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The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible
for significant morbidity and mortality worldwide. Current treatments using anti-parasitic
drugs are toxic and prolonged with poor patient compliance. In addition, emergence of
drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and
better therapeutics for these infections. Host-directed therapy using drugs that target
host pathways required for pathogen survival or its clearance is a promising approach
for treating infections. This review will give a summary of the current status and advances
of host-targeted therapies for treating NTDs caused by protozoa.
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INTRODUCTION TO NEGLECTED TROPICAL DISEASES

The neglected tropical diseases (NTDs) comprise a group including 20 different illnesses which
currently affect over a billion individuals and amount to approximately 12% of the total global
health burden across 149 tropical and subtropical countries (Chappuis et al., 2007; Ready,
2014; Mello et al., 2017). In humans, NTDs impair cognitive and physical development, cause
development of chronic physical or emotional conditions, and could result in an increased
mortality and morbidity having a significant economic impact on the economy in developing
countries (Centers for Disease Control and Prevention, 2017; World Health Organization, 2018).

In this review we focus on three NTDs caused by different but related to protozoa which
account for the highest death toll amongst all NTDs (Hotez et al., 2007): Leishmaniasis, caused
by multiple species of the Leishmania; Chagas disease, caused by Trypanosoma cruzi; and Human
African trypanosomiasis (HAT), caused by either Trypanosoma brucei gambiense or Trypanosoma
brucei rhodesiense. According to the World Health Organization (WHO), these three NTDs require
“Innovative and Intensified Disease Management (IDM)” approaches due to lacking research and
development investments as well as a deficiency of effective control tools in endemic areas (Hotez
et al., 2007).

Many NTDs are not a major concern in the most developed countries, but they continue to
persist in areas where people live with poor sanitation and hygiene and remain in close contact with
insect vectors and infected reservoir hosts. Tourists and military personnel traveling to endemic
areas are also exposed to these infections and pose a risk of contracting them. Reports show that
hundreds of US troops deployed in endemic areas such as Iraq have contracted cutaneous or visceral
leishmaniasis (Weina et al., 2004). Additionally, immigration and increased exchanges of economic
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and social nature between different countries have contributed to
the globalization of some NTDs such as Chagas disease (Kalil-
Filho, 2015).

Leishmania and Trypanosoma not only infect humans but
they also infect wild and domesticated animals, which serve as
reservoirs for these diseases. Carnivores, rodents and lagomorphs
have been identified as reservoirs for leishmaniasis in Europe,
but the dog remains the main domestic reservoir, especially
for L. infantum (Millan et al., 2014). Relocated or traveling
dogs have been shown to bring L. infantum to non-endemic
areas, spreading the disease throughout Europe (Maia and
Cardoso, 2015). Along with the Mediterranean area, zoonotic
leishmaniasis can be found in the Middle East, West Africa,
Central Asia and the Americas. Here again wild animals and dogs
are mainly responsible for L. infantum transmission (Harhay
et al., 2011). Similarly, Trypanosoma can also infect a wide variety
of domesticated and wild animals. For example, the presence
of a widespread T. cruzi infection has been reported along the
Texas-Mexico border in government working dogs (Meyers et al.,
2017). In Uganda, the spread of sleeping sickness caused by
T. brucei rhodesiense has been traced to infected cattle movement
(Selby et al., 2013). Additionally, cases of horses infected with
T. evansi, causative agent of the chronic wasting disease surra,
have been reported in Brazil and other areas (Elshafie et al.,
2013; Parreira et al., 2016). The widespread infection of livestock
and other animals increases the risk of transmission to humans,
severely impacting whole regions with the potential for global
effect. Furthermore, animal infection can lead to infertility
and loss of livestock resulting significant economic losses in
many African, Asian and American countries (Giordani et al.,
2016).

Despite the high prevalence of these three diseases, currently
only a handful of treatments available against these parasites
and many of those exhibit high toxicity due to the biomolecular
similarities between eukaryotic parasites and mammalian cells,
as well as to the accumulation of toxic derivative products of
the therapeutic compounds. For instance, it is known that the
toxicity of benznidazole and nifurtimox, established drugs for
Chagas disease, is due to the metabolic conversion occurring
after enzymatic reduction of nitro-groups (Bermudez et al.,
2016). Another problem associated with some of these drugs
is the increasing parasitic resistance as a result of adaptation.
Resistance can arise due to different mechanisms such as target
modifications, decreased drug uptake or increased efflux and
augmented drug metabolism (Yasinzai et al., 2013). Several
of these mechanisms, and a combination of them, have been
documented in Leishmania parasites resistant to antimonials
(SbIII, trivalent form reduced from the pentavalent form),
miltefosine and amphotericin B (Ponte-Sucre et al., 2017). For
example, reduced expression of the SbIII transporter AQP1 leads
to increased resistance to antimonials. Additionally, the uptaken
SbIII can be bound by the thiol compound trypanothione, present
in Leishmania, and either sequestered or expelled from the cell
via specific efflux pumps (Ponte-Sucre et al., 2017). Furthermore,
increased expression of ABCG-like transporter TcABCG1 in
T. cruzi confers resistance to benznidazole (Zingales et al.,
2015).

Because of these concerns, it is imperative to find new
therapeutics with low toxicity for the human host while
maintaining high anti-parasitic efficacy. This review focuses on
host-targeted approaches to treat NTDs caused by these three
protozoan parasites.

HOST-TARGETED THERAPEUTICS

Host-targeted drugs bypass many of the problems encountered
by treatments that specifically target parasites, by acting directly
on host molecules or pathways that are redundant for the
host but critical for pathogen invasion, survival and replication.
Such approaches are likely to have a less chance of developing
resistance as the host molecules and processes mutate at lower
rates than most pathogens. Additionally, because these drugs act
on the host, and not on specific pathogens, these treatments may
be broad-spectrum and effective against several pathogens.

Different strategies have been employed to identify new
host targets. The broader and more general approaches are
transcriptomic and proteomic analysis as well as the assessment
of microRNA, small interfering RNA (siRNA) and short hairpin
RNA expression profiles (Prudencio and Mota, 2013; Krishnan
and Garcia-Blanco, 2014). RNA interference in Drosophila has
been previously used to identify several host factors manipulated
by pathogens to their own advantage. This method was adopted
to identify the host factors important for resistance to Listeria
monocytogenes and Chlamydia caviae (Prudencio and Mota,
2013). Functional genomics have also been used to study
gain or loss of function by over-expressing cDNA or iRNA
respectively in mammalian cells to investigate the effects of
different phenotypes on pathogenesis of intracellular pathogens.
Additionally, hybrid interaction screens can be used to study
protein-protein interaction between the host and the pathogen
and can help identify potential host targets for drug therapy.
Another method used to identify protein-protein as well as
protein-RNA interactions is affinity chromatography (Krishnan
and Garcia-Blanco, 2014).

Recent studies have identified several host-targeted
therapeutics which show promise as novel drugs for treating
neglected tropical parasitic infections. These approaches
include the use of immuno-modulators, kinase inhibitors, and
also natural compounds, which activate pro-inflammatory
transcription factors like NF-Kb. Of these treatments, immuno-
modulators are promising therapeutics not only used by
themselves but also in combination with other drugs (Tiuman
et al., 2011). In this review we focus on the host-targeted therapy
and possible approaches to treat Leishmania, T. brucei, and
T. cruzi infections.

LEISHMANIASIS

Leishmaniasis is a group of tropical diseases caused by protozoan
parasites of the genus Leishmania and transmitted via the
bite of female Phlebotomine sandflies. This disease affects
approximately 12 million people in more than 80 tropical and
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subtropical countries with incidence of reported cases rising
rapidly at 2 million cases annually (McGwire and Satoskar,
2014). There are more than 20 different species of Leishmania
distributed in both the Old and New World (Centers for Disease
Control and Prevention, 2013; World Health Organization,
2018). The clinical manifestations of leishmaniasis depend
on many factors including, interactions between the infecting
Leishmania species and the immune response of the host,
localized or disseminated parasite infection, genetic profile of
the parasite and mammalian host, stress and also nutritional
status of the host (Locksley et al., 1999; McCall et al., 2013).
Cutaneous leishmaniasis (CL) is the most common form of
leishmaniasis, which manifests as localized skin lesions that
can become chronic, leading to significant tissue destruction
and disfigurement. Other forms of infections are mucosal
leishmaniasis (ML), or life-threatening visceral leishmaniasis
(VL), which is the second most fatal parasitic infection after
malaria and is characterized by dissemination of the parasites to
liver, spleen and bone marrow (The Center for Food Security and
Public Health, 2017).

Although macrophages serve as the preferred host cell for
Leishmania, this parasite can also infect other cells like dendritic
cells (Woelbing et al., 2006; Contreras et al., 2014), mast cells
(Bidri et al., 1997; Lu and Huang, 2017), fibroblasts (Hespanhol
et al., 2005) and neutrophils (Mougneau et al., 2011). In
particular, neutrophils are recruited within hours of the infection
and delay the recruitment of dendritic cells, important for antigen
presentation (Hurrell et al., 2015). Neutrophils seem to play an
ambivalent role in leishmaniasis; on one hand they serve as host
cells, propagating the infection and indirectly hindering antigen
presentation (Peters et al., 2008; Hurrell et al., 2015), on the other
hand they have been shown to contribute to parasite killing by
releasing neutrophil extracellular traps (Mougneau et al., 2011).

HOST IMMUNOLOGY

A protective immune response against leishmaniasis is
characterized by a CD4+ Th1-polarized immune response
(Centers for Disease Control and Prevention, 2013). Upon
interaction with parasites, antigen presenting cells (APCs)
activate T-cells by direct contact as well as by the release of
disease-protective cytokines such as interleukin-12 (IL-12).
These cytokines prime naïve T-helper cells to differentiate into
Th1 cells, the main producers of interferon-γ (IFN-γ) (Naman
et al., 2018). Natural killer (NK) cells is an another important
source of IFN-y that contributes to Th1 cell differentiation
and ultimately to disease resolution (Mougneau et al., 2011).
IFN- γ stimulates phagocytes to produce reactive oxygen-
and nitrogen-species resulting in parasite killing (Pace, 2014).
IFN-γ, IL-12 and TNF-α are crucial mediators of protection
against various forms of Leishmania infection (Naman et al.,
2018; World Health Organization, 2018). While a polarized Th1
response is associated with resolution of CL, susceptibility to
CL is associated with an induction of a Th2 immune response.
A Th2-polarized immune response is characterized by the
production of interleukin-4 (IL-4), IL-13 and interleukin-10

(IL-10). These cytokines, along with TGF-β suppress protective
immune response and promote parasite and exacerbation of
disease (Odiit et al., 1997). In contrast to CL, the resolution of VL
requires the production of interleukin-4 (IL-4) and interleukin-
13 (IL-13) as well as IL-4 α signaling pathway, which induces
mature granuloma formation and promotes parasite clearance
(Satoskar et al., 1995; Alexander et al., 2000; Stager et al., 2003;
McFarlane et al., 2011).

Several drugs are currently used to treat leishmaniasis; but
there is no vaccine available for disease prevention. The standard
in treatment of leishmaniasis in most endemic countries involves
use of pentavalent antimonials such as sodium stibogluconate
(SSG). Other drugs, including liposomal amphotericin B, azoles,
imiquimod, miltefosine, paromomycin and pentamidine, have
also been used with variable success. Unfortunately, the current
treatments have several drawbacks, including poor patient
compliance due to prolonged treatment duration, high toxicity
and emergence of drug resistant parasites (Eugene, 1987; Bray
et al., 2003; Torrado et al., 2008; Jhingran et al., 2009; Olliaro and
Sundar, 2009; Tiuman et al., 2011; McGwire and Satoskar, 2014;
Lamotte et al., 2017; Ponte-Sucre et al., 2017). In this section, we
will discuss novel host-targeted drugs to treat leishmaniasis.

HOST-TARGETED THERAPEUTICS AND
APPROACHES FOR TREATMENT OF
LEISHMANIASIS

Imatinib is an inhibitor of Abl/Arg kinase family of tyrosine
kinases, which can directly remodel the actin-based cytoskeleton
to mediate phagocytosis (Greuber and Pendergast, 2012; Zhang
and Kima, 2016). The Abl/Arg kinases have been previously
shown to play a role in phagocytosis of Leishmania amazonensis
promastigotes by macrophages (Wetzel et al., 2012). Although
treatment with imatinib did not significantly alter cytokine
production, reduced the uptake of both opsonized and non-
opsonized parasites and led to reduced lesion severity in mice
(Wetzel et al., 2012).

Phosphoinositide 3-kinase γ (PI3Kγ) is part of a family of
enzymes with the function of phosphorylating lipids containing
phosphotidylinositol. PI3Kγ is expressed in leukocytes and
mediates cell migration by initiating actin cytoskeletal
reorganization. Because cytoskeletal rearrangement is also
critical to phagocytosis, blocking or deleting PI3Kγ results in
a significant impairment of parasite entry into phagocytic host
cells in vitro and vivo. This decreased phagocytosis, along with
an impaired recruitment of cells at the infection site, conferred
increased resistance against L. mexicana in C57BL/6 mice.
Furthermore, AS-605240, an isoform-selective PI3kγ inhibitor,
was therapeutically as effective as aforementioned standard
anti-leishmanial drug SSG in treating L. mexicana infection
(Cummings et al., 2012). A recent study used AS101 (ammonium
trichloro [1,2-ethanediolato-O,O’]-tellurate), a tellurium-
based immunomodulator for the treatment of L. donovani
infection. Along with a direct effect on promastigotes, AS101
was also shown to reverse T-cell anergy, promote NO and
antibody production, and more importantly inhibit the
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STAT3/IL-10 pathway by blocking the PI3k/Atk signaling in
infected macrophages. This could further promote MAPK
and NF-κB activity (Vishwakarma et al., 2018). A recent
study by Khadem et al. (2017), showed that administration
of PI3K p110δ inhibitors CAL-101 and IC87114 resulted in
a decrease in parasitic burden in both a CL and VL murine
model. This result was accompanied by increased cytokine
production in the spleen, livers and footpads of infected mice.
The authors suggest the use of these inhibitors along with
amphotericin B for even better outcomes (Khadem et al.,
2017).

Ibrutinib is a small inhibitor currently used for the treatment
of chronic lymphocytic leukemia and other B-cell malignancies
due to its action as an irreversible inhibitor of Bruton’s tyrosine
kinase (BTK) found on B-cells (Pan et al., 2007; Harrison, 2012).
Because of its homology with BTK, IL-2 inducible kinase (ITK)
found on both Th1 and Th2 cells is also inhibited by ibrutinib
(Dubovsky et al., 2013). Previous studies have identified ibrutinib
as a clinically relevant drug not only against cancer, but also for
the treatment of infectious disease using the cutaneous model
of leishmaniasis caused by L. major. This beneficial effect was
due to a Th1 polarized response characterized by the production
of disease protective cytokines such as IFN-γ (Dubovsky et al.,
2013).

Berberine chloride is a quaternary isoquinoline that acts
via phosphorylation of protein p38 in the MAP kinase
pathway. This compound upregulates NO production and IL-
12 expression, both disease protective, while downregulating
expression of disease exacerbating IL-10 in macrophages infected
with L. donovani (Saha et al., 2011). Berberine also alters AMP-
activated protein kinase (AMPK) signaling, leading to increased
activation of macrophage inflammasomes (Casey et al., 2015; Li
et al., 2017).

Statins are HMG-CoA reductase inhibitors commonly
orally administered to decrease low density lipoprotein
(LDL) levels in hyperlipidemic individuals by preventing the
synthesis of cholesterol in the liver (Sirtori, 2014). During
L. donovani infection, this statin-dependent reduction in
cholesterol levels resulted in decreased attachment of infectious
promastigotes to macrophages, which is critical for parasite
invasion. Consequently, macrophages treated with lovastatin
had fewer intracellular amastigotes (Kumar et al., 2016).
Furthermore, topical application of simvastatin to ear and
footpad lesions of L. major- infected BALB/c and C57BL/6 mice
reduced lesion size as well as parasitic burdens in draining lymph
nodes (Parihar et al., 2016).

Naloxonazine is an opioid-receptor antagonist that up-
regulates expression of the vacuolar ATPase (vATPase) proton
pump and actin related genes, mediating the formation and
maturation of phagolysosomes. The vATPase proton pump has
been shown to be critical in acidification of parasitophorous
vacuoles within phagocytes. The general understanding is that
promastigotes are more sensitive to acidic pH than amastigotes.
This observation suggests that acidification of vacuole before
the transformation of promastigotes into amastigotes can
potentially lead to increased parasite killing (De Muylder et al.,
2016).

Pentalinonsterol (cholest-4,20,24-trien-3-one) is a natural
product isolated from the roots of Pentalinon andrieuxii, a
native plant of the Yucatan peninsula. Recent studies have
shown that Pentalinonsterol can stimulate macrophages by
activating the NF-kB pathway. This activation resulted in an
upregulation of NO, critical for parasitic killing, as well as
pro-inflammatory cytokines TNF-α and IL-12 in macrophages
and bone marrow derived macrophages (BMDMs) in vitro.
Pentalinonsterol treatment also increased antigen presentation
and expression of costimulatory molecules, which ultimately
resulted in augmentation of both the responses in vivo. Because
of its immunomodulatory properties, pentalinonsterol has been
proposed as a potential adjuvant in vaccination against infectious
diseases (Oghumu et al., 2017).

Oleuropein is a glycosylated seco-iridoid that can be cheaply
derived from numerous plants, in particular the olive tree,
Olea europaea L. (Oleaceae). This natural bioactive compound
was shown to promote Th1 type immune responses and
increase the oxidative stress within the host, both important for
protection against Leishmania infection. Balb/c mice infected
with L. donovani and subsequently treated with oleuropein
showed a Th1 polarization characterized by expression of genes
like TGF-β1 and IFN-γ as well as transcription factors like
GATA3 (Kyriazis et al., 2016). This immunomodulatory effect
was believed to be due to the inhibition of IL-1β which promotes
disease progression and non-healing phenotypes in Leishmania
major infections (Voronov et al., 2010; Charmoy et al., 2016).
In addition to these properties, oleuropein treatment increased
the production of ROS in both in vitro and in vivo models
of L. donovani infection (Kyriazis et al., 2016). Oleuropein has
also been shown to inhibit extracellular signal related kinase
(ERK1/2) (Abe et al., 2011). This is relevant because activation
of ERK1/2 enhances expression of IL-10 and reduction of IL-
12 which resulted in decreased p38 MAPK activation and
increased parasite survival (Feng et al., 1999; Mathur et al., 2004).
Interestingly, oleuropein has stimulatory effects on the AMPK
pathway similar to berberine chloride (Andreadou et al., 2014).
Because of its immunomodulatory actions and low toxicity,
oleuropein could be employed to complement other treatments.

Mahanine is a carbazole alkaloid isolated from a medicinal
plant native to the Indian subcontinent. In vivo studies have
shown that mahanine induces apoptosis of both antimony
sensitive and resistant L. donovani (Roy et al., 2017). Mahanine
augments NO and ROS generation, thereby causing parasitic
apoptosis due to oxidative stress. Along with its effect on NO
and ROS, mahanine affects Th1 cytokines by acting on the
STAT pathway. First employed in the treatment of various types
of cancer, mahanine has been effectively repurposed against
VL (Roy et al., 2017). Mahanine inhibits JAK1 and Src which
subsequently promotes the degradation of STAT3, an important
transcription factor in macrophages that causes upregulation
of IL-10 expression and suppression of Th1 responses (Biswas
et al., 2011; Lee et al., 2011; Das et al., 2014). While mahanine
possesses its own unique immunomodulatory effects, several
other natural compounds stimulate ROS and NO production in
vitro including but not limited to, lupeol from Sterculia villosa,
dehydroabietic acid from Pinus elliottii, and oil extracts from
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Nectandra species (da Costa-Silva et al., 2015; Bosquiroli et al.,
2017; Das et al., 2017; Goncalves et al., 2018). For example,
Punica granatum, commonly known as pomegranate, has been
shown to have antiparasitic and antioxidant properties (Kaur
et al., 2006). A recent study has demonstrated that oral treatment
with P. granatum juice significantly reduced the lesion sizes of
mice infected with L. major, compared to untreated mice. The
anti-leishmanial activity is attributed to the presence of flavonoid
and phenolic compounds including ellagitannins and luteolin.
Luteolin in particular inhibits the extracellular promastigote
growth (Mittra et al., 2000). In contrast, ellagitannins enhance
non-specific immunity via macrophage activation and by
inducing the production of NO, IFN-γ and TNF-α, which
increase the oxidative stress on the parasites. The study showed
that P. granatum juice has the potential to be an effective, safe and
easily administrable treatment against CL (Alkathiri et al., 2017).

Fucoidan is a multi-sulfated polysaccharide isolated from the
sporophylls of the brown algae Undaria pinnatifida. Fucoidan
enhances dendritic cell (DC) maturation through increased
expression of MHC-II and co-stimulatory molecules such as
CD80/86 and CD40 (Jin et al., 2014). Fucoidan treatment of
DCs induced secretion of IL-6, IL-12, TNF-α and IFN-γ with
notable increases in NO production and decreases in production
of the anti-inflammatory cytokines IL-10 and TGF-β (Yang et al.,
2008; Kar et al., 2011; Jin et al., 2014). Over 93% inhibition of
L. donovani amastigote replication was achieved in vitro and
parasites were cleared from both the liver and spleen in 6 weeks
in vivo; the reduction of parasite burden was observed in both
antimony susceptible and resistant L. donovani strains (Kar et al.,
2011). Fucoidan activates p38 and ERK1/2 associated NF-κB
signaling in L. donovani-infected macrophages (Sharma et al.,
2014).

Artemisinin is a natural compound found in Artemisia
annua, a traditional Chinese medicinal herb that is the mainstay
for treatment of malaria. Treatment with Artemisinin-loaded
poly lactic co-glycolic acid (ALPLGA) nanoparticles was shown
to increase levels of IL-2 and IFN-γ and decrease levels of
IL-4 and IL-10 in BALB/c mice infected with L. donovani
(Want et al., 2015). Artemisinin treated macrophages secreted
increased levels of IL-12 in vitro through inhibition of JNK
signaling (Cho et al., 2012). Treatment of L. donovani-infected
BALB/c mice with artemisinin-conjugated nanoparticles
and liposomal preparations resulted in approximately
80% reduction of spleen and liver parasite burdens after
one administration (Want et al., 2015; Want et al., 2017).
Furthermore, treatment of mice with the semi-synthetic
derivative, dihydroartemisinin, has been shown to decrease the
number of T-regulatory cells, which are important mediators
of Leishmania pathogenesis present in the spleen, in addition
to having Th1 polarizing effects (Belkaid, 2003; Noori and
Hassan, 2011). Oral administration of Artemisia annua
powder in gelatin capsules drastically reduced lesion size and
improved appearance compared to no treatment in hamsters
infected with L. panamensis; 5 out 6 hamsters treated with
A. annua capsules daily for 30 days were completely cured
and 2 clinical patients taking A. annua capsules were cleared
of infection within 45 days without adverse reactions or

reoccurrence 24 months after completion of therapy (Mesa et al.,
2017).

Eugenol is a component of Syzygium aromaticum, a species
of clove native of Australia and tropical regions of Central
and South America. S. aromaticum has anti-bacterial, anti-
trypanosomal and anti-malarial activity. These properties are
due to the immunomodulatory effects of this compound on
both humoral and cell-mediated immune responses. Treatment
of L. donovani-infected BALB/c mice with eugenol increased
Th1 polarization, characterized by high levels of IFN-γ and IL-
2, with a concomitant decrease in the Th2 immune response
(Charan Raja et al., 2017). This treatment also induced nitric
oxide production in infected macrophages and proliferation
of both CD4+ and CD8+ T-cells. Overall, eugenol treatment
resulted in decreased parasitic burdens in the spleen and livers of
L. donovani-infected mice most likely due to both leishmanicidal
and immunomodulatory properties (Islamuddin et al., 2016;
Charan Raja et al., 2017).

Brazilian propolis has recently been investigated for the
treatment of American tegumentary leishmaniasis. Propolis
is a bee product composed mainly of di-triterpens, phenolic
compounds and essential oils. This natural product has
previously been shown to have anti-inflammatory, anti-oxidant
and immunomodulatory properties (Miranda et al., 2015). In
a study from 2015, it was shown that treatment with NO in
combination with Brazilian propolis mediated a decrease in
number of parasitized cells, leading to reduced inflammation
and tissue damage in a L. amazonensis murine model (Miranda
et al., 2015). More recently, the immunomodulatory properties of
Brazilian propolis was investigated in human-derived peripheral
blood mononuclear cells (PBMC) isolated from L. braziliensis
infected patients. This study found that in both healthy and
infected donors, propolis was able to increase the levels of IL-4
and IL-17 while decreasing IL-10, showing an overall decrease in
inflammation which could promote the control of the parasites
(Dos Santos Thomazelli et al., 2017).

Phospholipase A2 (PLA2) are a family of enzymes with the
function of reacting with various phospholipids to produce
lysophospholipids, a class of lipid mediators, as well as
arachidonic acid, a precursor of eicosanoids (Murakami and
Kudo, 2002; Moreira et al., 2014). It has been previously shown
that PLA2 activates NF-kB in isolated peritoneal macrophages
(Moreira et al., 2014). Additionally, treatment with liposome
encapsulated PLA2 isolated from the venom of Bothrops
jararacussu, resulted in a significant rise in TNF-α and NO
production in the cutaneous lesions as well as lymph nodes of
L. amazonensis-infected BALB/c mice (de Barros et al., 2018).

Leptin is an adipocyte hormone that plays a role in thymic
homeostasis and has been shown to mediate a pro-inflammatory
response in animal models. In particular, leptin induces Th1
immune responses while suppressing Th2 responses (Maurya
et al., 2016). Leptin induced Th1 polarization, characterized by
IFN-γ, IL-12 and IL-1β, resulted in decreased parasitic burdens
of C57BL/6 mice infected with L. donovani (Dayakar et al.,
2016; Maurya et al., 2016). Leptin treatment also mediated NO
production in antigen-presenting cells (Maurya et al., 2016).
In particular, leptin activates macrophages by promoting the
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phosphorylation of ERK1/2 and Akt, which is usually inhibited
during VL infection (Dayakar et al., 2016).

MicroRNAs (miRNAs) are short, single-stranded non-coding
RNAs that bind to gene transcripts to regulate protein translation
(Bartel, 2009; Geraci et al., 2015). Because of their role in
mediating post-transcriptional repression, miRNAs are linked to
the regulation of host processes involved in the development and
activity of innate and adaptive immune responses (Geraci et al.,
2015; Drury et al., 2017). The immunomodulatory functions
of miRNAs make them promising host targets for developing
new therapeutics for infectious disease (Drury et al., 2017).
miRNAs have been implicated in visceral leishmaniasis infection
in macrophages and dendritic cells in vitro (Geraci et al.,
2015). Additionally, certain miRNAs have been involved in
T-reg specialization and stability in an L. major model, and in
autophagy in both L. major and L. donovani models (Kelada
et al., 2013; Frank et al., 2015; Singh et al., 2016). L. donovani
infection was found to increase the stability of microRNA
ribonucleoprotein (miRNP) in infected macrophages. miRNP
works to restrict the production of pro-inflammatory cytokines,
detrimental for parasite survival within the host cell (Chakrabarty
and Bhattacharyya, 2017). For these reasons, miRNAs can serve
as drug targets to manipulate the host immune response to
pathogens. We summarized the compounds in this section and
their targets in Table 1 and their detailed mechanism of action in
Figure 1.

CHAGAS DISEASE (AMERICAN
TRYPANOSOMIASIS)

Trypanosoma cruzi is the causative agent of American
trypanosomiasis (Chagas disease). This infection has a prevalence
of nearly 6-8 million people worldwide (Aiga et al., 2009) and
causes about 12,000 deaths annually. Although Chagas disease
is endemic in certain areas in Central and South America,
it is found worldwide through the migration of chronically
infected individuals. Additionally, there is a low incidence of
parasite-infected triatomine bugs in the lower 20 states in the
United States which occasionally infect humans (Bern et al.,
2011; Klotz et al., 2014).

Trypanosoma cruzi infection is most often initiated during
blood feeding of parasite-infected triatomine bugs which defecate
near the feeding site. Metacyclic trypomastigotes present in
the insect feces enter the wound and establish infection.
Metacyclic trypomastigotes are able to invade any nucleated
host cells before transforming into intracellular amastigotes
and replicating (Rassi et al., 2010). Amastigotes eventually
differentiate into blood-stage trypomastigotes and exit the host
cell. Trypomastigotes and intracellular amastigote-laden host
cells disseminate within the host and can infect multiple organ
systems. Key end organ tropisms for parasites are cardiac and
gastrointestinal smooth-muscle. The life cycle is complete when
uninfected triatomine bugs feed on infected mammalian hosts
and ingest parasites, which grow and differentiate in the insect
gastrointestinal tract and eventually migrate to the hindgut. The
majority of Chagas infections occur through insect vector-borne

transmission; however, the disease can also be transmitted trans-
placentally, through blood and tissue transplantation, through
the consumption of parasite-laden meat or contaminated freshly
squeezed fruit juice and through accidental laboratory exposure
(Tyler and Engman, 2001; de Souza et al., 2010; Bern et al., 2011).

The disease has two distinct stages, acute and chronic. The
acute stage lasts for 4–8 weeks and generally goes unnoticed or
it presents with mild symptoms such as fever, headache, fatigue,
and/or rash. Once the infection is established, most patients
undergo chronic infection. Among chronically infected patients,
60–80% of individuals will develop an indeterminate chronic
stage without showing any symptoms. The remaining 20–40%
will eventually develop significant cardiac or gastrointestinal
symptoms including arrhythmias and cardiomyopathy resulting
in congestive heart failure, and gastrointestinal tract dysmotility
syndromes leading to symptoms associated with achalasia, mega-
colon and mega-esophagus (Sanchez-Guillen Mdel et al., 2006;
Bern et al., 2011).

Only two drugs available for treatment of Chagas disease are
nifurtimox and benznidazole (Bern et al., 2007). These drugs
are not completely effective and their use is difficult due to
toxic side effects (Castro et al., 2006). Thus, there is an urgent
need to develop new drugs and vaccines for the treatment and
control of Chagas disease. Host-targeted therapy could provide
an alternative approach to treat Chagas disease in the future.
Here, we focus on some of the possible host molecular targets that
can be exploited to treat Chagas disease.

HOST IMMUNOLOGY

Trypanosoma cruzi invasion of host cells, intracellular growth
and parasite release eventually elicits a rise in parasitemia, which
in turn induces pro-inflammatory responses by macrophages and
natural killer cells and results in strong CD8+ T cell immune
responses (Tarleton, 2015). However, these immune responses
can only control the infection partially, as a low level of infection
persists for the entire life of the host. During the acute phase of
infection, the Th1 response is involved in protection (Tarleton
et al., 2000). Driven by interleukin 2 (IL-2) and interferon gamma
(IFN-γ) produced by Th1 cells, this type of immune response
is important in resistance against T. cruzi infection, whereas
a Th2 polarized response mediates parasite persistence. IFN-
γ-mediated protection is regulated by the transcription factor
STAT-1 (signal transducer and activator of transcription 1), and
the lack of STAT-1 has been shown to increase susceptibility
to T. cruzi infection in mice (Stahl et al., 2014; Kulkarni et al.,
2015).

Glycosylphosphatidylinositol (GPI)-anchored mucin-like
glycoprotein from T. cruzi plays a crucial role in macrophage
activation, mediating stimulation of pro-inflammatory cytokines
such as TNF-α, IL-12, and also inducing NO synthesis in
innate immune cells (Camargo et al., 1997). A recent study
shows that Th17, a subset of CD4+ T cells, provides a stronger
protective response than Th1 cells against T. cruzi infection.
Th17-dependent protection is due to the phagocytic respiratory
burst as well as the activation of CD8+ T cells (Cai et al., 2016).
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TABLE 1 | Host-targeted therapeutics for leishmaniasis.

Host-targeted Drug Classification Mode of action Reference

Imatinib Abl/Arg kinase inhibitor Plays a role in phagocytosis Wetzel et al., 2012

Phosphoinositide 3-kinase
γ (PI3Kγ) inhibitor

PI3Kγ inhibitor Inhibits actin cytoskeletal
reorganization

Cummings et al., 2012

Ibrutinib Bruton tyrosine kinase (BTK), and
IL-2–inducible kinase (ITK) inhibitor

Results in a Th1 polarized
immune response

Dubovsky et al., 2013

Berberine chloride Hydrochloride salt Up-regulates nitric oxide and
IL-12 production while
downregulating IL-10
production

Casey et al., 2015; Li et al., 2017

Statins HMG CoA reductase inhibitors Leads to reduced numbers of
promastigotes attached to host
cells

Kumar et al., 2016; Parihar et al., 2016

Naloxonazine Opioid receptor antagonist Up-regulates the expression of
the vacuolar ATPase (vATPase)
proton pump to acidify the
vacuole

De Muylder et al., 2016

Pentalinosterol Natural compound – cholest-4,20,24-
trien-3-one

Activates macrophages to
up-regulate pro-inflammatory
cytokine and nitric oxide
production

Oghumu et al., 2017

Oleuropein Natural compound – glycosylated
seco-iridoid

Promotes a Th1 type immune
response and increases
oxidative stress

Voronov et al., 2010; Abe et al., 2011;
Charmoy et al., 2016; Kyriazis et al.,
2016

Mahanine Natural compound – carbazole alkaloid Modulates Th1 cytokines and
promotes oxidative stress

Biswas et al., 2011; Lee et al., 2011;
Das et al., 2014, 2017; da Costa-Silva
et al., 2015; Bosquiroli et al., 2017; Roy
et al., 2017; Goncalves et al., 2018

Punica granatum
(pomegranate)

Natural compound – flavonoids and
phenolic compounds

Activates macrophages to
increase oxidative stress by
inducing Th1 cytokines

Kaur et al., 2006; Mittra et al., 2000;
Alkathiri et al., 2017

Fucoidan Natural compound – multi-sulfated
polysaccharide

Enhances DCs maturation and
stimulates production of
pro-inflammatory cytokines
while down-regulating
anti-inflammatory cytokines

Yang et al., 2008; Kar et al., 2011; Jin
et al., 2014; Sharma et al., 2014

Artemisinin Natural compound – sesquiterpene
lactone containing a peroxide bridge

Increases levels of IL-2 and
IFN-γ and decreases levels of
IL-4 and IL-10

Belkaid, 2003; Noori and Hassan,
2011; Cho et al., 2012; Want et al.,
2015, 2017

Eugenol Natural compound – phenylpropene Mediates Th1 polarized
response

Islamuddin et al., 2016; Charan Raja
et al., 2017

Propolis Natural compound – mainly flavonoids,
aromatic acids and benzopyranes

Decreases inflammation Miranda et al., 2015; Dos Santos
Thomazelli et al., 2017

Phospholipase A2 Enzyme that produces lipid mediators Promotes activation of NF-kB in
macrophages and results in
increased nitric oxide and
TNF-α production

Murakami and Kudo, 2002; Moreira
et al., 2014; de Barros et al., 2018

Leptin Adipocyte hormone Induces a Th1 polarized
response and augments nitric
oxide production

Dayakar et al., 2016; Maurya et al.,
2016

Micro RNA targets (miRNA) mRNA Act as immunomodulators Bartel, 2009; Kelada et al., 2013; Frank
et al., 2015; Geraci et al., 2015

Thus, the combined effect of cell-mediated immune unbalanced
response associated continuous subpatent parasite antigens may
play a significant role in the development of the pathogenesis of
Chagas disease. Therefore, host-directed drugs modulating host
immune response could be a viable therapeutics for managing
Chagas disease.

HOST-TARGETED THERAPEUTICS AND
APPROACHES FOR TREATMENT OF
CHAGAS DISEASE

While host-targeted therapy in T. cruzi infection has not been
well studied, there are several studies that show different host
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FIGURE 1 | Schematic diagram of mechanisms of host-targeting against Leishmania infection.

molecules are critical for the establishment of T. cruzi infection,
and the inhibition of these molecules may reduce or ablate
infection.

G-protein coupled receptors are a family of receptors
that utilize G-proteins to transduce signals into the cell
and control diverse functions, including regulation of gene
transcription, cellular motility, and metabolic enzymes. T. cruzi
trypomastigotes invade host cells through association with
various GPCRs including platelet-activating factor receptor
(Kawano et al., 2011), bradykinin receptor B1 and B2 (Scharfstein
et al., 2000; Todorov et al., 2003) and muscarinergic 2 receptor
(Wallukat et al., 2010). Several inhibitors of GPCRs have been
shown to prevent T. cruzi entry and infection and mediate
protection against Chagas disease. Cannabinoids, a family of
potent immunosuppressive agents, inhibit G-protein signaling
and invasion of cardiac myoblasts by T. cruzi in mice (Croxford
et al., 2005). It is known that parasite-derived thromboxane
A2 (TXA2) is important for disease progression in Chagas
disease (Villalta et al., 2009). Intracellular amastigotes release
TXA2 and initiate signaling after binding with TXA2 receptor
(TP). Binding of TXA2 and TP activates a variety of cell
types including dendritic cells, monocytes, platelets, cardiac
myocytes and endothelial cells, resulting in apoptosis of cells,
vasoconstriction, dilated cardiomyopathy, enhanced platelet
adherence and aggregation (Ashton et al., 2007). The TXA2
receptor antagonist SQ29548 has been shown to inhibit T. cruzi
infection mediated through TP (Ashton et al., 2007; Silva et al.,
2016).

Carvedilol is a non-selective β-adrenergic receptor blocker
used to manage congestive heart failure. It has been shown to
improve Chagas cardiomyopathy in combination with renin-
angiotensin inhibitors (Botoni et al., 2007).

SB-431542 compound is an inhibitor of the TGF-β type I
receptor kinase. It has been shown that host TGF-β is increased
during T. cruzi infection (Silva et al., 1991) and is taken up
by amastigotes to modulate the life cycle of T. cruzi (Araujo-
Jorge et al., 2002; Waghabi et al., 2005). Recently, it has
been reported that elevated TGF-β causes the heart fibrosis
and severe cardiomyopathy in Chagas disease. These findings
suggest that the treatment of cardiomyocytes with SB-431542,
can inhibit the effect of TGF-β-mediated amastigote proliferation
and cardiac myopathy in Chagas disease. Experimental evidence
suggests that treatment with this drug lowers the penetration
of trypomastigotes into cardiomyocytes, decreases intracellular
amastigote multiplication and trypomastigote release from the
cells, reducing the severity of infection and mortality of mice
(Waghabi et al., 2007, 2009).

Terpenoides possess anti-trypanosomal activity. Treatment
with terpenoid compounds, such as cumanin and psilostachyin,
reduces parasitemia and mortality of parasite-infected mice and
intracellular amastigote replication in Vero cells (Sulsen et al.,
2013). Terpenoides are a widespread group of natural products
and potent inhibitors of NF-κB signaling which mediates TNF-
α-induced cell death. During early stages of infection, T. cruzi
invade hepatocytes, macrophages, and Kupffer cells and increase
TNF-α production that causes apoptotic cell death of infected
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hepatocytes (Ronco et al., 2010). Furthermore, infection of
T. cruzi leads to activation of host cell NF-κB signaling that
protects infected cells from undergoing apoptosis (Petersen
et al., 2006). As terpenoides are such potent inhibitors of
NF-κB, treatment might result in robust apoptotic cell death
of infected cells that release intracellular parasites outside of
the cells. Although the exact mechanism of the trypanocidal
effect of terpenoides is still unknown, they may target released
parasites from apoptotic host cells directly and engage in anti-
trypanosomal activity. In contrast, da Silva et al. (2013) showed
that the sesquiterpene lactones-psilostachyin and cynaropicrin
did not have efficacy in the mouse model of acute T. cruzi
infection when comparing benznidazole (da Silva et al., 2013).

Immuno-modulators are compounds that modify immune
responses. Extracts from Lycopodium clavatum, a spore
bearing vascular plant, act as an immuno-modulator to induce
Th1 immune responses. T. cruzi infected rats treated with
Lycopodium clavatum extract have reduced progression of
GI tract Chagas disease (Brustolin Aleixo et al., 2017). A
recent study by Otta et al. (2018) showed that K777 the
extract lead compound induces prominent proinflammatory
responses modulation by interleukin -10-positive CD4+/CD8+

T cells and this contributed to the protection against the
Chagas disease. In addition, diet supplementation with fish
oil led to increase the resistance to T. cruzi infection through
modulating various immunological factors (Lovo-Martins et al.,
2017).

Inhibition of β-oxidation: The replication of intracellular
amastigotes is largely supported by parasite scavenging of host
metabolic network, including host cell fatty acid metabolism
in cardiac and smooth muscle (Combs et al., 2005). It has
been shown that long chain fatty acid oxidation is the key
source of nutrients for intracellular amastigotes. Long chain fatty
acids are oxidized in the peroxisome to produce short chain
fatty acids that are transported to the mitochondria by acyl-
CoA dehydrogenase for β-oxidation. Recent study of siRNA
screen shows that the enzymes of β-oxidation are essential for
growth of amastigotes inside the host cells and alteration of
fatty acid metabolism and β-oxidation inhibits the intracellular
growth of amastigotes (Caradonna et al., 2013). Although several
β-oxidation inhibitors have been identified as, for example
etomoxir (Paumen et al., 1997), mildronate (Liepinsh et al.,
2006), trimetazidine, and ranolazine (Sabbah and Stanley, 2002),
more studies are needed to find which can treat Chagas disease.
We summarized the compounds in this section and their
targets in Table 2 and their detailed mechanism of action in
Figure 2.

HUMAN AFRICAN TRYPANOSOMIASIS
(SLEEPING SICKNESS)

Human African trypanosomiasis (HAT) is caused by two
subspecies of Trypanosoma brucei, T. b. gambiense, and T. b.
rhodesiense. T. b. gambiense is the causative agent of a
chronic form of the disease often referred to as West African
trypanosomiasis, which is prevalent in Western and Central

Africa and affects 24 countries. T. b. rhodesiense causes a more
acute form of the disease found in Eastern and Southern Africa
affecting 13 countries, and is often referred to as East African
trypanosomiasis (Franco et al., 2014).

Of the two subspecies, T. b. gambiense is the more prevalent
threat, as humans are considered the primary reservoir for the
parasite. T. b. rhodesiense primarily infects animal reservoirs,
and humans are incidentally infected (Franco et al., 2014).
According to the World Health Organization (WHO), the
majority of approximately 2,000 new cases of Western African
trypanosomiasis reported in 2016 were in the Congo, while only
about 50 new cases were found in Eastern Africa (World Health
Organization, 2017). Currently, there are estimated to be fewer
than 20,000 active cases of sleeping sickness, with 65 million at
risk. The majority of new cases occur in the Democratic Republic
of Congo, contributing 84% of new cases in 2015 (Franco et al.,
2014). HAT is slated for elimination as a public health threat in
2020, with a downward trend in new cases and a drop of yearly
DALY from 2,734 DALY in the year 2000 to a DALY of 372 in year
2015 (World Health Organization, 2013, 2016, 2017).

Both subspecies of T. brucei are transmitted by Tsetse
flies harboring metacyclic trypomastigotes, while feeding on
mammalian hosts. Once inside the host, trypomastigotes migrate
to the blood stream and lymphatics disseminate throughout the
host, at which point they begin to multiply through binary fission.
(Centers for Disease Control and Prevention, 2016). In acute
human trypanosomiasis, parasites disseminate throughout the
lymphatics and blood stream of the host. Parasites eventually
breach the blood-brain barrier, leading to infection of the central
nervous system, and eventual death in essentially 100% of
untreated patients (Brun et al., 2010).

HOST IMMUNOLOGY

Upon entering the human host, metacyclic T. brucei immediately
encounter the host’s innate immune defense mechanisms. These
parasites, however, are covered in a thick, highly dense coat of
variable surface glycoproteins (VSGs) which protect parasites
from the mounting host humoral response, as well as from
host complement-mediated lysis (Horn, 2014). Parasites undergo
switching of antigenically different VSGs in order to circumvent
antibody-mediated killing. This switching of VSGs results in
undulating waves of parasitemia in which parasites possessing
older VSG coats are subject to immune clearance and clones
expressing neo-VSG escape immune surveillance and replicate.
This mechanism allows the trypanosomes to replicate and survive
at sub-lethal levels of infection.

Human susceptibility, disease progression and outcome of
HAT are linked to differences in individual genetic predisposition
for varying cytokine levels and T cell differentiation. Once
infected, certain individuals can control infection and become
asymptomatic carriers without any specific intervention. These
asymptomatic people have increased quantities of IL-6, IL-8
and TNFα, as well as decreased levels of IL-12, indicating that
the ability to control infection relies upon a controlled Th1
response. However, those individuals showing high levels of
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TABLE 2 | Host-targeted therapeutics for Chagas disease.

Host-targeted Drug Classification Mode of action Reference

Cannabinoids, SQ29548 inhibitors G protein couple receptor Scharfstein et al., 2000; Todorov et al., 2003;
Croxford et al., 2005;Ashton et al., 2007;
Wallukat et al., 2010; Kawano et al., 2011

Carvedilol β-adrenergic receptor blocker β-adrenergic receptor Botoni et al., 2007

SB-431542 compound inhibitor TGF-β type I receptor kinase Silva et al., 1991; Araujo-Jorge et al., 2002;
Waghabi et al., 2005; Waghabi et al., 2007

Terpenoides Inhibitors NF-κB signaling Petersen et al., 2006; Ronco et al., 2010; da
Silva et al., 2013; Sulsen et al., 2013

Lycopodium clavatum immunomodulator Induces Th1 immune
responses

Brustolin Aleixo et al., 2017; Lovo-Martins et al.,
2017; Otta et al., 2018

FIGURE 2 | Schematic diagram of mechanisms of host-targeting against Trypanosoma cruzi infection.

IL-6, IL-8, TNFα, and IL-10 are at risk of developing disease
once infected (Courtin et al., 2006; Kato et al., 2015, 2016).
In contrast, the individuals who show more susceptibility to
uncontrolled infection produce higher amounts of IL-2 and IL-
4. Control of late infection once it has been established, relies
upon the immune system being able to effectively switch from
a Th1 to a Th2 immune response (Ilboudo et al., 2014). While
the Th1 response is more beneficial during the initial stages of
infection, more anti-inflammatory Th2 responses are implicated
in trypano-tolerance once an infection has been established. IFN-
γ expression is responsible for early resistance and control against
initial infection (Hertz et al., 1998). While IFN-γ is beneficial to
the host during initial stages of infection, the lack of effective
switching to a more polarized Th2 response during the late

stages of infection may lead to hyper-inflammation in the CNS,
ultimately overwhelming the host (Shi et al., 2003).

In addition to the Th1 and Th2 response, high concentrations
of VSG released by the parasites in the blood stream
play an important role in inducing host immune response.
Glycosylphosphatidyl-inositol (GPI)-phospholipase C induced
release of GPI-linked VSGs exposes macrophages to previously
masked regions of the GPI-tails of VSG. GPI-recognition by
macrophages induces MyD88 dependent activation of the NF-κB
cascade resulting in a massive release of TNF-α, IL-1, and IL-
12 (Leppert et al., 2007; Cheung et al., 2016; Stijlemans et al.,
2016). This release of pro-inflammatory cytokines alongside
parasite components results in the induction of classically
activated macrophages. These macrophages release ROS and
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NO which can be detrimental to parasites, however, they are
also damaging to the host, causing physiological and cellular
destruction (Stijlemans et al., 2016).

HOST-TARGETED THERAPEUTICS AND
APPROACHES FOR TREATMENT OF HAT

Current treatment approaches of HAT consist of 5 drugs, each
one specific for different stages of the infection. Pentamidine and
suramin are used to treat the first stage of the disease, whereas
melarsoprol and a combination of nifurtimox-eflornithine are
employed to treat the second stage of the disease. All these drugs
have significant potential side effects. Pentamidine treatment is
fairly ineffective in combating the second stage of infection by
T. b. gambiense and both stages of T. b. rhodesiense, suramin
treatment is only effective against the first stage of T. b.
rhodesiense infection (Buscher et al., 2017).

Melarsoprol is employed to treat the late-stage of infections
caused by both T. b. gambiense and T. b. rhodesiense, and is the
only drug used for late-stage infection caused by T. b. rhodesiense.
However, significant toxicity, the mode of administration and
the lack of its availability in endemic areas, hinder widespread
usage of this drug. Although nifurtimox and eflornithine
are individually effective against T. b. gambiense infection,
combination therapy with these drugs has better efficacy and
diminished side effects (Barrett et al., 2007; Priotto et al., 2009;
Babokhov et al., 2013).

There are currently three drugs under development for HAT,
as well as a few host target molecules which have shown
promising results in the reduction of parasitemia.

Diamidine derivatives, including pafuramidine (DB289),
which is administered orally, is well tolerated and mediates
parasite clearance in late-stage infections of both human T. brucei
subspecies. However, after stage III clinical trials, DB289 was
abandoned due to high nephrotoxicity. Despite this, DB289 has
spurred the development of other diamidine derivative drugs
(Kennedy, 2013).

Benzoxaborole drugs, such as SCYX-7158, are capable of
crossing the blood-brain barrier in vivo and can clear infection of
both T. brucei subspecies. This drug can be administered orally
and also has a long half-life, allowing it to be used as a single
dose. SCYX-7158 successfully completed stage I clinical trials
and has been approved to move forward with stage II/III clinical
trials (Jacobs et al., 2011). While no specific proteins or enzyme
have yet been shown to play a role in the method of action of
benzoxaboroles, evidence strongly suggests that drugs impede
upon the ability of T. brucei to properly metabolize methionine
(Steketee et al., 2018).

Fexinidazole, a nitroimidazole compound which is effective
against both parasites and CNS disease, is safe and well tolerated
in early studies. A recent study by Mesu et al. (2018), has reported
that stage II/III clinical trials of fexinidazole against HAT have
been completed and showed that oral fexinidazole is effective
and safe for the treatment of T. b. gambiense infection compared
with nifurtomox-eflornithine combination therapy in late-stage
HAT patients. No method of action for nitroimidazoles has yet
been elucidated, though it is known to be a substrate for a type I
nitro-reductase and is theorized to function in vivo as a pro-drug
(Wyllie et al., 2016; Papadopoulou et al., 2017).

Tyrosine kinase inhibitors, such as lapatinib and a few of its
derivatives have shown some activity in controlling T. brucei

TABLE 3 | Host-targeted and anti-parasitic therapeutics for HAT.

Host-targeted drug Classification Mode of action Reference

Pafuramidine (DB289) Diamidine derivative Interferes with the nuclear
mechanisms, inhibiting
synthesis of DNA, RNA

Kennedy, 2013

Acoziborole (SCYX-7158) Benzoxaborole drug Negatively impacts methionine
metabolism

Jacobs et al., 2011; Steketee et al., 2018

Fexinidazole Nitroimidazole compound Nitroreductase substrate
pro-drug

Wyllie et al., 2016; Papadopoulou et al., 2017;
Mesu et al., 2018

Dactolisib (NVP-BEZ235) Kinase inhibitor PI3K/mTOR inhibitors Diaz-Gonzalez et al., 2011; Seixas et al., 2014;
Fernandez-Cortes et al., 2017

Lapatinib Kinase Inhibitor TbLBPK 1-4 inhibition Guyett et al., 2017

S-(2-boronoethyl)-L-cysteine (BEC) Arginase inhibitor Reduction in quantity of growth
factors available for
trypanosomes

Nzoumbou-Boko et al., 2017; Onyilagha et al.,
2018

Curcumin, gallic acid, quercetin, resveratrol Phenolic or flavonoid
compounds

Increases oxidative stress
against the parasites, while
offering oxidative protection
against the host

Wolkmer et al., 2013; Smith et al., 2016; Baldim
et al., 2017

Vitamins C, A, E, and D3 Antioxidant vitamins Enhances host immune
function, protects host from
oxidative damage

Chekwube et al., 2014; Ibrahim et al., 2016; Jamal
et al., 2016

Naphthyridine derivatives, thiosemicarbazone Chelating compounds Antioxidant and
anti-inflammatory properties,
transition metal chelation

Ellis et al., 2015; Wall et al., 2018
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infection (Behera et al., 2014; Woodring et al., 2015). Lapatanib
mediates antiparasitic activity against trypanosomes by inhibiting
four separate protein kinases leading to changes in flagellar
topology and an inhibition in the parasite endocytosis. These four
kinases have been termed TbLBPK 1-4 and their interruption
results in the dephosphorylation of BILBO-1, kinesins, and Rab
in T. brucei (Guyett et al., 2017).

PI3K/mTOR inhibitors, such as NVP-BEZ235 have efficacy
in combating T. brucei infection using a mouse model (Diaz-
Gonzalez et al., 2011). Through inhibition of several kinase
cascades necessary for bloodstream trypanosomes to thrive,
effects are seen in the stability of parasite flagellum, in the
ability of trypanosomes to mount a proper stress response to
complement-mediated and osmotic-lysis, and in endocytosis
(Seixas et al., 2014; Fernandez-Cortes et al., 2017).

Arginase Inhibitors, namely S-(2-boronoethyl)-L-cysteine
(BEC), have been shown to reduce the parasitic burden both
in vivo and in vitro. By blocking Arginase-1 and reducing
available growth factors released by macrophages, proliferation
of parasites is reduced. TbKHC1 has also been identified as
a candidate protein involved with this immunomodulation
(Nzoumbou-Boko et al., 2017). Furthermore, it has been shown
that preventing the function of Arginase-1 results in the
prevention of myeloid-derived suppressor cells inhibiting CD4+

T-cell proliferation, as well as the production of IFN-γ, both
of which aid in suppression of trypanosomes (Onyilagha et al.,
2018).

Phenolic or flavonoid compounds are a group of plant
derived antioxidants which have shown some trypanocidal
effects in vitro and include the compounds curcumin, gallic
acid, quercetin, and resveratrol. Curcumin in particular has
been shown to have immunomodulatory effects on the host,
preventing damage caused by the generation of ROS (Wolkmer
et al., 2013). Gallic acid and quercetin both have also been
shown to have prooxidant effects, leading to a direct trypanocidal
effects by generation of excess ROS while also maintaining
the host protective antioxidant effects (Baldim et al., 2017).
Several of these compounds have also been identified as having
inhibitory effects against T. brucei RNA triphosphatase (Smith
et al., 2016). Few in vivo studies have been carried out in
relation to these plant derived phenolic or flavonoid antioxidant
compounds, making this a target area of interest for future
research.

Antioxidant vitamins, in particular vitamin C, but also
vitamins E and A, have protective effects for the host during
T. brucei infection through in vivo studies. These vitamins are
presumed to function as antioxidant to reduce parasitemia and
largely reduce organ damage associated with T. brucei infections
(Ibrahim et al., 2016). Furthermore, vitamin C has been shown
to potentiate the trypanocidal effects of diminazene aceturate in
a co-administration trial (Chekwube et al., 2014). More recently,
vitamin D3 has shown some efficacy in protecting the host during
T. brucei infection, however the mechanism of action is not yet
known (Jamal et al., 2016).

Chelating compounds have myriad positive effects for the
host including anti-inflammatory and antioxidant properties.
1,8-naphthyridine derivative compounds are particularly of

interest, as they have been shown to possess anti-trypanosomal
activity via their ability to chelate Zn2+, Cu2+ and Fe2+ which
are necessary for trypanosomes to thrive in the host (Wall et al.,
2018). Thiosemicarbazone has also shown to have some efficacy
in ridding a host of trypanosomes through chelation of iron (Ellis
et al., 2015).

Presently, no host-targeted drugs or vaccines are described for
the treatment or prevention of HAT. The presence of VSGs and
the parasites’ ability to undergo antigenic variation represent a
major challenge for vaccine discovery and unfortunately there
has been no development of drugs to target the VSG gene
switching mechanism. Potential host-targeting drugs include
those affecting host immunomodulation and those which
can affect a polarized shift toward a Th1 response, while
increasing the production of IFN-γ to drive the clearance of
the parasites before they are able to invade the CNS. We
summarized the compounds in this section and their targets in
Table 3.

CONCLUSION

Leishmaniasis, Chagas disease and HAT cause the highest
number of deaths amongst all NTDs (Hotez et al., 2007). One of
the major confounding issues to eliminating these NTDs is that
they are often present in small endemic areas; they have relatively
limited global disease burdens and are effectively ignored by the
community at large. This is further compounded in that these
endemic areas are often subject to political and military turmoil,
in areas which lack infrastructural support or effective health
care systems. Finally, climate change has also had an impact
on the spread of NTDs, as the warmer weather increases the
development of insect vectors, which escalates the transmission
of these diseases (Hotez, 2017).

Because these infections are difficult to eradicate, it is
imperative that more attention is directed toward finding
preventive and curative therapeutics to control their spread.
There are currently no prophylactic vaccines for the above-
mentioned protozoan diseases and the available treatments are
antiquated and have significant toxicities. Development of novel
agents or utilization of existing host-targeted therapeutics is
a promising avenue for the treatment of protozoan NTDs.
Despite the numerous advances in the immunology and cell
biology fields, we are still far from eradicating these diseases.
We believe that moving forward it will be crucial to allocate
more funds toward pre-clinical and especially clinical research
focused on developing and testing new host-targeted therapeutics
for NTDs. Unfortunately, many NTDs affect remote and rural
areas of low-and middle income countries (LMICs) with limited
resources, infrastructures, and medical personnel. In these
areas it is challenging to follow the Good Clinical Practices
(GCPs) outlined by WHO and International Conference of
Harmonization (ICH) to conduct meaningful clinical trials
(Boelaert and Consortium, 2016; Ravinetto et al., 2016). We
hope that raising awareness about NTDs and their burden will
fuel the already ongoing mobilization of resources on a global
scale to aid the development of more infrastructures to conduct
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clinical trials as well as screening and treatment in endemic
areas.
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