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Abstract 16 

 17 

Invasive species have devastating consequences for human health, food security, and the 18 

environment. Many invasive species adapt to new ecological niches following invasion, but 19 

little is known about the early steps of adaptation. Here we examine population genomics of a 20 

recently introduced drosophilid in North America, the African Fig Fly, Zaprionus indianus. This 21 

species is likely intolerant of subfreezing temperatures and recolonizes temperate 22 

environments yearly. We generated a new chromosome-level genome assembly for Z. 23 

indianus. Using resequencing of over 200 North American individuals collected over four years 24 

in temperate Virginia, plus a single collection from subtropical Florida, we tested for signatures 25 

of recolonization, population structure, and adaptation within invasive populations. We show 26 

founding populations are sometimes small and contain close genetic relatives, yet temporal 27 

population structure and differentiation of populations is mostly absent across recurrent 28 

recolonization events. Although we find limited signals of genome-wide spatial or temporal 29 

population structure, we identify haplotypes on the X chromosome that are repeatedly 30 

differentiated between Virginia and Florida populations. These haplotypes show signatures of 31 

natural selection and are not found in African populations. We also find evidence for several 32 

large structural polymorphisms segregating within North America populations and show X 33 

chromosome evolution in invasive populations is strikingly different from the autosomes. These 34 

results show that despite limited population structure, populations may rapidly evolve genetic 35 

differences early in an invasion. Further uncovering how these genomic regions influence 36 

invasive potential and success in new environments will advance our understanding of how 37 

organisms evolve in changing environments. 38 

 39 

Article Summary  40 

 41 

Invasive species (organisms that have been moved outside their natural range by human 42 

activities) can cause problems for both humans and the environment. We studied the genomes 43 
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of over 200 individuals of a newly invasive fruit fly in North America, the African Fig Fly. We 44 

found genetic evidence that these recently introduced flies may be evolving in their new 45 

environments, which could make them stronger competitors and more likely to become pests.  46 

 47 

Introduction 48 

 49 

Understanding how species expand and adapt to new environments in an era of climate 50 

change and global commerce is central to controlling the spread of disease (Altizer et al. 2013; 51 

Hoberg and Brooks 2015), to maintaining crop security (Oerke 2006; Sutherst et al. 2011) and 52 

to preserving biodiversity (Bellard et al. 2012). Many organisms are moving to new, previously 53 

unoccupied ranges at rates that continue to accelerate (Ricciardi 2007; Seebens et al. 2015; 54 

Seebens et al. 2017; Platts et al. 2019; Sardain et al. 2019) due to changes in climate and 55 

habitat as well as anthropogenic introductions. Genetic adaptation to new environments may 56 

allow some vulnerable organisms to survive in new habitats but may also permit potentially 57 

harmful organisms to expand even further (Clements and Ditommaso 2011). The past two 58 

decades have produced a wealth of studies characterizing the genetic and genomic basis of 59 

adaptation in a variety of organisms, from experimental populations of microbes (Good et al. 60 

2017; Nguyen Ba et al. 2019; Johnson et al. 2021) to natural populations of eukaryotes 61 

(Hancock et al. 2011; Jones et al. 2018; Barrett et al. 2019; Lovell et al. 2021; Schluter et al. 62 

2021). Recent and ongoing invasions offer the opportunity to study rapid evolution and 63 

adaptation to new environments in nearly real-time (Koch et al. 2020; Pélissié et al. 2022; 64 

Parvizi et al. 2023; Soudi et al. 2023). Recently, genomics has helped trace the history and 65 

sources of many well-known invasions (Pélissié et al. 2022; Picq et al. 2023) and shown that 66 

genetic divergence and even local adaptation are common in invasive populations that have 67 

been established for decades or even centuries (Ma et al. 2020; Stuart et al. 2021; Li et al. 68 

2023). However, much remains unknown about the genetic mechanisms that allow invasive 69 

organisms to colonize and thrive in new environments. A better understanding of adaptive 70 

pathways in invasion may assist in predicting the success of invasions and controlling their 71 

outcomes.  72 

 73 

The African Fig Fly, Zaprionus indianus, serves as a unique model to study how 74 

invasion history and local environment influence patterns of genetic variation. The ongoing, 75 

recurrent invasion of Z. indianus in North America offers a premier opportunity to study the 76 

possibility of rapid genetic changes following invasion. The Zaprionus genus arose in Africa but 77 

Z. indianus was first described in India in 1970 (Gupta 1970), where it has adapted to a range 78 

of environments (da Mata et al. 2010). It is one of the most ecologically diverse drosophilids in 79 

Africa; its ability to utilize up to 80 different food sources (Yassin and David 2010) and its 80 

generation time of as few as ~13 days (Nava et al. 2007) likely fueled its spread around the 81 

world. In 1999, it was first detected in Brazil (Vilela 1999), where it subsequently spread and 82 

caused major damage to fig and berry crops as well as native fruit species (Leão and Tldon 83 

2004; Oliveira et al. 2013; Roque et al. 2017; Zanuncio-Junior et al. 2018; Allori Stazzonelli et 84 

al. 2023). It was later found in Mexico and Central America in 2002-2003 (Markow et al. 2014) 85 

and eventually Florida in 2005 (Linde et al. 2006). In 2011-2012, its range expanded 86 
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northwards in eastern North America (Joshi et al. 2014; Timmeren and Isaacs 2014; Pfeiffer et 87 

al. 2019) and eventually reached as far north as Ontario (Renkema et al. 2013) and Minnesota 88 

(Holle et al. 2018). It has also recently been found in the Middle East, Europe, and Hawaii 89 

(Parchami-Araghi et al. 2015; Kremmer et al. 2017; Willbrand et al. 2018), suggesting that the 90 

invasion is ongoing. Z. indianus can damage fig and berry crops (Pfeiffer et al. 2019; Allori 91 

Stazzonelli et al. 2023), increasing concerns about its pest potential in its expanding range.  92 

 93 

Despite its global success, Z. indianus males are sterile below 15 °C, making cold 94 

temperatures a limiting factor to their success (Araripe et al. 2004). Within the temperate 95 

environment of Virginia, the species exhibits strong seasonal fluctuations in abundance (Rakes 96 

et al. 2023). First detection in Virginia is usually in June or July, weeks after the appearance of 97 

other overwintering Drosophilids, and population sizes climb dramatically through the late 98 

summer and early fall, when it often dominates the drosophilid community in temperate 99 

orchards. Typically, the peak in early to mid-September is followed by a dip in abundance and 100 

then a second peak in October, suggesting a seasonal component to reproduction or 101 

fluctuations in factors influencing Z. indianus’ relative fitness. However, despite its early post-102 

colonization success, it does not appear to survive temperate winters; Z. indianus populations 103 

became undetectable in Virginia by early December (Rakes et al. 2023). In locations in 104 

Minnesota, Kansas, and the northeastern US, Z. indianus has been detected one year and 105 

then not the next, suggesting that the populations are not permanently established, but are 106 

extirpated by cold and re-introduced by stochastic dispersal processes (Holle et al. 2018; 107 

Gleason et al. 2019; Rakes et al. 2023). Therefore, Z. indianus likely repeatedly invades 108 

temperate environments and evolves for several generations in these new habitats, offering an 109 

opportunity to recurrently study the genetic impacts of invasion and post-colonization 110 

adaptation across multiple years of sampling.  111 

 112 

Genetic studies of Z. indianus are limited but provide important context to understand its 113 

worldwide invasion. The invasion of North America likely resulted from separate founding 114 

events on the East and West coasts (Commar et al. 2012). Comeault et al (2020) showed that 115 

North American populations are genetically distinct from those from Africa. Invasive 116 

populations of Z. indianus have an approximately 30% reduction in genetic diversity relative to 117 

ancestral African populations (Comeault et al. 2020), though invasive populations of Z. 118 

indianus maintain levels of genetic diversity that are often higher than those of non-invasive 119 

congeners. Despite the loss of diversity, Z. indianus is extremely successful in temperate 120 

habitats (Rakes et al. 2023). Further studies demonstrated that genetically distinct populations 121 

from eastern and western Africa likely admixed prior to a single colonization of the Americas 122 

(Comeault et al. 2021). How the high degree of genetic diversity in invasive populations 123 

influences the potential for ongoing evolution in North America, which is in a critical early stage 124 

of invasion, remains understudied. 125 

 126 

Here, we assembled and annotated a chromosome-level genome assembly for Z. 127 

indianus and used the newly improved genome to answer several questions with the whole 128 

genome sequences of over 200 North American flies collected from three locations over four 129 
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years. First, do recolonizing North American Z. indianus populations demonstrate spatial or 130 

temporal population structure and if so, do specific regions of the genome have an outsized 131 

contribution to population structure? Second, is the invasion and recolonization history 132 

recapitulated in population genetic data? And third, do temperate populations show signatures 133 

of selection relative to native and tropical invasive populations?  134 

 135 

Materials and Methods 136 

 137 

Hi-C based genome scaffolding 138 

 139 

An inbred line was generated from flies originally captured from Carter Mountain Orchard, VA 140 

(37.9913° N, 78.4721° W) in 2018. Wild caught flies were reared in the lab for approximately 141 

one year prior to initiating isofemale lines. The offspring of the isofemale lines were propagated 142 

through 10 rounds of full-sib mating. The resulting lines were then passaged for approximately 143 

one additional year in the lab and the most vigorous remaining line (“24.2”) was chosen for 144 

sequencing.  145 

 146 

3rd instar larvae from a single inbred line were snap frozen in liquid nitrogen and sent to 147 

Dovetail corporation (now Cantata Bio, Scotts Valley, CA) for chromatin extraction, Hi-C 148 

sequencing and genome scaffolding. Briefly, chromatin was fixed in place with formaldehyde in 149 

the nucleus and then extracted. Fixed chromatin was digested with DNAse I, chromatin ends 150 

were repaired and ligated to a biotinylated bridge adapter followed by proximity ligation of 151 

adapter containing ends. After proximity ligation, crosslinks were reversed and the DNA 152 

purified. Purified DNA was treated to remove biotin that was not internal to ligated fragments. 153 

Sequencing libraries were generated using NEBNext Ultra enzymes and Illumina-compatible 154 

adapters. Biotin-containing fragments were isolated using streptavidin beads before PCR 155 

enrichment of each library. The library was sequenced on an Illumina HiSeqX platform to 156 

produce approximately 30x sequence coverage. 157 

 158 

The input de novo assembly was the Z. indianus “RCR04” PacBio assembly (assembly 159 

# ASM1890459v1) from Kim et al. (2021). This assembly and Dovetail OmniC library reads 160 

were used as input data for HiRise, a software pipeline designed specifically for using 161 

proximity ligation data to scaffold genome assemblies (Putnam et al. 2016). Dovetail OmniC 162 

library sequences were aligned to the draft input assembly using bwa (Li and Durbin 2009). 163 

The separations of Dovetail OmniC read pairs mapped within draft scaffolds were analyzed by 164 

HiRise to produce a likelihood model for genomic distance between read pairs, and the model 165 

was used to identify and break putative misjoins, to score prospective joins, and make joins 166 

above a threshold. See Figure S1 for link density histogram of scaffolding data.  167 

 168 

Annotation 169 

 170 

Repeat families found in the genome assemblies of Z. indianus were identified de novo and 171 

classified using the software package RepeatModeler v. 2.0.1 (Flynn et al. 2020). 172 
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RepeatModeler depends on the programs RECON v. 1.08 (Bao and Eddy 2002) and 173 

RepeatScout v. 1.0.6 (Price et al. 2005) for the de novo identification of repeats within the 174 

genome. The custom repeat library obtained from RepeatModeler was used to discover, 175 

identify and mask the repeats in the assembly file using RepeatMasker v. 4.1.0 (Smit et al. 176 

2015).  177 

 178 

RNA sequencing was conducted on 3 replicates of 3rd instar larva and 3 replicates of 179 

mixed stage pupa that were snap frozen in liquid nitrogen. RNA extraction and sequencing 180 

was performed by GeneWiz (South Plainfield, NJ). New larval and pupal RNAseq reads were 181 

combined with adult RNA sequencing from Comeault et al. (2020) for annotation. Coding 182 

sequences from D. grimshawi, D. melanogaster, D. pseudoobscura, D. virilis, Z. africanus, Z. 183 

indianus, Z. tsacasi and Z. tuberculatus (Kim et al. 2021) were used to train the initial ab initio 184 

model for Z. indianus using the AUGUSTUS software v. 2.5.5 (Keller et al. 2011). Six rounds of 185 

prediction optimization were done with the software package provided by AUGUSTUS. The 186 

same coding sequences were also used to train a separate ab initio model for Z. indianus 187 

using SNAP (version 2006-07-28) (Korf 2004). RNAseq reads were mapped onto the genome 188 

using the STAR aligner software (version 2.7) (Dobin et al. 2013) and intron hints generated 189 

with the bam2hints tools within AUGUSTUS. MAKER v. 3.01.03 (Cantarel et al. 2008), SNAP 190 

and AUGUSTUS (with intron-exon boundary hints provided from RNAseq) were then used to 191 

predict for genes in the repeat-masked reference genome. To help guide the prediction 192 

process, Swiss-Prot peptide sequences from the UniProt database were downloaded and used 193 

in conjunction with the protein sequences from D. grimshawi, D. melanogaster, D. 194 

pseudoobscura, D. virilis, Z. africanus, Z. indianus, Z. tsacasi and Z. tuberculatus to generate 195 

peptide evidence in the MAKER pipeline. Only genes that were predicted by both SNAP and 196 

AUGUSTUS were retained in the final gene sets. To help assess the quality of the gene 197 

prediction, AED scores were generated for each of the predicted genes as part of the MAKER 198 

pipeline. Genes were further characterized for their putative function by performing a BLAST 199 

search of the peptide sequences against the UniProt database. tRNA were predicted using the 200 

software tRNAscan-SE v. 2.05 (Chan and Lowe 2019). Transcriptome completeness was 201 

assessed with BUSCO v. 4.0.5 (Manni et al. 2021) using the eukaryota_odb10 list of 255 202 

genes.  203 

 204 

Wild fly collections 205 

 206 

Flies were collected by aspiration and netting from Carter Mountain Orchard, VA (37.9913° N, 207 

78.4721° W) in 2017-2020 and from Hanover Peach Orchard, VA (37.5694° N, 77.2660° W) in 208 

2019-2020. Flies were sampled from Coral Gables, FL (25.7239° N, 80.2802° W) in June 2019 209 

using traps baited with bananas, oranges, yeast, and red wine. Flies were frozen in 70% 210 

ethanol at -20°C (2017-2018) or dry at -80 °C (2019-2020) prior to sequencing. Collections 211 

performed in July and August were called “early season.” In 2019, the earliest collections were 212 

not made until September (typically when Z. indianus abundance peaks, Rakes et al. 2023), 213 

and were assigned “mid-season.” Collections from October and November were called “late 214 

season.” For some analyses, the mid-season collection and early collections were combined, 215 
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as they were the first collections available each year. See Table S1 for the number of 216 

individual flies sequenced from each location and timepoint.  217 

 218 

Individual whole genome sequencing  219 

 220 

The sex of each wild-caught fly was recorded, then DNA was extracted from individual flies 221 

using the DNAdvance kit (Beckman Coulter, Indianapolis, IN) in 96 well plates, including an 222 

additional RNAse treatment step. DNA concentration was measuring using the QuantIT kit 223 

(Invitrogen, Waltham, MA) and purified DNA was diluted to 1 ng/µL. Libraries were prepared 224 

from 1 ng of genomic DNA using a reduced-volume dual-barcoding Nextera (Illumina, San 225 

Diego, CA) protocol as previously described (Erickson et al. 2020). The libraries were 226 

quantified using the QuantIT kit and equimolar ratios of each individual DNA were combined 227 

for sequencing. The pooled library was size-selected for 500 bp fragments using a BluePippin 228 

gel cassette (Sage Sciences, Beverly, MA). The pooled libraries were sequenced in one 229 

Illumina NovaSeq 6000 lane using paired-end, 150 bp reads by Novogene (Sacramento, CA).  230 

 231 

Existing raw reads from Z. indianus collections from North America, South America, and 232 

Africa (Comeault et al. 2020; Comeault et al. 2021) were downloaded from the SRA from 233 

BioProject number PRJNA604690. These samples were combined with the new sequence 234 

data and processed together with the same mapping and SNP-calling pipeline. Overlapping 235 

paired-end reads were merged with BBMerge v. 38.92 (Bushnell et al. 2017). Reads were 236 

mapped to the genome assembly described above using bwa mem v. 0.7.17 (Li and Durbin 237 

2009). Bam files for merged and unmerged reads were combined, sorted and de-duplicated 238 

with Picard v. 2.26.2 (https://github.com/broadinstitute/picard).  239 

 240 

We next used Haplotype Caller from GATK v. 4.2.0.0 (McKenna et al. 2010) to generate 241 

a gVCF for each individual. We built a GenomicsDBI database for each scaffold, then used this 242 

database to genotype each gVCF. We used GATK’s hard filtering options to filter the raw 243 

SNPs based on previously published parameters (--filter-expression "QD < 2.0 || FS > 60.0 || 244 

SOR > 3.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0" ) (Comeault et al. 245 

2020). We then removed SNPs within 20 bp of an indel from the output and removed all SNPs 246 

in regions identified by RepeatMasker. We analyzed several measures of individual and SNP 247 

quality using VCFtools v. 0.1.17 (Danecek et al. 2011). We removed 16 individuals with mean 248 

coverage < 7X or over 10% missing genotypes. Next, we filtered SNPs with mean depths <10 249 

or > 50 across all samples. We removed individual genotypes supported by 6 or fewer reads or 250 

with more than 100 reads to produce a final VCF with 5,185,389 SNPs and 2,099,147 non-251 

singleton SNPs. See Table S1 for the final number of individuals included in the analysis from 252 

each population. See Figure S2 for the average SNP depth per sampling time and location.  253 

 254 

Sex chromosome and Muller element identification 255 

  256 

samtools v. 1.12 (Li et al. 2009) was used to measure coverage and depth of mapped reads 257 

from individual sequencing. This analysis revealed that the five main scaffolds (all over 25 Mb 258 
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in length) had a mean depth of ~16X coverage in both males and females in our dataset, 259 

except for scaffold 3, which had ~16X coverage in females but ~8X coverage in males, 260 

suggesting it is the X chromosome (Figure S3). Some of the previously sequenced samples 261 

had no sex recorded, so we used the ratio of X chromosome reads (scaffold 3) to autosome 262 

(scaffolds 1, 2, 4 and 5) reads to assign sexes to those individuals. Individuals with a ratio 263 

greater than 0.8 were assigned female, and ratios less than 0.8 were assigned male (Figure 264 

S4). For two known-sex individuals, the sex recorded prior to sequencing did not match the 265 

sex based on coverage; for those two samples we used the coverage-based sex assignment 266 

for analyses. We used D-GENIES (Cabanettes and Klopp 2018) to create dot-plots comparing 267 

the Z. indianus and D. melanogaster genome (BDGP6.46, downloaded from ensemble.org) to 268 

confirm the sex chromosome identification and assign Muller elements to Z. indianus 269 

autosomes (Figure S5, Table S2). Five additional scaffolds had lengths over 1 Mb. Scaffold 8 270 

is the dot chromosome (Muller element F) based on sequence comparison to D. melanogaster 271 

(Figure S5) and had similar coverage to the autosomes (Figure S3). Scaffolds 6,7,9, and 10 272 

had reduced coverage (Figure S3) and contain mostly repetitive elements. Downstream SNP 273 

calling and population genetic analysis included the five large scaffolds (named chromosomes 274 

1-5) and excluded all smaller scaffolds. 275 

 276 

Related individuals 277 

 278 

Preliminary exploration of population genetic data indicated that some individual samples may 279 

be close relatives. For downstream analyses, we used the–king-cutoff 0.0625 argument in 280 

Plink v. 2.0 (Chang et al. 2015) to generate a list of unrelated individuals. This filtering 281 

removed 21 individuals from the dataset. To quantify relatedness between all individuals, we 282 

used the function snpgdsibdKING in SNPRelate v. 1.38.0 (Zheng et al. 2012) to determine the 283 

kinship coefficients and probability of zero identity by descent for pairs of individuals using 284 

autosomal SNPs. We used thresholds established in Thornton et al. (2012) to classify 285 

relatedness between individuals.  286 

 287 

Population structure and FST 288 

 289 

We conducted principal components analysis using the R package SNPRelate v. 1.38.0 290 

(Zheng et al. 2012) in R v. 4.1.1 (R Core Team) using a vcf that excluded singleton SNPs. We 291 

LD pruned SNPs with a minor allele frequency of at least 0.05 using SNPgdsLDpruning with an 292 

LD threshold of 0.2 and then calculated principal components with snpgdsPCA using all four 293 

autosomes. For subsequent analyses, we repeated the LD pruning within subsets of the data 294 

(North America only, or Carter Mountain, VA only). We also calculated principal components 295 

using individual chromosomes; for the X chromosome, only females were used in the analysis. 296 

We used t-tests and one-way ANOVAs followed by Tukey post-hoc tests to compare PC 297 

values between sampling locations and time points.  298 

 299 

We used Plink v. 1.9 (Purcell et al. 2007; Chang et al. 2015) to LD prune VCF files with 300 

parameters (--indep-pairwise 1000 50 0.2) and used ADMIXTURE v. 1.3.0 (Alexander and 301 
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Lange 2011) to evaluate population structure for each chromosome separately. For the X 302 

chromosome, only females were used. We tested up to k=10 genetic clusters and used cross-303 

validation analysis to choose the optimal k for each chromosome separately.  304 

 305 

We calculated FST between Florida samples and early season Virginia samples using 306 

the snpgdsFST function in SNPRelate for all SNPs with a minor allele frequency > 0.01. For 307 

the X chromosome, only females were used in FST calculations to ensure diploid genotypes. 308 

We used the same function to calculate genome-wide, pairwise FST between all Virginia 309 

collections using autosomal SNPs.  310 

 311 

Testing for structural variants 312 

 313 

We used smoove v. 0.2.6 (Pedersen et al. 2020) to identify and genotype insertions, deletions, 314 

and rearrangements in the paired-end sequencing data from all individuals as described in the 315 

documentation. We also used linkage disequilibrium (LD) of randomly sampled SNPs from 316 

each chromosome to visually inspect for linkage due to potential inversions. We generated a 317 

list of SNPs segregating in each focal population with no missing genotypes and randomly 318 

sampled 4,000 SNPs from each chromosome. We used the snpgdsLDMat function in 319 

SNPRelate to calculate LD between all pairs of SNPs. LD heatmaps were created with the 320 

ggLD package (https://github.com/mmkim1210/ggLD).  321 

 322 

Estimation of historic population sizes 323 

 324 

We used smc++ v. 1.15.4 (Terhorst et al. 2017) to estimate historic population sizes for several 325 

subpopulations of individuals using autosomal genotypes. We used individuals from each 326 

African location and used the earliest sampling available for each year and Virginia orchard. 327 

We used vcf2smc to prepare the input files for each autosome separately. We assigned each 328 

individual as the “distinguished individual” and ran the analysis using all possible combinations 329 

of distinguished individual as described in (Bemmels et al. 2021). We used 10-fold cross 330 

validation to estimate final model parameters with the option (-cv –folds 10). We assumed a 331 

generation time of 0.08 years (~12 generations per year) based on Nava et al. (2007), which 332 

assumes year-round reproduction in tropical regions. We note that for Virginia populations 333 

experiencing temperate conditions in recent years, 12 generations per year is likely an 334 

overestimate due to the shortened breeding season.  335 

 336 

Selection scan 337 

 338 

We used WhatsHap v. 1.7 (Patterson et al. 2015) to perform read-based phasing of the full vcf 339 

including singletons. To polarize the vcf for the genome wide selection scan relative to the 340 

invasion, we reassigned the reference allele of the phased vcf as the allele that was most 341 

common across all African individuals sequenced in previous studies. We calculated allele 342 

frequencies using all African samples in SNPRelate, then used vcf-info-annotator 343 

(https://vatools.readthedocs.io/en/latest/index.html) to assign the “ancestral” allele in the INFO 344 
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column. Lastly we used bcftools v. 1.13 (Danecek et al. 2021) to make simplified vcfs 345 

containing only the GT and AA fields for each chromosome separately.  346 

 347 

We used the R package rehh v. 3.2.2 (Gautier and Vitalis 2012) to conduct the selection 348 

scan using integrated haplotype homozygosity score. We split samples into four possible 349 

populations (Africa, Florida, all North America, Virginia only) and conducted the scans 350 

separately for each population using phased, polarized vcfs for each individual chromosome. 351 

We used the haplo2hh, scan, and ihh2ihs functions to implement the scan. For the X 352 

chromosome, we only used a single haplotype for each male in the dataset to avoid double 353 

counting haploid genotypes. Haplotypes under selection were visualized by plotting all SNPs 354 

with IHS > 5. LD between candidate SNPs was calculated in SNPRelate.  355 

 356 

Genetic diversity statistics 357 

 358 

Because we obtained variable sequencing coverage within and across populations (Figure S2) 359 

we used software designed for low coverage and missing data to analyze population genetic 360 

statistics in genomic windows. We used pixy v. 1.2.5 (Korunes and Samuk 2021) to calculate 361 

Pi, FST and DXY in 5 kb windows. Samples were grouped by collection location and year or by 362 

collection location for different analyses. We used ANGSD v. 0.941 (Korneliussen et al. 2014) 363 

to calculate Tajima’s D. We first calculated genotype likelihoods from the bam files using 364 

arguments -doSaf and -GL. We then calculated Tajima’s D and theta using the folded site 365 

frequency spectrum across 5 kb windows with 5 kb steps as described in ANGSD 366 

documentation. 367 

 368 

Data management and plotting  369 

 370 

We used the R packages foreach (Microsoft and Weston 2017) and data.table (Dowle and 371 

Srinivasan 2019) for data management and manipulation and used ggplot2 (Wickham 2016) 372 

for all plotting. The ggpubfigs (Steenwyk and Rokas 2021) and viridis (Garnier 2018) packages 373 

were used for color palettes. 374 

 375 

Results and Discussion 376 

 377 

Genome assembly and annotation 378 

 379 

High quality genome assemblies and annotations are a critical component of tracking and 380 

controlling invasive species and understanding the potential evolution of invasive species in 381 

invaded ranges (Matheson and McGaughran 2022). We conducted Hi-C based scaffolding of a 382 

previously sequenced Z. indianus genome (Kim et al. 2021) to achieve a chromosome-level 383 

assembly. There were 1,014 scaffolds with an N50 of 26.6 Mb, an improvement from an N50 384 

of 4.1-6.8 Mb in previous assemblies (Kim et al. 2021). The five main chromosomes (Figure 385 

S1, named in order of size from largest to smallest) varied in length from 25.7 to 32.3 Mb (total 386 

length of five main scaffolds = 146,062,119 bp), in agreement with Z. indianus karyotyping 387 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.20.614190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614190
http://creativecommons.org/licenses/by-nc/4.0/


 10 

(Gupta and Kumar 1987; Campos et al. 2007). Chromosome 3 was identified as the sex 388 

chromosome using sequencing coverage of known-sex individuals (Figure S3, S4) and 389 

sequence comparison dot-plots (Figure S5). See Table S2 for assignment of Z. indianus 390 

chromosomes to Muller elements based on alignment to the D. melanogaster genome.  391 

 392 

 The annotation using RNAseq from larvae, pupae, and adults predicted 13,162 393 

transcripts and 13,075 proteins, with 93% of 255 benchmarking universal single copy orthologs 394 

(BUSCO) genes (Simão et al. 2015) identified as complete and an additional 1.2% of BUSCO 395 

genes identified as fragmented. This transcriptome-based completeness estimate is lower than 396 

the genome-based estimate of 99% complete (Kim et al. 2021) but is in line with other 397 

arthropod genomes (Feron and Waterhouse 2022). Within the 5 main scaffolds, 24.6% of 398 

sequences were repetitive; within the entire assembly including all smaller scaffolds, 41% were 399 

repetitive. The five main chromosomes contain 11,327 predicted mRNAs (87% of all 400 

predicted), including 99.5% of all complete BUSCO genes. This improved genome resource 401 

will be valuable for future evolutionary studies of Z. indianus, which is becoming an 402 

increasingly problematic pest in some regions of the world (Allori Stazzonelli et al. 2023). 403 

 404 

Limited spatial or temporal population structure in North American Z. indianus 405 

 406 

To study spatial and temporal patterns of genetic variation in the seasonally repeated invasion 407 

of Z. indianus, we resequenced ~220 individuals collected from two orchards in Virginia 408 

(Charlottesville and Richmond) from 2017-2020, as well as one population collected from 409 

Miami, Florida in 2019. Because temperate locations such as Virginia are thought to be 410 

recolonized by Z. indianus each year (Pfeiffer et al. 2019; Rakes et al. 2023), we sampled both 411 

early in the season (~July-August) and late in the season (~October-November) in each year 412 

to capture the founding event, population expansion, and potential adaptation to the temperate 413 

environment.  414 

 415 

We were first interested in studying geographic and temporal variation in population 416 

structure in North American populations of Z. indianus. For this analysis, we incorporated 417 

previous sequencing data from the Western Hemisphere and Africa (Comeault et al. 2020). 418 

While previous studies have shown limited structure within North America (Comeault et al. 419 

2020; Comeault et al. 2021), we wanted to test for structure using deeper sampling within 420 

introduced locations and with greater temporal resolution across the Z. indianus growing 421 

season (Rakes et al. 2023). As shown previously, in an autosome-wide principal component 422 

analysis, PC1 separated Western Hemisphere and African samples (Figure 1A; t-test: t = 423 

78.92, df = 36, p < 2 x 10-16). However, with the increased sample size of North American flies 424 

relative to previous studies, PC2 separated North American samples into two clusters, 425 

explaining 8% of total variation. To focus on potential structure within invasive North American 426 

samples, we excluded the African samples and recalculated principal components. This 427 

analysis revealed little genome-wide differentiation of North American populations collected 428 

from different locations (Figure 1B; ANOVA P > 0.05 for PC1 and PC2), though the samples 429 
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did fall into three large groups based on PC1, which may be indicative of structural variation (Li 430 

and Ralph 2019); see below.  431 

 432 

 433 
Figure 1: Principal component analysis of individual Z. indianus from this 434 

study and previous studies using autosomal SNPs. (A) All unrelated 435 

individuals (n=247), color coded by continent/locale of collection. (B). All 436 

unrelated North American individuals (n=190), color coded by collection site; 437 

HPO and CM are two orchards in Virginia; Northeast refers to samples from NY, 438 

NJ, and PA. (C) All unrelated individuals from Carter Mountain, Virginia (n=110), 439 

color coded by year of collection. For each analysis, only the individuals shown in 440 

the plot were included in the PC calculation.  441 

 442 

North American samples clustered in single-chromosome PCA for chromosomes 1, 2 443 

and 5, but these clusters generally did not correspond to sampling locations (Figure S6; PC2 444 

separated the two Virginia orchards for chromosome 5; Tukey P = 0.01). Interestingly, PC1 445 

separated Florida from both Virginia orchards for the X chromosome (Tukey P < 0.01 for each 446 

comparison), suggesting some degree of genetic differentiation on the X. Visual inspection of 447 

plots of PC3 and PC4 did not indicate additional geographic population structure (results not 448 

shown). The overall lack of genome- or chromosome-wide geographic population structure 449 

suggests that there is not a high degree of genetic differentiation between eastern North 450 

American populations spread over a latitudinal transect (~1600 km) encompassing distinct 451 

climates, but some localized patterns of population structure may exist on the X chromosome. 452 

Many invasive species evolve complex population structures in the invaded range due to a 453 

combination of bottlenecks, founder effects and rapid local adaptation (Koch et al. 2020; 454 

Atsawawaranunt et al. 2023; García-Escudero et al. 2023). On the other hand, some invasive 455 

species have more homogenous populations across widespread invaded ranges in eastern 456 

North America (Friedline et al. 2019; Barrett et al. 2023). A high rate of migration between 457 

orchards (occurring naturally or due to human-mediated transport) or large founding population 458 

sizes could result in a lack of geographic differentiation between populations.  459 

 460 

We next hypothesized that founder effects during each recolonization event might lead 461 

to unique genetic compositions of temperate populations sampled in different years (Uller and 462 
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Leimu 2011). We calculated principal components using only samples collected from Carter 463 

Mountain, VA in 2017-2020. Surprisingly, in these samples, we saw no evidence of population 464 

structure between years across the genome (Figure 1C; ANOVA P > 0.05 for PC1 and PC2) or 465 

on individual chromosomes, except for chromosome 4, which showed subtle separation of 466 

some years (Figure S6; Tukey P < 0.05 for PC1: 2018 vs. 2019 and PC2: 2017 vs. 2019). 467 

These data suggest that the founding fly populations in Virginia are relatively homogeneous 468 

each year at a genome-wide scale. This result is consistent with the lack of spatial population 469 

structure and likewise could indicate large founding populations or ongoing migration. 470 

Alternatively, the Virginia population could be permanently established with little genetic 471 

differentiation year-to-year, though this possibility is not supported by field data (Rakes et al., 472 

2023).  473 

 474 

We used ADMIXTURE (Alexander and Lange 2011) to test for population structure 475 

using individuals from Africa, Florida, and the two focal Virginia orchards, calculating the most 476 

likely number of genetic clusters for each chromosome separately. Consistent with the PCA, 477 

the four autosomes each produced between two to four genetic groups, but there was no 478 

apparent geographic population structure, aside from African samples mostly belonging to 479 

different clusters from all North American samples for each chromosome (Figure 2). Notably, 480 

for chromosomes 1 and 2, many individuals showed ~50% ancestry assignment to different 481 

clusters, which could reflect genotypes for large structural rearrangements (see below). For the 482 

X chromosome, using females only, we identified structure within African samples as 483 

previously described (Comeault et al. 2020; Comeault et al. 2021) and a total of five genetic 484 

clusters within North American populations, including one of the African genetic groups which 485 

was found in Florida (Figure 2 third row; see orange grouping). X chromosomes have smaller 486 

effective population sizes in species with XY sex determination systems and often experience 487 

more extreme loss of genetic diversity upon population contraction (Ellegren 2009). The 488 

complex population structure seen on the X chromosome may be the result of this small 489 

population size or caused by selection on X-linked variants in different environments.  490 

 491 
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 492 
Figure 2: Admixture analysis of individual Z. indianus chromosomes from 493 

different locations. Each column is an individual, and colors represent 494 

assignment to distinct genetic clusters. The most likely number of genetic 495 

clusters for each chromosome (k) was obtained with cross-validation analysis 496 

and is shown at right. For chromosome 3, the X chromosome, only female flies 497 

were used for admixture analysis, resulting in reduced sample size. FL=Miami, 498 

Florida, VA-HPO = Richmond, VA, VA-CM = Charlottesville, VA. African 499 

sequences represent five geographic locations and are taken from Comeault et 500 

al. (2020 & 2021).  501 

 502 

Structural polymorphism 503 

 504 

The clustering of samples in the single-chromosome PCA (Figure S6), combined with many 505 

individuals showing ~50% assignment to genetic clusters (Figure 2), suggested that large 506 

structural variants may be segregating in Z. indianus (Li and Ralph 2019; Nowling et al. 2020). 507 

Analysis of paired-end sequencing data with smoove provided evidence of two large 508 

rearrangements on chromosome 1 located at 7.1 and 9.1 Mb; the genotypic combinations for 509 

these variants largely correlate with the clustering of samples in the PCA (Figure S7; PC1 510 

correlation with variant at 7.1Mb: P = 2 x 10-9; PC1 correlation with variant at 9.1Mb: P = 3 x 511 

10-5; PC2 correlation with variant at 9.1Mb: P = 0.001). Since chromosome 1 is the longest 512 

chromosome in our assembly, these rearrangements likely correspond to the complex In(IV)EF 513 

polymorphism, made up of two overlapping inversions (Ananina et al. 2007). smoove did not 514 
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identify large structural variants on chromosomes 2 or 5 whose genotypes correlated to the 515 

PCA clusters.  516 

 517 

To look for evidence of structural variants via depressed recombination rates, we 518 

examined linkage disequilibrium (LD) from 4,000 randomly sampled SNPs on each 519 

chromosome. In North American samples, we discovered large blocks of LD spanning 520 

substantial portions of chromosomes 1, 2, 3, and 5 (Figure S8), potentially indicative of 521 

inversions (Fang et al. 2012; da Silva et al. 2019). However, there was no evidence of long-522 

distance LD in these regions in the African samples (Figure S8). smoove did not identify 523 

inversions that corresponded to the sizes and locations of these linkage blocks. These results 524 

support the read-based evidence of a complex rearrangement on chromosome 1 (Figure S7) 525 

and suggest inversions on chromosomes 1, 2, 3, and 5 are segregating in North America but 526 

are relatively rare in Africa. Given the relative chromosome sizes in the genome assembly, the 527 

linkage blocks on chromosome 2 and 5 likely correspond to In(V)B and In(II)A, respectively 528 

(Ananina et al. 2007). The X chromosome has three described inversions in Z. indianus 529 

(Ananina et al. 2007), which may explain to the complex pattern of linkage observed in North 530 

American samples and the population structure observed for the X chromosome within North 531 

America (Figure 2). Major chromosomal polymorphisms are known to be important for local 532 

adaptation and phenotypic divergence in a wide variety of species (Joron et al. 2011; Küpper 533 

et al. 2016; Lee et al. 2016; Huang et al. 2020; Nunez et al. 2024), including inversions that 534 

facilitate invasive phenotypes (Galludo et al. 2018; Tepolt and Palumbi 2020; Tepolt et al. 535 

2022; Ma et al. 2024). These inversions may have been present at low frequency in the 536 

bottlenecked population that founded Z. indianus populations in the Western Hemisphere, but 537 

then experienced subsequent selection in the invaded range. Alternatively, these 538 

polymorphisms may have arisen in a currently undescribed population and then been 539 

introduced to the Western Hemisphere.  540 

 541 

Recolonization, bottlenecks and seasonal dynamics in Z. indianus 542 

 543 

Invasive species typically experience a genetic bottleneck due to small founding population 544 

sizes (Barrett 2015; Estoup et al. 2016). We hypothesized that North American populations 545 

would show reduced effective population size (Ne) relative to African populations, and that 546 

Virginia populations would show a further, more recent reduction in Ne relative to Florida 547 

populations as the result of a secondary population bottleneck upon temperate recolonization. 548 

Our prediction was correct with respect to Africa vs North America: African populations show 549 

historical fluctuations but population sizes typically in the range of ~ 105-107 individuals. 550 

Interestingly, introduced populations in North America demonstrate population sizes that 551 

increased, decreased, then increased again in the past ~500 years. Comeault et al. (2021) 552 

suggested that introduced populations in the Americas are derived from a historically admixed 553 

population composed of both East African and West African flies, and the historic expansion of 554 

introduced populations might correspond to this admixture event. The subsequent drop in 555 

population size to 104-105 may then reflect a bottleneck following colonization of Brazil in the 556 

late 1990s (Yassin et al. 2008), followed by a rebound as introduced populations expanded.  557 
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 558 

 559 
 560 

Figure 3: Demographic effects of bottlenecks in Z. indianus populations A) 561 

Population history reconstruction with smc++ using autosomal genotypes. 562 

Introduced-Florida flies were collected in Miami in 2019. Introduced-Virginia flies 563 

were collected in the early-mid season (June-September) from two Virginia 564 

orchards in 2017-2020 (n=5 populations grouped by orchard and year). Native 565 

populations are distinct African populations (Kenya, Zambia, Senegal-Forest, 566 

Senegal-Desert, and Sao Tome [Comeault et al 2020]). B) Kinship and 567 

probability of zero identity by descent for pairs of individual flies from the same 568 

collection location and season within North America calculated with autosomal 569 

SNPs. C) Kinship coefficients for pairs of individual flies collected at Carter 570 

Mountain Orchard, Virginia, as a function of the number of days between 571 

sampling. Relatedness was assigned according to thresholds from (Thornton et 572 

al. 2012). 573 

 574 

Overall, the ancestral population sizes for Virginia and Florida were quite similar, and 575 

our prediction of reduced recent population sizes in Virginia relative to Florida was not well-576 

supported. The minimum population sizes for Florida and Virginia (104-105) are larger than 577 

expected for a single small colonization event. Field data suggest founding populations in 578 

orchards are small and then rapidly expand (Rakes et al. 2023), suggesting that these large 579 

population sizes could be caused by ongoing gene flow from the source population after 580 

colonization, which is consistent with the lack of temporal population structure. Given our 581 

limited sample sizes and potential differences in the number of generations per year in 582 
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temperate and subtropical environments, detecting fine-scale differences in very recent 583 

population fluctuations may be beyond the detection ability of the software; smc++ becomes 584 

less accurate at timescales less than ~133 generations (Patton et al. 2019). Alternatively, the 585 

Virginia populations may be admixed populations reflecting individuals from multiple sources, 586 

producing larger effective population sizes than would otherwise be expected if recolonization 587 

occurs from a single source population undergoing a bottleneck. Admixture and gene flow ae 588 

important factors fueling genetic diversity and invasiveness in introduced species 589 

(McGaughran et al. 2024) and could potentially contribute to Z. indianus’ local success 590 

following each recolonization event.  591 

 592 

We additionally tested for bottlenecks by looking for inbreeding, which might be a 593 

product of small founding populations. Using two measures of genetic similarity, we discovered 594 

many pairs of related flies in our dataset (Figure 3B). Most dramatically, many flies collected in 595 

2018 appeared to be close relatives (Figure S9). In collections from late July and early August 596 

2018, 26 pairs of close relatives involving 13 individual flies were collected. Of those, 21 pairs 597 

of relatives were collected on different days, suggesting the relatedness was not solely a 598 

sampling artifact due to collecting closely related flies in the same microhabitat of the orchard. 599 

The effect of this apparent bottleneck was sometimes retained throughout the growing season, 600 

as a pair of full sibs was sampled 77 days apart in 2018, two pairs of second-degree relatives 601 

were sampled over 110 days apart in 2018, and two pairs of third-degree relatives were 602 

sampled 140 days apart in 2017 (Figure 3C). Given that Z. indianus are collected in small 603 

numbers early in the season (Rakes et al. 2023) and 2017 and 2018 had particularly early 604 

captures (Table S1), we suggest small founding population size followed by inbreeding could 605 

produce individuals sampled distantly in time that still show close genetic similarity. 606 

Alternatively, flies may live for a relatively long time or have slower generations in the wild, 607 

allowing us to capture close relatives separated by longer time periods. However, we note that 608 

the same pattern was not seen in every year of our collections, suggesting that colonization 609 

dynamics might differ dramatically from year to year, which is expected if recolonization occurs 610 

due to chance events each year.  611 

 612 

The founder effect could generate temporal population structure by creating populations 613 

that were more similar within a year than between years, creating a positive relationship 614 

between FST and the elapsed time between collections (Bergland et al. 2014). We tested this 615 

prediction with samples collected from Carter Mountain, Virginia over four years, and there 616 

was no relationship between FST and the time between sampling (linear model, df=17, P=0.9, 617 

Figure S10). This lack of temporal differentiation is consistent with the PCA and the relatively 618 

large minimum population sizes previously described and could be produced by ongoing gene 619 

flow that eliminates any signal of a founder effect and inbreeding. This finding is distinct from 620 

trends observed in D. melanogaster, which experiences a strong overwintering bottleneck and 621 

shows temporal patterns of differentiation (Bergland et al. 2014; Nunez et al. 2024).  622 

 623 

Repeated differentiation between Florida and Virginia populations 624 

 625 
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Despite the lack of genome-wide differentiation between different North American locales, we 626 

were interested in testing whether specific regions of the genome might differ between 627 

populations given environmental differences: Virginia has a temperate, seasonal climate with a 628 

relatively limited variety cultivated produce, and southern Florida is subtropical with an 629 

abundance and diversity of fruits throughout the year. Other factors such as diseases, 630 

insecticide use, and competing species may also differ widely between locales. In the absence 631 

of genome-wide population structure, genomic regions differentiated between these locations 632 

are candidates for local adaptation. We conducted a SNP-level FST analysis comparing all flies 633 

collected in Florida to those collected in the early season in Virginia over four years. We 634 

observed elevated FST throughout much of the X chromosome, with a pronounced peak at 690 635 

kb (Figure 4A). This peak was observed when comparing the Florida collection to Virginia 636 

collections from both Charlottesville and Richmond across all four years of Virginia sampling 637 

both early and late in the season (Figure S11), suggesting that this differentiation is maintained 638 

through recurrent rounds of recolonization, potentially via local adaptation. Alternatively, this 639 

region could correspond to alleles that directly promote dispersion and/or invasion (Weinig et 640 

al. 2007) and are found at higher frequency in invaded populations. One limitation of our 641 

sampling strategy is that we have only a single year of sampling in Florida; additional data will 642 

be needed to determine whether the genetic composition of this population (and differentiation 643 

from Virginia) remains steady across multiple years. However, assuming that this result is not 644 

an artifact related to the Florida sample, an alternative possible explanation for the repeated 645 

differentiation seen between Florida and Virginia is that Virginia is recolonized by a source 646 

population that is genetically distinct from the southern Florida population we sampled here. 647 

Regardless, the finding implies localized genetic structure across a latitude gradient in North 648 

American.  649 

 650 

 651 
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 652 
Figure 4: Signals of selection in temperate Z. indianus populations. A) 653 

Genome-wide SNP-level FST comparing individual flies sampled in Florida (n=26) 654 

to all flies sampled in the early season in Virginia (n=123), color-coded by 655 

chromosome. Only females were used for the X chromosome (chromosome 3, 656 

green). B) Integrated haplotype homozygosity score (IHS) using all flies collected 657 

in Virginia. C) Zoomed in view of SNP-level FST between Florida and Virginia on 658 

chr 3: 0-2Mb. D) IHS for the X chromosome (chromosome 3:0-2 Mb) calculated 659 

separately for flies from Africa, Florida, all North America, and Virginia. Dashed 660 

line indicates IHS = 5 to facilitate comparisons between populations. E-F) 661 

Extended haplotype homozygosity for the two alleles of the SNP with highest FST 662 

(E; chr 3: 689841) and highest IHS (F; chr 3: 973443), calculated using all 663 

haplotypes from Virginia.  664 

 665 

Genomic signals of differentiation and selection 666 

 667 

The elevated FST seen on the X chromosome raised the intriguing possibility that some genetic 668 

variation could potentially be under selection in temperate environments (Virginia) relative to 669 

subtropical Florida. We phased the paired-end sequencing data and calculated extended 670 

haplotype homozygosity (EHH) and IHS (integrated haplotype homozygosity score) using all 671 

Virginia individuals to look for long, shared haplotypes that can be signatures of selective 672 

sweeps (Sabeti et al. 2007). As in the FST analysis, we observed a region on chromosome 3 673 
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that stood out in this analysis with many SNPs with IHS > 5; this region overlapped with the 674 

FST peak (Figure 4, B-D). The peak FST SNP was approximately 300 kb away from the peak 675 

IHS SNP. We then repeated the IHS analysis using flies from Africa, Florida, and all North 676 

America (Virginia + Florida + Comeault (2020) locations) to determine whether this signature 677 

was unique to temperate populations. There was no signal of elevated IHS in African flies 678 

(Figure 4D, 1st row), suggesting this selective signature is unique to invasive populations. 679 

Further, this region showed a less substantial IHS peak when analyzing flies collected in 680 

Florida (Figure 4D, 2nd row) but was prominent when examining Virginia flies or all North 681 

American flies (Figure 4D, 3rd-4th rows), suggesting the signal of the selective sweep is 682 

primarily driven by individuals collected in temperate environments. Both the peak IHS SNP 683 

and the peak FST SNP showed evidence of long extended haplotypes characteristic of sweeps 684 

(Figure 4E-F). These results further support the possibility that this locus is advantageous to 685 

invasive potential or survival in temperate habitats.  686 

 687 

 We investigated this region of the genome by examining linkage disequilibrium (LD) and 688 

haplotype structure of the 400 SNPs with a Virginia IHS > 5 (Figure 5A). We discovered this 689 

region spanning ~700 kb has several large haplotype blocks in temperate North American 690 

samples (Figure 5C-D) and in Florida (Figure S12B), but these same haplotypes are not found 691 

in Africa (Figure 5C, Figure S12A), suggesting they are unique to introduced populations. In 692 

invasive copepods, haplotypes under selection in the invasive range are ancestral 693 

polymorphisms under balancing selection in the native range (Stern and Lee 2020). A similar 694 

situation was found for a balanced inversion polymorphism that fuels invasion in invasive crabs 695 

(Tepolt and Palumbi 2020; Tepolt et al. 2022). However, ancestral polymorphism selected in 696 

the invaded range does not appear to be the case in Z. indianus, as the haplotypes from North 697 

America were not found in any African flies. These novel haplotypes could be new mutations 698 

or derived due to hybridization/introgression from another species or divergent population; 699 

hybridization can be an important evolutionary force in invasive species (Ellstrand and 700 

Schierenbeck 2000; Fournier and Aron 2021). The Zaprionus genus shows signals of historic 701 

introgression, though Z. indianus was not directly implicated in a previous analysis (Suvorov et 702 

al. 2022). Therefore, two major haplotypes not found in Africa contribute to the differentiation of 703 

Florida and Virginia populations, though the source of these haplotypes remains to be 704 

determined. Though we focus on one genomic region, we note that most of the X chromosome 705 

shows elevated IHS scores (Figure 3B), and many SNPs on the X show FST > 0.25 between 706 

Virginia and Florida (Figure 3A). This observation is in line with the findings of Comeault et al 707 

2021, who showed that many X-linked scaffolds showed signs of selection in invasive 708 

populations and is likely related to the presence of several inversions on this chromosome. We 709 

also note that our approach would not detect sweeps involving multiple alleles from standing 710 

variation (soft sweeps; (Messer and Petrov 2013; Garud et al. 2015)), which could be an 711 

important potential component of Z. indianus evolution given the high levels of genetic diversity 712 

found even in invasive populations (Avalos et al. 2017).  713 

 714 
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 715 
 716 

Figure 5: Major haplotypes on the X chromosome with signals of selection 717 

and differentiation. Only SNPs with IHS > 5 in Virginia (n=400) are shown in 718 

this figure for clarity; scale at top shows physical positions of SNPs, which are 719 

equally spaced in panels A-D. A) FST of individual SNPs comparing Florida and 720 
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Virginia populations (see Figure 4). B) IHS for individual SNPs. C) Haplotypes: 721 

each horizontal row shows genotypes for a single haploid chromosome phased 722 

with read-backed phasing. Blue indicates the allele more common in African 723 

populations and green is the other allele. Missing genotypes are shown in gray. 724 

D) LD (R2) for these SNPs in all North American flies, excluding Florida.  725 

 726 

 To explore population genetic signals around this highly divergent region of the X 727 

chromosome, we broadly grouped flies into three populations: Africa, Florida, and Virginia and 728 

calculated population genetic statistics in 5 kb non-overlapping windows for all females. This 729 

analysis confirmed two regions of relatively high FST between Florida and Virginia, though they 730 

are separated by a region of nearly zero differentiation within North America, as measured by 731 

FST, Dxy, and nucleotide diversity (Figure 6A-C, ~700-800kb). Virginia and Florida are both 732 

highly differentiated from Africa in this region, and it has negative Tajima’s D in both Florida 733 

and Virginia (Figure 6D), potentially indicating recovery from a selective sweep in North 734 

America. The region of no divergence may represent a selective sweep of a haplotype that 735 

existed on two different genetic backgrounds that were subsequently favored in Florida and 736 

Virginia, producing a high degree of genetic differentiation in the surrounding sequences. The 737 

region with a potential sweep in North America contains ~6 genes, including the gene yin/opt1, 738 

which is important for absorption of dietary peptides in D. melanogaster (Roman et al. 1998). 739 

Allelic differences between African and invasive range flies in this gene could be involved in 740 

adaptation to new diets in new environments.  741 

 742 

 743 
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 744 
Figure 6: Population genetic statistics for the region surrounding a 745 

selected haplotypes on chromosome 3 (250-1,1000 kb). All statistics were 746 

calculated for 5 kb, non-overlapping windows. Black points at the top indicate the 747 

locations of the 400 SNPs shown in Figure 5. A) FST comparing combinations of 748 

flies from Africa, Virginia (both focal orchards combined) and Florida. B) Absolute 749 

nucleotide divergence (Dxy) for the same comparisons. C) Nucleotide diversity 750 

(π) for each population. D) Tajima’s D for the three populations. E) Average 751 

sequencing depth per window relative to the mean depth for the entire 752 

chromosome. Relative depths were averaged for all individuals in each 753 

population. See Figure S14 for whole-genome analysis of the same statistics. 754 
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To confirm the patterns described above were not driven by genome assembly issues, we 755 

also examined the normalized depth of sequencing coverage relative to the chromosome 756 

average and discovered a region of variable coverage that overlaps the region of high FST 757 

between Florida and Virginia and is immediately adjacent to the region with zero divergence 758 

between Florida and Virginia (Figure 6E, Figure S13). This region (~600kb-700kb) has low 759 

coverage in Africa. In Florida and Virginia coverage varies from 0.5X -1X throughout the 760 

region. smoove identified paired-end evidence for a 52 kb duplication in this region, but 761 

genotype calls showed frequencies were similar in Virginia, Florida, and Africa. Combined with 762 

the sequencing depth data, these findings suggest copy number variation of these loci might 763 

contribute to the Florida-Virginia divergence, though long-read sequencing will likely be 764 

required to resolve the sequence variation. The region of elevated FST between Florida and 765 

Virginia and variable copy number contains several genes with neuronal and metabolic 766 

functions, offering exciting possibilities for future studies of the potential functional basis of this 767 

geographic divergence. 768 

 769 

For comparison, we also examined the same five population signals genome-wide 770 

(Figure S14) and observed that the X chromosome is an outlier in many regards. Divergence 771 

between Africa and North American samples is greater on the X chromosome (Figure S14A). 772 

As previously described (Comeault et al. 2020; Comeault et al. 2021), the X chromosome has 773 

reduced genetic diversity relative to autosomes, especially in invaded populations (Figure 774 

S14B-C). Tajima’s D is negative across the genome for African flies and mostly positive in 775 

North American autosomes, indicative of a strong bottleneck in North American flies. However, 776 

Tajima’s D fluctuates between strongly positive and strongly negative in North American 777 

populations along the X chromosome (Figure S14D). This finding, combined with complex 778 

patterns of genetic ancestry on the X (Figure 2) and many regions with high haplotype 779 

homozygosity (Figure 4), suggest complex evolutionary dynamics on the X that warrant further 780 

investigation. These findings agree with Comeault et al. 2021, who found that regions under 781 

selection on the X chromosome typically showed higher divergence between invasive 782 

populations and African populations. Further global sampling and sequencing of X 783 

chromosomes with long reads to resolve inversion genotypes and CNVs may offer insight 784 

towards the role of X-linked genes in fueling the ongoing invasion of Z. indianus.  785 

 786 

 787 

Conclusions  788 

 789 

In addition to posing economic, health, and environmental threats, invasive species also 790 

serve as outstanding models for studying rapid evolution in new environments. Here we report 791 

an improved genome assembly and annotation for Z. indianus, an introduced drosophilid that 792 

is thought to repeatedly recolonize temperate environments each year and is a potential crop 793 

pest. We use it for a preliminary assessment of potential rapid evolution and genetic variation 794 

in the early stages of invasion. We show that recolonization is likely a stochastic process 795 

resulting in different evolutionary dynamics in different years, even within a single orchard. This 796 

finding demonstrates broad sampling is important for invasive species that are repeatedly 797 
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introduced or have multiple introduced populations that may undergo different evolutionary 798 

trajectories in different years or different locations. While some founding populations may be 799 

small, several population genetic patterns we observe could be explained by ongoing gene 800 

flow with the source population, or between temperate populations following recolonization, 801 

suggesting gene flow that spreads and maintains favorable alleles could be an important 802 

component in Z. indianus’s widespread success, as it is for many invasive species (Díez-del-803 

Molino et al. 2013; Medley et al. 2015; Arredondo et al. 2018). Demographic simulations and 804 

additional whole genome data will be required to better describe the recent histories of and 805 

potential gene flow between invasive populations and to infer colonization routes within North 806 

America.  807 

 808 

Though we find limited population structure across space or time in introduced North 809 

American populations, we find a region on the X chromosome that may have experienced a 810 

selective sweep in North America followed by separate sweeps in Virginia and Florida. 811 

Studying how genetic variation in this region of the genome influences survival in temperate 812 

environments will be an important direction of future research. We additionally find that the X 813 

chromosome has an unusually complex evolutionary history in Z. indianus. It may have several 814 

segregating inversions and CNVs, has strong signatures of selection, and shows regions of 815 

high divergence both between African and North American populations and within North 816 

America. Specifically, long-read sequencing strategies will be important to understand likely 817 

inversions both on the X and throughout the Z. indianus genome that are common in the 818 

invaded range. Large inversions can link together adaptive alleles and are often important 819 

drivers of evolution in rapidly changing environments (Thompson and Jiggins 2014), so these 820 

regions will be important to track over larger spatial and temporal scales in future studies.  821 

 822 

These results underscore the complexity of genetic dynamics during invasions and the 823 

need for further studies to explore the adaptive potential and ecological impacts of Z. indianus 824 

in its invasive range. Z. indianus provides a unique system in which we can study independent 825 

invasion events across multiple years and locations. One limitation of our study is sample size 826 

for each year and location: our ability to estimate allele frequencies or detect subtle changes in 827 

allele frequencies across time or space is limited. Sampling strategies that incorporate more 828 

individuals, such as pooled sequencing (Bergland et al. 2014; Kapun et al. 2021; Machado et 829 

al. 2021; Nunez et al. 2024), will be required to detect these more subtle changes, if they 830 

occur, and to understand how they may contribute to rapid adaptation to new environments. 831 

The recurrent nature of Z. indianus colonization may also offer insight towards the predictability 832 

of rapid evolution of invasive species.  833 

 834 

Data Availability 835 

 836 

New individual sequencing data has been deposited in the SRA under project number # 837 

PRJNA991922. RNA sequencing from larval and pupal samples, and larval Hi-C data used for 838 

scaffolding are deposited under the same project number. The genome sequence has been 839 

deposited at DDBJ/ENA/GenBank under the accession JAUIZU000000000. The metadata for 840 
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all sequencing samples (including date and location of collection); the annotation information 841 

for transcripts, proteins and repeats; and VCFs of SNPs and structural variants have been 842 

deposited to Dryad: https://doi.org/10.5061/dryad.q2bvq83v3. All code to reproduce analyses 843 

has been deposited to Zenodo via Dryad. All code for analysis is also available at: 844 

https://github.com/ericksonp/Z.indianus_individual_sequencing/tree/main 845 

 846 

Temporary reviewer dryad link: 847 
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