those of the Medieval period. Considering that the vast majority
of the previously reported sites were settlements attributed to
the periods of the Indus Civilization, there is a high chance that
most of the newly detected mounds were also occupied during
this same period. This assumption can be contrasted with similar
Indus contexts. For example, in the plains of Haryana in north-
west India, Green et al. (14) have highlighted that mound fea-
tures visible on historical maps tend to be protohistoric or
Bronze Age settlements when surveyed or validated on the
ground, whereas Early Historic and Medieval settlements appear
to be more frequently associated with modern settlement loca-
tions. In Cholistan, specifically, several mounds are partially
covered by fossilized sand dunes and ridges, indicating that these
mounds largely predate the northwestern expansion of the Thar
Desert, and that mounds located deeper in the desert may
therefore be particularly early in date.
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Mughal’s analysis highlighted the importance of the Cholistan
settlement data for understanding the development of Indus
urbanism, and Madella (113) has suggested that Cholistan was
potentially a zone of intensive and extensive cultivation. Taken at
face value, Mughal’s settlement distribution data for Cholistan
suggest that this was an intensively occupied area. However,
Petrie and Lynam’s (47) reanalysis of the data suggests that this
settlement system may have been marked by displacement and
considerable instability, which indicates that it was more unusual
than is typically assumed. This interpretation has ramifications
for the interpretation of agricultural practices and the sustain-
ability of the region, indicating a high degree of flexibility and
mobility. This insight is important, because there is currently no
direct archaeobotanical evidence available from sites in this re-
gion. This agricultural flexibility must have been essential to
Cholistan, which was strategically located in a central point of
the area occupied by Indus populations (51, 114) and was po-
tentially a necessary transit area for movement between different
regions. Cholistan may well have formed a communication node
between surrounding Indus areas. The apparent loss of the more
southern areas of Cholistan for settlement may have been an
important factor in the breakdown of Indus interaction networks
and the increase in more local-scale interactions in the Late
Harappan period (115). The decline of settlement in Cholistan
might thus have created a “dead zone” of interaction, increasing
the cost of communication and exchange beyond the point that
deurbanizing cities could maintain.

Conclusion
The dataset provides a collection of Sentinel 1 and Sentinel 2
spectral signatures for mound-like archaeological features in
drylands, and the resulting mound locations can be now
addressed in terms of RF probability values. We present a
combination of multitemporal, multipolarization, and multiangle
SAR bands and multitemporal optical bands (including visible,
red-edge, NIR, and SWIR) analyzed using a machine-learning
algorithm in a cloud computing platform for the detection and
analysis of archaeological mounds, which has the potential to
transform archaeological site detection. The machine-learning
algorithm that has been employed was able to detect all previ-
ously known mounds in the study area for which we could gather
accurate locations and large numbers of new ones well beyond
the expectations laid out by previous research. The method
provides results that are noticeably superior to the use of single-
source RS approaches. RS-based applications in arid and semi-
arid areas elsewhere can benefit from the integration of globally
available Sentinel data in GEE’s accessible, flexible, and repro-
ducible environment to perform and evaluate machine-learning
workflows.
The new distribution of archaeological sites in the Cholistan

Desert, in combination with legacy archaeological data, suggests

that most of these mounds are protohistoric settlements, that
they extended across a larger area than previously recognized,
and that they include several previously unknown mounds that,
considering their large size, can be classified as urban in their
own right. Archaeological data in combination with landscape
analysis, which includes the mapping of factors affecting site
visibility, suggest that these were only a relatively small part of
the mounds present in the area, many of which might lie below
large dunes in the core study area and deeper into the desert.
The archaeological sites in Cholistan were occupied at points

along a span of five millennia. The significant number of Indus
Civilization Mature Harappan–period and urban-scale mounds
that were documented and the shift in the concentrations of
settlement to the north suggests that it is important to consider
the impact of the advancement of the desert on settlement dis-
placement of Indus populations. Given the centrality of this area,
the displacement of occupation in Cholistan potentially played
an important role in the generalized processes of deurbanization,
decrease in settlement size, and regionalization that characterize
the Late Harappan period across the Indus region.
While undoubtedly Cholistan was a significant zone of settle-

ment for the populations of the Indus Civilization, the nature of
the settlement dynamics in this region and their relationship to
water availability are in need of both ongoing reevaluation and
ground-truthing in the field. Indus populations had clearly
adapted their behavior to survive in this apparently unstable
environment, and it appears to have remained an important area
for settlement and a component in interactive networks for an
extended period. Future research should perhaps also consider
the role of pastoralism and the pastoral economy in this region
and its possible links to population mobility. The results of the
study presented here provide critical resources for the processes
of rethinking the dynamics of settlement distribution and the
archaeological significance of the region.
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