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Abstract

Background: A trend of stage-by-stage increase in tumorsphere (TS) formation from glioma samples has been
reported. Despite this trend, not all surgical specimens give rise to TSs, even World Health Organization (WHO) grade
IV gliomas. Furthermore, it has been reported that differences in overall survival of primary glioblastoma patients
depends on the propensity of their tumors to form TSs. However, the weights of fresh specimens vary from one surgi-

cal isolate to the next.

Methods: Accordingly, we evaluated the relationship between the weights of surgical specimens in WHO grade IV
gliomas with the capacity to isolate TSs. Thirty-five fresh WHO grade IV glioma specimens were separated into two
groups, based on whether they were positive or negative for TS isolation, and the relationship between TS isolation

and weight of surgical specimens was assessed.

Results: We observed no significant difference in the weights of surgical samples in the two groups, and found that
the optimal weight of specimens for TSs isolation was 500 mg.

Conclusion: Thus, contrary to our expectations, the ability to isolate TSs from WHO grade IV glioma specimens was

not related to the weight of fresh specimens.
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Background

A subpopulation of glioblastoma (GBM) tumor cells pos-
sesses the ability to undergo neural differentiation and
induce tumorigenesis [1-3]. When cultured under appro-
priate conditions in vitro, this population of tumor cells
gives rise to gliomaspheres, referred to more generically
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as tumorspheres (TSs). TSs have been isolated from vari-
ous malignant tumors, including breast [4], prostate [5],
bone [6], colon [7], kidney [8] and lung [9], as well as
brain [3, 10-14]. It was previously reported that the rate
of isolation of TSs increase as the World Health Organi-
zation (WHO) grades of glioma rise [3]. Moreover, it is
not possible to isolate TSs from GBM specimens in all
cases, with reported isolation rates estimated at 43.8 %
[3]. Notably, the ability to isolate TSs is a significant prog-
nostic factor for overall survival in patients with primary
GBM [15].
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It is known that the weight of fresh specimens varies
from one surgical procedure to the next. This raises the
question of whether the weight of a specimen is a deter-
mining factor in the ability to isolate TSs from it. In some
isolation protocols, it is suggested that a specimen weight
of 200-500 mg is needed for isolation of TSs [11]. How-
ever, there is no established experimental relationship
between the weight of fresh specimens and the isolation
of TSs.

In this study, we assessed the predictive value of fresh
specimen weight in determining the ability to isolate TSs,
testing the hypothesis that the greater the weight of the
specimen, the more effective the isolation of TSs. Thirty-
five fresh specimens of WHO grade IV gliomas were
divided into two groups, based on the ability to isolate
TSs from them, and the relationship between specimen
weight and TSs isolation was studied. We also evaluated
the optimal cut-off weight of specimens for the isolation
of TSs.

Methods

Patient population

Patients with WHO grade IV glioma treated at our insti-
tution between October 2014 and August 2015 were
included in this study (Table 1). All patients were his-
tologically diagnosed according to the 2007 WHO clas-
sification, and were graded by neuropathologists; the
molecular properties of each surgical specimen have
been reported [16]. O-6-methylguanine-DNA methyl-
transferase (MGMT) promotor methylation and isoci-
trate dehydrogenase (IDH)-1 mutation status were
assessed by polymerase chain reaction (PCR) and immu-
nohistochemistry (IHC). In cases where IHC results for
IDH1 were negative, we tested for IDH1 mutations using
the hot-spot technique. Epidermal growth factor recep-
tor (EGFR) and loss of heterozygosity (LOH) at chromo-
somes 1p and 19q were evaluated by fluorescence in situ
hybridization (FISH). P53 was identified by IHC.

From fresh specimen to single cell isolation

Fresh tumor specimens were obtained in the operating
room from glioma patients undergoing surgery. Each
specimen was place in a sterile centrifuge tube (SPL Life
Sciences Co., Ltd, Korea) on ice, and was weighed on the
same electronic precision balance (Sartorius® TE4101-
L, Sartorius Weighing Technology GmbH, Goettingen,
Germany) within 1 h. Thereafter, specimens were pro-
cessed using a previously reported mechanical dissocia-
tion method [1, 3, 17]. Briefly, surgical specimens were
minced and dissociated with a scalpel in Dulbecco’s mod-
ified Eagle medium/nutrient mixture F-12 (DMEM/F-12;
Mediatech, Manassas, VA, USA) and then passed
through a series of 100-um nylon mesh cell strainers (BD
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Falcon, Franklin Lakes, NJ, USA). Cell suspensions were
washed twice in DMEM/F-12 and cultured in complete
media (DMEM/F-12) containing 1xB27 supplements
(Invitrogen, San Diego, CA, USA), 20 ng/ml of basic
fibroblast growth factor (bFGEF; Sigma, St. Louis, MO,
USA), 20 ng/ml of epidermal growth factor (EGF; Sigma),
and 50 U/ml penicillin/50 mg/ml streptomycin [1, 3, 17].

Isolation of TSs

Isolated single cells were cultured as gliomaspheres in
complete TS medium consisting of DMEM/F-12 con-
taining 2 % 1x B27, 20 ng/ml of 0.02 % bFGEF, 20 ng/ml
of 0.02 % EGE, and 1 % antibiotic—antimycotic solution
(100x ; Gibco, Invitrogen Korea, Seoul, Korea). The cells
were cultured continuously through three to six passages,
consistent with their status as progenitor/stem cells. Cell
morphology was assessed by observing cultures with an
inverted phase-contrast microscope (I x 71 Inverted
Microscope; Olympus, Tokyo, Japan). The neural differ-
entiation potential of gliomaspheres was subsequently
tested, followed by an evaluation of their ability to induce
tumorigenesis in vivo. The relationship between the iso-
lation of TSs and the weight of surgical specimens was
investigated, and the optimal cut-off weight for isolation
of TSs was evaluated.

Immunocytochemical staining

For investigation of surface and intracellular antigen
expression profiles, TSs were transferred to cover slides,
fixed with 2 % paraformaldehyde for 7 min, and then
treated with a 3:1 ratio of methanol and acetic acid for
3 min. The cells were then washed and permeabilized
by incubating with 0.1 % Triton X-100 for 10 min. After
blocking with 1 % bovine serum albumin (BSA; Amresco,
Solon, OH, USA) for 1 h, cells were incubated with pri-
mary antibodies for 2 h at room temperature. The fol-
lowing antibodies were used: rabbit anti-CD133 (1:250,
ab19898; Abcam [Dawinbio Inc], Hanam, Korea), rabbit
anti-nestin (1:250, ab5968; Abcam). Primary antibod-
ies against CD133 and nestin were detected with goat
anti-rabbit IgG conjugated with Alexa Fluor 555 (1:2000;
Invitrogen), which is spectrally similar to Cy3. The cells
were mounted with Vectashield H-1200 mounting media
containing 4/6-diamidino-2-phenylindole (DAPL Vec-
tor Laboratories, Burlingame, CA, USA) to counter-
stain nuclei. Phosphate-buffered saline (PBS; Dawinbio
Inc, Hanam, Korea) was used for all washing steps, and
antibody diluent reagent solution (Invitrogen) was used
to dilute antibodies. As a negative control, only the sec-
ondary antibody was used. A fluorescence microscope
(1 x 71; Olympus Korea, Seoul, Korea) and DP Control-
ler software (Olympus Korea) were used for observing
and photographing the cells.
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Table 1 Demographic and clinical characteristics of patients with WHO grade IV glioma
Characteristics TS culture positive (n = 18) TS culture negative (n = 17) P value*
Age (years) 626+ 107 555+£129 0.088
Sex (M:F) 10:8 10:7 0.845
Pathological diagnosis >0.999
GBM 14 (77.8 %) 15 (88.2 %)
GBMO 2(11.1 %) 1(5.9 %)
Gliosarcoma 2(11.1 %) 1(5.9 %)
Type >0.999
Primary 16 (88.9 %) 15 (88.2 %)
Recurrent 2(11.1 %) 2(11.8%)
Molecular markers
IDH1
Wild type 18 (100 %) 17 (100 %)
Mutation 0 0
1p19q >0.999
No deletion 16 (88.9 %) 15 (88.2 %)
Codeletion 2(11.1%) 2(11.8%)
MGMT promotor 0.358
Unmethylated 10 (55.6 %) 12 (70.6 %)
Methylated 8 (44.4 %) 5(29.4 %)
P53 mutation 0443
Wild type 3(16.7 %) 5(29.4 %)
Positive by IHC 15 (84.3 %) 12 (70.6 %)
EGFR mutation 0.193
Wild type 8 (44.4 %) 4(23.5 %)
Positive by FISH 10 (55.6 %) 13 (76.5 %)

* By Independent two-sample t test for continuous variables and Chi square test (or Fisher’s exact test) for categorical variables

Immunohistochemical staining

Sections (3-mm thick) were deparaffinized in xylene
and rehydrated through a graded alcohol series to dis-
tilled water. Antigen retrieval was performed by micro-
wave irradiation, after which samples were incubated
with the following primary antibodies: rabbit polyclonal
anti-CD133 (1:200, ab19898; Abcam [Dawinbio Inc],
Hanam, Korea), mouse monoclonal anti-nestin (10C2;
CELL MARQUE, Rocklin, CA95677, USA), and mouse
monoclonal anti-CD15 (1:50, M3631; Dako Korea LCC,
Seoul). Specific binding was detected using biotinylated
anti-mouse IgG, followed by peroxidase/alkaline phos-
phatase streptavidin, with 3,3’-diaminobenzidine and the
combination of nitro blue tetrazolium chloride (NBT)
and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) as
substrates.

Neuro-glial differentiation

The multipotency of TSs was tested by examining neu-
ral lineage expression by immunocytochemical staining.
Briefly, after being seeded onto chamber slides (Lab-Tek
II; Nalge Nunc International, Rochester, NY, USA), cells

were grown in neural differentiation media containing
10 % fetal bovine serum (FBS; Lonza) and 1 x B27 sup-
plement (Invitrogen) for up to 14 days. Cells were then
fixed with 2 % paraformaldehyde for 7 min at 4 °C, and
permeabilized by incubating with 0.1 % Triton X-100 for
10 min. After blocking with 1 % BSA (Amresco) for 1 h,
cells were immunostained with the following antibodies:
rabbit anti-GFAP (1:200 dilution; Dako, Carpinteria, CA,
USA), mouse anti-MBP (myelin basic protein, 1:200 dilu-
tion; Chemicon, Temecula, CA, USA), mouse anti-NeuN
(1:100 dilution; Chemicon), and mouse anti-TUBB3
(Tuyj1, 1:200 dilution; Chemicon). The primary antibod-
ies were detected with Cy3-conjugated anti-mouse or
anti-rabbit secondary antibodies (1:200 dilution; Jackson
ImmunoResearch Laboratories, West Grove, PA, USA),
as appropriate. Nuclei were counterstained with DAPI
(Vector Laboratories). Slides were examined and photo-
graphed using a fluorescence microscope.

Statistical analysis
The patients’ demographic characteristics and weight
of each surgical specimens were compared using the
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independent two-sample ¢ test for continuous variables
and Chi square test (Fisher’s exact test) for categorical vari-
ables. Youden’s method in conjunction with receiver-oper-
ating characteristic (ROC) analysis was used to determine
the optimal cut-off weight of fresh specimens for isolation
of TSs to maximize sensitivity and specificity. All statistical
analysis were performed using SAS version 9.2 software
(SAS Institute Inc. Cary, NS, USA), MedCalc version 15.0
software (MedCalc Software, Ostend, Belgium) and SPSS
version 18.0 KO software (SPSS Korea, Seoul, Korea), with
P < 0.05 considered statistically significant.

Results

Patient population

A total of 35 fresh surgical specimens were collected
from 20 males and 15 females, ranging in age from 33 to
77 years, during the period of October 2014 to August
2015. Pathological diagnoses included GBM (n = 29),
GBM with an oligodendroglial component (n = 3), and
gliosarcomas (n = 3). There were 31 primary and 4 recur-
rent types of WHO IV gliomas. Of these 35 specimens,
18 were categorized as positive and 17 as negative for TS
isolation (Table 1). Molecular factors, including IDH-1
mutation, MGMT promotor methylation, EGFR, p53, 1p
and 19q LOH were evaluated. There were no statistically
significant differences in age (P = 0.088), sex (P = 0.845),
pathological diagnosis (P > 0.999), type (P > 0.999), 1p 19q
codeletion (P > 0.999), MGMT promotor methylation
(P = 0.358), p53 (P = 0.443), or EGFR mutation status
(P = 0.193) between TS-positive and TS-negative groups.

Characterization of GBM TSs

Cells isolated from tumor specimens yielded spheroids
when cultured in TS complete media (Fig. 1a). An immu-
nocytochemical analysis of a representative TS sample
(TS15-88) identified cells expressing markers associated
with stem cells and brain tumor stem cells, including
CD133 and nestin (Fig. 1b). To assess the multilineage dif-
ferentiation capacity of TSs, we cultured them in neuro-
glial differentiation media, as described in “Methods”
section, and analyzed them for the expression of the dif-
ferentiation markers TUBB3 (immature neurons), GFAP
(astrocytes), MBP (oligodendrocytes), and NeuN (mature
neurons) by immunocytochemical staining (Fig. 1c). The
GBM specimen from which this TS sample was derived
was evaluated by IHC staining for CD133, CD15 and nes-
tin (Fig. 1d), which showed that all of these markers were
well expressed in this GBM specimen.

Weights of fresh specimens

The average weights of fresh specimens were
327 + 266.8 mg in the TS-positive group and
578.2 £ 543.2 mg in the TS-negative group (Fig. 2). Our
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original expectation was that the greater the weight of
the sample, the more likely the isolation of TSs. Con-
trary to our expectations, the mean weight for the
TS-negative group trended larger than that for the TS-
positive group, although this difference did not reach
statistical significance (P = 0.245). Thus, our data indi-
cate no association of the weight of specimens with the
ability to isolate T'Ss.

The optimal weight of specimens for TS isolation

The optimal cut-off value for isolation of TSs was deter-
mined by measuring the area under the ROC curve of
0.618 (Fig. 3). This translated to an optimal fresh speci-
men weight of 500 mg for isolation of TSs, with a sen-
sitivity of 88.9 % and specificity of 41.2 %. In contrast
to our initial hypothesis that larger specimens would be
associated with higher rates of TS isolation, we found
that the sensitivity and specificity of TS isolation was
actually higher in specimens weighing less than 500 mg
than in those greater than 500 mg.

Discussion
It has been assumed that TSs arise from a subpopulation
of cells responsible for the initiation, maintenance, and
recurrence of tumors [2, 18]. It is also commonly thought
that TS-generating cells comprise some proportion of the
tumor, and that a higher proportion of these TS-gener-
ating cells would be associated with a more aggressive
tumor [3, 15, 19]. A previous study reported a significant
increase in TS isolation rate in gliomas with increased
WHO grades [3]. This suggested the related hypoth-
esis that a larger specimen mass would tend to favor an
increased TS isolation rate. Our test of this hypothesis,
however, revealed no significant difference in specimen
weights between TS-positive and -negative groups. We
also found that the two groups were not different with
respect to clinical characteristics, molecular factors, or
pathological features that might influence TS isolation.
Siedel et al. [12] reported that most tumor samples
with a size up to 0.5 cm? are suitable for GBM TSs iso-
lation. Some authors recommend 200- to 500-mg speci-
mens for isolation of GBM TSs [11], and there have been
some suggestions about the weight or volume of speci-
mens for isolation of TSs from other kinds of cancers [5,
9, 20]. Most other TS-related studies have provided no
description of the weight or volume of fresh specimens
for TS isolation [19, 21-24]. Generally speaking, reports
such as those referred to above have assumed that, all
other things being equal, larger specimens are better than
smaller specimens for TS isolation [5, 7, 9, 11, 12]. How-
ever, no studies have compared TS-negative and -positive
groups to establish optimal weights or volumes for TS
isolation.
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%400 original magnification) in this GBM specimen

Fig. 1 Characterization of a representative GBM TS (TS15-88). a Morphology of TSs shown by phase-contrast microscopy (x 1 OO orlgmal magni-
fication). b Immunocytochemical staining of TSs for CD133 and nestin; nuclei were counterstained with DAPI (x
grown in neural differential media were immunostained for GFAP, MBP, NeuN, and TUBB3 (x 200 original magnification). d IHC staining for CD133,
CD15 and nestin in the GBM specimen from which this TS sample (TS15-88) was isolated, showing that these markers were well expressed (x 200,
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Fig. 2 Weight distributions of fresh specimens in the two groups.
There was no significant difference in the weight of surgical samples
in the two groups (P = 0.245, Mann-Whitney test)

It is difficult to isolate TSs, and the efficacy of the pro-
cedure is low (from 1 to 30 %) [23, 25, 26]. Most studies
on malignant tumors of the brain and other organs have
reported TS isolation efficiencies up to 40-60 % [2, 3,
9, 15, 27, 28], similar to the results of the results of our
current study. However, some authors have described
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Fig. 3 Receiver-operating characteristic curve for isolation of TSs. The
optimal cut-off value to maximize the sensitivity and specificity of TS

isolation from WHO IV gliomas was 500 mg

sequential modifications of isolation techniques that
improved efficiency from 40 to 90 % in GBM patients
[18]. In this latter case, improvements in TS isolation
involved fixes to technical problems associated with each
stage, such as early vulnerability of surgical specimens,
mechanical disruption, and removal of red blood cells
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and necrotic material from fresh specimens. Although
studies such as this highlight the contribution of tech-
nical problems to the isolation of TSs, the fact that the
ability to isolate TSs is correlated with poorer clinical
outcome in various types of cancers [3, 15, 29-33] indi-
cates that success of TS isolation is not solely determined
by technical issues.

Previous report proposed that primary GBM TSs iso-
lation is a prognostic indicator of clinical outcome [15].
In addition, some authors described that TSs isolation is
supposed to be a poor prognostic factor in other malig-
nant gliomas [34]. In the current study, we evaluated the
prognostic role of TSs in WHO grade IV gliomas. TS
isolation from WHO grade IV gliomas were not signifi-
cantly related to overall survival (data not shown), and
there were no significant differences in clinical character-
istics, molecular factors, or pathological features between
TS-positive and TS-negative groups (Table 1). However,
these results could be related to the short follow-up
period (10 month), suggesting that long-term follow-up
of this cohort is needed to assess the prognostic role of
TS isolation in patients with WHO grade IV gliomas.

There are some concerns that surgical procedures used
to collect fresh specimens can affect TS isolation. Some
authors have reported that surgical procedures can help
TSs exit from quiescence, inducing the formation of
more TSs for analysis consequently [19]. On the other
hand, surgically resected tissue is vulnerable to rapid
ischemic and degenerative alterations [7, 19]. Thus, opti-
mal conditions, including rapid transfer of specimens fol-
lowing surgical resection, removal of red blood cells and
necrotic material and an appropriate environment for
growth are required for the isolation of TSs from fresh
surgical specimens [5, 7, 9, 11, 12, 18, 19, 23, 35]. Our
laboratory has an ongoing effort to develop optimal con-
ditions for the isolation of TS [2, 3, 10, 17].

RNA sequencing or gene expression arrays could be
helpful in validating new TS markers and targets. How-
ever, the genome analyses necessary to establish tran-
scription factors that might influence to TS isolation have
not been performed. In this context, it has been shown
that functional inhibition of microRNA-138 (miR-138)
in malignant glioma prevents TS formation in vitro and
impedes tumorigenesis in vivo [36]. In our study, we
sought to determine whether the ability to isolate TSs dif-
fered depending on the weight of the specimen. However,
further studies regarding transcription factors necessary
for TS isolation are needed.

In our study, the specimen weight was 500 mg for the
isolation of TSs to maximize sensitivity and specificity.
This result was a little similar to the value reported by
other authors [11]. Ideally, specimens would be subdi-
vided into various sizes and then cultured, or more than
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one specimen would be procured from a single patient.
However, in actual practice, the operating room setting
imposes limitations on specimen collection. We tried
to collect specimens with a minimum of red blood cells
and necrotic material, but this made it difficult to gather
specimens of different sizes from each patient. There-
fore, we emphasized the absence of significant differences
between demographic and clinical characteristics of two
groups, and used the ROC curve for statistical process-
ing. An analysis of our data yielded an area under the
ROC curve of 0.618, which demonstrated poor discrimi-
natory ability for the isolation of TSs [37, 38]. However,
500 mg of fresh specimen proved to be optimal in our
study, and our summary data showed no significant dif-
ference in weight between the TS-positive and TS-neg-
ative groups, clearly ruling out size/weight of sample as a
determining factor in successful TS isolation. Our study
suggests some methods for improving the efficiency of
TS isolation in addition to stage-specific technical modi-
fications. Future studies using a larger numbers of cases
are warranted to further address the relationship between
the amount of fresh specimen and TS isolation rate.

Conclusion

Our initial hypothesis that a larger amount of specimen
would translate to a higher rate of TS isolation proved to
be incorrect. Instead, we found no relationship between
the weight of specimen and TS isolation rate. Moreover,
our data suggested that 500 mg of fresh specimen was
optimal for isolation of TS with maximal sensitivity and
specificity. The results of this study could provide use-
ful technical information for cellular immortalization of
patients with WHO grade IV gliomas.
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