
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4125  | https://doi.org/10.1038/s41598-022-08171-7

www.nature.com/scientificreports

Neural‑based modeling 
adsorption capacity of metal 
organic framework materials 
with application in wastewater 
treatment
Mozhgan Parsaei1*, Elham Roudbari2, Farhad Piri3, A. S. El‑Shafay4*, Chia‑Hung Su5*, 
Hoang Chinh Nguyen6, May Alashwal7, Sami Ghazali8 & Mohammed Algarni9

We developed a computational‑based model for simulating adsorption capacity of a novel layered 
double hydroxide (LDH) and metal organic framework (MOF) nanocomposite in separation of ions 
including Pb(II) and Cd(II) from aqueous solutions. The simulated adsorbent was a composite of 
UiO‑66‑(Zr)‑(COOH)2 MOF grown onto the surface of functionalized  Ni50‑Co50‑LDH sheets. This novel 
adsorbent showed high surface area for adsorption capacity, and was chosen to develop the model 
for study of ions removal using this adsorbent. A number of measured data was collected and used in 
the simulations via the artificial intelligence technique. Artificial neural network (ANN) technique was 
used for simulation of the data in which ion type and initial concentration of the ions in the feed was 
selected as the input variables to the neural network. The neural network was trained using the input 
data for simulation of the adsorption capacity. Two hidden layers with activation functions in form 
of linear and non‑linear were designed for the construction of artificial neural network. The model’s 
training and validation revealed high accuracy with statistical parameters of  R2 equal to 0.99 for the 
fitting data. The trained ANN modeling showed that increasing the initial content of Pb(II) and Cd(II) 
ions led to a significant increment in the adsorption capacity (Qe) and Cd(II) had higher adsorption due 
to its strong interaction with the adsorbent surface. The neural model indicated superior predictive 
capability in simulation of the obtained data for removal of Pb(II) and Cd(II) from an aqueous solution.

Artificial intelligence (AI) has recently attracted much attention for simulating physical, biochemical, and chemi-
cal processes to provide a simulation tool for process understanding, optimization, and improvement. Basically, 
mathematical models and simulations are performed to understand the process, and minimize the operational 
costs, while maximizing the process  efficiency1–7. Simulation and optimization of processes have been used in 
many different areas in the recent  years8–11. The models developed using artificial intelligence techniques require 
measured data for training the algorithm. Also, selection of artificial intelligence algorithm depends on the pro-
cess, and the degree of  complexity12,13. Artificial intelligence-based simulation methodology and models can be 
employed for the systems that are too complex to be formulated via mechanistic models. Therefore, the artificial 
intelligence models can help simulate complex processes for optimization and process  improvement11,14,15.
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Recently, artificial intelligence models have been combined with computational fluid dynamics techniques 
to improve the simulations and reduce the computational costs. In this hybrid modeling approach, the CFD 
simulation results are used as the input for artificial intelligence model to predict fluid flow, heat transfer, mass 
transfer, chemical reactions, and multiphase flow  systems16–31. The artificial intelligence models have shown to 
be more accurate and faster than the mechanistic models in terms of computation which make them attractive 
for implementation in prediction of physical and chemical processes. The main disadvantage of these modes 
is that they need measured data for training the process, and these models are not of pure predictive  nature13.

These artificial intelligence models can be applied for simulation of ion adsorption to the surface of nanopo-
rous materials with high accuracy. Adsorption has indicated to be an efficient technique for wastewater treat-
ment with low content of  impurities32–34. Due to the complexity of nanoporous materials, mechanistic models 
are difficult to be developed and artificial intelligence-based models are preferred in this case. Adsorption using 
nanoporous materials and nanocomposite materials have been recently simulated via semi-empirical and empiri-
cal  correlations35–40. Good agreement has been obtained for implementing empirical models for simulation of 
adsorption process, however these models show poor applicability in considering the effect of various parameters 
on adsorption capacity of the used adsorbent in the process. These models have been developed for mesoporous 
silica and nanocomposite materials in removal of organic materials and heavy metals from  water11,41–52.

Development of artificial intelligence models for simulation of ion adsorption onto the surface of nanomateri-
als would be attractive for design of materials and optimization of the  process53. For example, Ayaz and  Khan54 
performed a survey on the application of AI techniques on the modeling of heavy metal contaminants removal 
from wastewater using Levenberg–Marquardt (LM) and scale conjugate Gradient (SCG). Yaqub et al.55 used 
ANN and adaptive neuro-fuzzy inference system (ANFIS) to investigate the prediction of Cr(VI) adsorption on 
polymer inclusion membranes. The modeling results confirmed the high accuracy of these models, but the ANN 
results were more reliable than the outcomes obtained from ANFIS model. Usually, if the model is validated 
through comparing with experimental results, then the model can be used to map the adsorption process and 
find the optimum  conditions56,57.

In order to propose and implement a high-performance model for prediction of adsorption process 
using hybrid materials with nanostructure, herein we demonstrate for the first time simulation of a novel 
 Ni50Co50-LDH-COOH/UiO-66(Zr)-(COOH)2 nanocomposite (LDH/MOF) in separation of Pb(II) and Cd(II) 
solutes from water considering various conditions by development of an artificial intelligence-based  model58. 
Different adsorbents had been used as effective adsorbents for pollutant removal from aqueous media such as 
MOFs, natural materials, and mesoporous  silica59–62. In the recent years, metal organic framework (MOF) adsor-
bents have attracted so many attentions for this application due to their fantastic  properties63,64. These models 
outperformed the traditional empirical correlations in fitting adsorption data such as the well-known Langmuir 
adsorption  model13. The work is conducted by development of artificial neural network model considering ion 
type as well as initial ion concentrations as the inputs, while the adsorption capacity of the nanocomposite was 
considered as the only simulated output by the neural model. Training and cross-validation are performed to 
evaluate the accuracy of the neural model in description of the ion removal via the novel  Ni50Co50-LDH-COOH/ 
UiO-66(Zr)-(COOH)2 nanocomposite.

Materials and methods
The model is developed for simulation of ions removal using a novel nanocomposite made of functionalized 
 Ni50Co50-LDH-COOH/UiO-66(Zr)-(COOH)2. Two ions are considered in this study including Pb(II) and Cd(II) 
for removal from water at different conditions by changing the ions concentration. The ions were considered 
at different initial concentrations between 0.5 and 250 mg/L. The data are collected from  literature58, and this 
work is focused on the simulation of adsorption using an artificial intelligence model. We have also provided a 
little description about the measurements. According to this  research58 as the needed materials for production 
of adsorbent were in analytical grade and used as received. Zirconium (IV) chloride (ZrCl4), Nickel(II) nitrate 
hexahydrate, Pyromellitic acid, Cobalt(II) nitrate hexahydrate, (3-Aminopropyl)triethoxysilane, and Cadmium 
nitrate tetrahydrate were obtained from Sigma-Aldrich. Also, ethanol, ethylene glycol, sodium hydroxide, ace-
tone, and hydrochloric acid were obtained from Merck, as reported in Ref.58.

The nanocomposite of LDH/MOF which is considered in this study has indicated that this novel adsorbent 
can be utilized for the separation and capture of ions owing to its adsorption surface area in the interconnected 
nanoporous network. Therefore, the separation performance of the nanocomposite for the separation of Cd(II) 
and Pb(II) ions were evaluated. As reported in  literature58, the adsorption experiments were carried out in 
conventional batch mode at temperature of T = 25 ℃, by variations of initial ions concentration in the feed solu-
tion. The adsorption capacity of the adsorbent which is used as the only simulated output is estimated  using53,58:

where Qe and Ce denote the equilibrium capacity of the adsorbent (mg  g–1) and the ion concentration (mg  g–1) 
at the  equilibrium58.

Modeling and simulation
Simulation of the adsorption data is here carried out using artificial neural network (ANN) method. In this 
technique, training the data is carried out to obtain the weight and bias parameters for the neural  network65–67. 
The structure of the ANN model is represented in Fig. 1 in which the model has been developed by designing 
two hidden layers in which 2 non-linear (TanH), 1 linear, and 1 Gaussian function are used in the hidden layers’ 
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nodes. The functions and nodes are utilized to estimate the output parameter which is adsorption capacity (Qe). 
The artificial neural network calculations were performed using JMP software which utilizes multi-layer percep-
tron neural network for simulation of the target value. The software is a powerful tool for prediction of output 
and making a relation between the input and output  variables68,69. The simulations were performed using KFold 
as the validation technique in which K was set at 3 implying that the data points are split into three groups, and 
the best group with the minimum deviation is selected as the validation column. In this method of simulation 
using neural network, the designed hidden nodes are nonlinear functions of the original input variables.

Results and discussion
Simulation results. The simulation results obtained by artificial neural network model are listed in Table 1 
for the training and validation. Also, the predicted Qe values versus the experimental values are collected and 
compared in Fig. 2, while the residual of fittings are represented in Fig. 3. The results of simulated Qe using the 
neural network model confirmed that the great agreement has been achieved with high accuracy, and the  R2 
equal to 0.99 has been calculated for training and validation of the network in this work. Also other statistical 
parameters including SSE and RMSE indicated great values implying that the model has been properly  trained70 
and the model can simulate the process for removal of Pb(II) and Cd(II) from water by the nanocomposite 
adsorbent of functionalized LDH/MOF.

The fitted and trained model was further used to interpret the obtained adsorption  data71. The results of 
simulations as 3D and 2D plots of Qe are illustrated in Figs. 4 and 5. Also, the scatterplots of predicted Qe using 
the developed ANN are illustrated in Figs. 6 and 7. In Fig. 4, the 3D plot of simulated Qe versus ion type and 
initial concentration of ions  (C0) is indicated. It is observed that initial concentration can have effect on the 
adsorption capacity. The initial concentration can change the driving force for mass transfer of the solute from 
the bulk of feed solution towards the nanocomposite adsorbent. Indeed, increasing the initial content of the 
ions in the solution will increase the adsorption capacity (Qe) significantly as predicted by the developed neural 
network model. Moreover, the results presented in Fig. 5 indicate that Cd has higher adsorption on the surface 
of nanocomposite adsorbent which is due to its favorable interaction with the functional groups on the surface 

Figure 1.  Design of the model employed in this work for simulation of adsorption.

Table 1.  Analysis of training/validation fitting.

Measures Training Validation

R2 0.9988514 0.9989469

RMSE 5.4591438 4.0546973

Mean Abs Dev 3.8497789 3.7071214

− LogLikelihood 34.278535 14.094073

SSE 327.82476 82.20285

Sum freq 11 5
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Figure 2.  Training and validation data computed for removal of ions.
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of  adsorbent53,58,70. A review on different reported results for ML modeling methods and specially ANN method, 
for adsorption of Cd and Pb heavy metal ions from aquatic solution is reported in Table 272.

Conclusions
Removal of Pb(II) and Cd(II) ions from water using a nanocomposite of MOF/LDH was studied in this work. 
Computational studies were carried out in order to simulate the process to understand the effect of parameters 
affecting the adsorption process. The model was developed based on artificial neural network considering a com-
bination of linear and non-linear transfer functions which were designed inside the hidden layers. The optimum 
designed neural network indicated high accuracy in terms of fitting the data with  R2 more than 0.99 which is a 
great agreement. The model was further assessed in prediction of adsorption capacity of the process and revealed 
that the initial solute concentration has major influence on the adsorption removal rate due to changing the mass 
transfer rate and driving force of the separation process. The modeling results showed that increasing the initial 
content of both heavy metal ions in the solution will increase the adsorption capacity (Qe) significantly. Moreover, 
it was confirmed that Cd had higher adsorption on the surface of MOF/LDH nanocomposite adsorbent which 
is due the strong interaction between the solute and the adsorbent surface. The ANN model strategy indicated 
to be rigorous and robust in simulation of adsorption data for the studied ions and can be further developed for 
other ions and organic materials.

Figure 3.  The residual of fitting.
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Figure 4.  3D plot of predicted Qe.

Figure 5.  2D plot of predicted Qe.
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Figure 6.  Scatterplot matrix of predicted Qe.

Figure 7.  Scatterplot 3D of predicted Qe.
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