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ABSTRACT

Recent advances in deep learning and specifically in generative adversarial 
networks have demonstrated surprising results in generating new images and videos 
upon request even using natural language as input. In this paper we present the 
first application of generative adversarial autoencoders (AAE) for generating novel 
molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE 
architecture with the latent middle layer serving as a discriminator. As an input and 
output the AAE uses a vector of binary fingerprints and concentration of the molecule. 
In the latent layer we also introduced a neuron responsible for growth inhibition 
percentage, which when negative indicates the reduction in the number of tumor cells 
after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252 
compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 
million compounds in PubChem and select candidate molecules with potential anti-
cancer properties. This approach is a proof of concept of an artificially-intelligent drug 
discovery engine, where AAEs are used to generate new molecular fingerprints with 
the desired molecular properties.

INTRODUCTION

Despite the many advances in biomedical sciences, 
the productivity of research and development programs in 
the pharmaceutical industry is on the decline [1, 2]. The 
failure rates in clinical trials approach 90% for all disease 
categories with oncology among the categories with the 
lowest (5.1%) likelihood of approval (LOA) after Phase 
I [1, 3, 4]. One of the reasons this high failure rate is an 
inefficient early lead discovery process, which mostly 
relies on the screening of large compound libraries to 
identify potential leads for further preclinical development. 
Despite exhaustive efforts, such as modification and 

combination of compounds screening libraries in order to 
place them in relevant druggable space [5], such screening 
remains a blind search.

Despite many prior failures, in silico based 
approaches promise an attractive alternative to empower 
the industry with more efficient screening methods able 
to provide more reliable results at a reduced cost and 
timescale [6]. Although, the use of computational methods 
within the pharmaceutical industry is now well established, 
the development of new mathematical methods coupled 
with the availability of more powerful and cheaper 
computational resources, contribute to the continuous 
improvement and development of new techniques. Among 
them, Machine Learning (ML) algorithms and specifically 
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Deep Learning (DL) methods offer a great potential for 
further significant advances within the industry.

In recent years DL methods demonstrated surprising 
results surpassing human accuracy in many tasks including 
image and voice recognition [7] and managed to overcome 
many limitations of more traditional ML approaches. From a 
technical point of view, modern DL techniques are structured 
as deep architectures, called Deep Neural Networks (DNNs). 
Because of this flexibility and adaptability of DNN for 
learning from large range of data, DNNs are now considered 
as an increasingly important area in the biomedical field that 
shows significant potential in comprehensive -omics analysis 
and could be useful for tackling many current issues [1, 8, 9]. 
Most DL-based methods require a massive amount of data 
for their training, optimization and validation and are often 
applied in most data-rich fields of biomedical sciences [10].

While the range of DL applications is diverse, two 
common uses are classification and prediction. One can 
find DL methods involving discriminative models used for 
classification tasks [11, 12]. These algorithms are based 
on the well-established backpropagation and dropout 
algorithms and make use of piecewise linear units [13–15] 
as activation functions, as they are known for having a 
well-behaved gradient descent.

On the other hand, there is also an increasing 
demand and research developed for using DL to directly 
generate a model that could be successfully applied, for 
example, to compression, denoising, inpainting, texture 
synthesis, semi-supervised learning, unsupervised 
feature learning and other tasks. However, designing 
deep generative models is a bigger challenge than 
discriminative models. This is due to the fact that 
initial generative models, such as restricted Boltzmann 
machines, Denoising autoencoders or deep Boltzmann 
machines [16] are probabilistic and based on a parametric 
specification of a probability distribution function. 
Training of such models requires the maximization of the 
log-likelihood, a function that is usually computationally 
intractable. As a consequence, many difficulties arise 
when trying to approximate the associated probabilistic 
computations (strategies involving the use of Markov 
chains (MCMC algorithm) or unrolled approximate 
inference networks during either training or generation 
of samples). Furthermore, supplementary complications 
may also appear when trying to leverage the benefits 
of piecewise linear units, the most commonly used 
activation function, in the generative context. In order to 
overcome the limitations of parametric methods, several 
alternative generative models have been suggested. 
Generative stochastic networks are an example of 
models that do not require the explicit representation of 
the likelihood while being able to generate samples from 
the desired distribution. As a result of the investigations 
performed so far, one can identify different classes 
of deep generative models: Deep directed graphical 
models, deep undirected graphical models and generative 
autoencoders. It is important to notice that each of 

these methods have advantages and disadvantages 
with respect to different computational and modeling 
steps that can be classified into five categories, that is, 
training, inference, sampling, likelihood evaluation and 
model design. As any in silico based approaches, these 
methods must be subject to validation and performance 
assessment. Depending on the goals, properties and 
specificities of the application, the global evaluation and 
interpretation of a generative model can be done using 
three independent criteria: average log-likelihood, Parzen 
window estimates, and visual fidelity of samples [16, 17].

The latest class of non-parametric approaches for 
deep generative models is known as generative adversarial 
network (GAN). In this new framework, initially proposed 
by Goodfellow et al. [18], generative models are estimated 
via an adversarial process. In practice, two models are 
simultaneously trained: a generative model G that captures 
the data distribution, and a discriminative model D that 
estimates the probability that a sample came from the 
training data rather than G. The training procedure for G 
is to maximize the probability of D making an error [19]. 
Thus, this framework does not correspond to the standard 
optimization problem as it is based on a value function 
that one model seeks to maximize and the other seeks to 
minimize. The process terminates at a saddle point that 
is a minimum with respect to one model’s strategy and a 
maximum with respect to the other model’s strategy [18]. 
Because GANs do not require an explicit representation of 
the likelihood, neither approximate inference nor Markov 
chains are necessary. Consequently, GANs provide an 
attractive alternative to maximum likelihood techniques.

As recently reviewed in [20, 21], the application 
in oncology of various types of knowledge-based in 
silico methods for predicting drug responses that require 
multiple kinds of -omics data for training has lead to the 
development and maintenance of large public databases 
containing curated data sets of molecular profiles of cell 
lines treated with the variety of small molecules. There are 
currently three major publicly available databases that can 
be used for the training of drug response prediction models. 
First among these is the Cancer Cell Line Encyclopedia 
(CCLE) [22] that contains data from more than 1000 
cell lines from 36 tumor sites and drug sensitivity data 
from more than 11000 experiments obtained altogether 
from 24 anticancer drugs tested on overall 500 cell lines. 
Second is the Genomics of Drug Sensitivity in Cancer 
(GDSC) project [23], which contains data obtained from 
different measurements of drug sensitivity in cancer cell 
lines. More precisely, the GDSC contains more than 75 
000 experiments that tested 138 anticancer drugs on 1000 
cell lines from various cancer types. Furthermore, the 
GDSC also contains baseline data, that is, data obtained 
from untreated samples, which include gene copy number, 
expression data and somatic mutations in 75 genes 
relevant to cancer. Finally, another resource of interest is 
the NCI-60 cancer cell line collection [24], that provides 
drug screening data for thousands of drugs with potential 
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applications in cancer therapy and 60 cell lines from nine 
different cancers.

In this work, we propose a deep adversarial model, 
specifically adversarial autoencoder, for identification and 
generation of new compounds that make a use of available 
biological and chemical data. We demonstrate that this 
purely insilico-based approach is capable of providing 
biologically relevant predictions and consequently could 
contribute to speed up the drug discovery process and 
ultimately increase the success rate within the field of 
anticancer therapy.

RESULTS

The adversarial autoencoder (AAE) architecture 
used in this study is depicted on Figure 1. As an input AAE 
uses a vector of binary fingerprints and log concentration 
(LCONC) of the molecule. AAE outputs concentration and 
a vector, consisting of probabilities assigned to each bit 
of the fingerprint. In the latent layer we also introduced a 
neuron responsible for Growth Inhibition percentage (GI), 
where negative values indicate the reduction in the number 
of tumor cells after drug treatment.

AAE was trained on fingerprint, LCONC and GI 
data for 6252 compounds profiled on MCF-7 cell line. 
After that we sampled 640 vectors from prior distribution 

in latent layer with 640 GI values from normal distribution 
N (5,1). Based on this data, we used decoder to generate 
640 probability vectors with corresponding LCONC 
values. Then we extracted the set of probability vectors 
with LCONC < -5.0 M. In total, we obtained 32 vectors.

We screened 32 vectors them against a library of 72 
million compounds derived from Pubchem [25] (Figure 
2). We used the maximum likelihood function to select 
top 10 hits for each of the 32 vectors. This amounted 
for a set of 69 unique compounds (Supplementary Table 
1). In order to assess the biological relevance of the our 
results, Pubchem BioAssay database [26] was used to 
identify the compounds for which anticancer activities 
and other relevant biomedical properties of interest have 
been either tested or demonstrated. This also includes 
several patented compounds. Although information about 
potential mode of action and more precisely anticancer 
activity is not available for all compounds, several of them 
are already known as anticancer agents of various kinds. 
Most of these compounds are related to anthracyclines 
(or anthracycline antibiotics). Anthracyclines are used 
in cancer chemotherapy to treat many cancers, including 
leukemias, lymphomas, stomach, uterine, ovarian, breast 
cancer, and lung cancers. The anthracyclines are among the 
most effective anticancer treatments currently available. 
Daunorubicinol, is an anticancer agent previously tested 

Figure 1: Architecture of Adversarial Autoencoder (AAE) used in this study. Encoder consists of two consequent layers L1 
and L2 with 128 and 64 neurons, respectively. In turn, decoder consists of layers L’1 and L’2 comprising 64 and 128 neurons. Latent layer 
consists of 5 neurons one of which is Growth Inhibition percentage (GI) and the other 4 are discriminated with normal distribution.
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for treating infant with leukemia. CHEMBL519482 is 
another potential anticancer agent whose cytotoxicity 
against human KB cells has been tested using squamous 
cell carcinoma. Epi-daunomycin (CID:153753), also 
belongs to the class of anthracyclines and is classified 
as an antitumor antibiotic, in the treatment of neoplastic 
disease and blood cancers, (leukaemia and lymphoma), 
and many types of carcinoma and soft tissue sarcomas. 
Another compound, Idarubicin (CID:42890) is often traded 
under the denomination idamycin and idamycin PFS. This 
compound is classified as an antitumor antibiotic and orally 
administered anthracycline antineoplastic used in treatment 
against various types of cancers including leukemia, 
breast cancer and multiple myeloma. Similar to other 
anthracyclines, it induces histone eviction from chromatin 
and inhibits the activity of DNA topoisomerase II. It has 
been patented for numerous clinical purposes. (7R,9R)-
Idarubicin (CID:151582) is another anticancer agent tested 
for small cell lung cancer therapies. CID:53304462 has 
undergone several testing phase and available bioassays 
demonstrate its activity for various functions including 
inhibitor of protein arginine methyltransferase 1 (PRMT1). 
Epi-daunorubicin (CID:125250) has been the subject of 
several studies to assess its effects against cancer such as 
nasopharyngeal carcinoma. CID:57620448 was patented 
in 2009 (patent ID US7893023) as prodrug activated 
by plasmin that can be used in cancer chemotherapy. 
CID:44398799 was tested regarding cytotoxicity 
properties against K562 leukemia cell line and SW620 
colon cancer cell line. CID:59835410 is the subject of two 
patents (US2010022467and US7452901) for its activity 
as anticancer phosphonate analog. CID:21563452 is a 
synthetic compound patented (patent ID US3933827) for 
its ability to actively inhibit the growth of transplantable 
tumors and is therefore useful as cytostatic agent. 
CID:15573184 is also patented (patent ID US6838469) as 
it exhibits reduced gastrointestinal side-effects comprising 

a known active substance having antitumor effects. 
CID:59283582 is patented small molecule (patent ID 
US2010098691) as a composition for the treatment of 
cancer as several benzimidazole based anticancer agents 
can be used in combination with a second anti-cancer agent 
to obtain positive therapeutic outcomes.

Other compounds identified have been the 
subject of test phases and patent applications for other 
biomedical purposes. CID:54706490 has been tested as 
having antibacterial activity against ofloxacin, oxacillin, 
erythromycin resistant Staphylococcus aureus. Both 
compounds, CID:44329845 and CID:44329846, were 
tested in vitro and demonstrated antibacterial activity 
against Staphylococcus aureus. CID:58771432 is 
involved in a patent (patent ID US2006286103) for a 
stable antibody formulation. CID:58076509 is patented 
(patent ID US2012029167) as a drug using the magnetic 
properties of a metal salen complex. CID:15573192 is 
patented (patent ID US2015093398) as treatment indicates 
an inhibitory effect of that small molecule on the Zika virus 
induced caspase-3 activity that may correlate with its effect 
on reduction of Zika virus induced cell death. Finally, 
CID:57077355 has been patented as part of a method for 
treating migraine headaches (patent ID WO9506468).

DISCUSSION AND PERSPECTIVES

While the use of DL methods in the biomedical 
field is still in its infancy and most of the applications are 
restricted to pure classification tasks, these techniques may 
transform drug discovery and biomarker development. In 
this work, we demonstrated how DNNs can be used not 
only for classification tasks but for biologically relevant 
generating models. The new conceptual architecture 
of AAE was used to develop and validate a complex 
DL-based work-flow capable of generating models of 
new compounds in cancer and oncology using drug 

Figure 2: Mapping generated molecules to chemical space of Pubchem. Pubchem compounds are depicted in green, training 
set is shown in blue and mapped predictions in red.



Oncotarget10887www.impactjournals.com/oncotarget

concentrations and fingerprints as sole inputs. As a 
result, we predicted 69 compounds belonging to various 
chemical classes. The anticancer activity for our prediction 
have already been identified and in some cases these 
molecules are already used as anticancer agents for 
treating various cancer types including leukemia and 
breast cancer. This confirms the ability of this approach 
to provide biologically relevant results. To the best of our 
knowledge, this is the first application of GAN techniques 
within the field of cancer drug discovery. Further 
experimental validation is in order to assess whether 
the remaining predicted compounds show anticancer 
activity. One of the ways to evaluate the effects of the 
small molecule in multiple human cancers and validate 
the predictions could be transcriptional response analysis 
using signaling pathway activation analysis algorithms 
[27, 28] in PDX models, where human tissue is grafted 
into immunodeficient mice [29].

Generative capabilities of deep adversarial network 
techniques open the doors to new perspectives as it could 
contribute to overcome several limitations of current data 
driven computational methods. For example, we can 
apply GANs on transcriptomics data for the generation 
of new samples for a desired phenotypic groups and in 
chemoinformatics for the prediction of the physical, 
chemical, or biological properties and structures of 
molecules. Quantitative structure–activity relationships 
(QSAR) and quantitative structure–property relationships 
(QSPR) are still considered as the modern standard for 
predicting properties of novel molecules [30]. To that 
end, many ML-based approaches have been developed to 
tackle such problems, but recent results show that the DL-
based methods match or outperform other state-of-the-art 
methods and demonstrate better predictive performance, 
parsimony and interpretability and web-based predictors 
are available on some cases [31]. Furthermore, new 
methods based on convolutional neural networks are 
able to perform predictions by directly using graphs of 
arbitrary size and shape as inputs rather than fixed feature 
vectors [32] and one can expect to see the development 
of more flexible deep generative architectures that can be 
applied directly to other structured data such as sequences, 
trees, graphs, and 3D structures [31, 33]. Thus, the deep 
adversarial network techniques could be used to improve 
accuracy, generative capabilities and predictive power 
and address several issues including computational cost, 
limited computation at each layer and limited information 
propagation across the graph [32].

Finally, target prediction and mapping of bioactive 
small compounds and molecules by analyzing binding 
affinities and chemical properties is another area of research 
that makes extensive use of data-driven computational 
methods in order to optimize the use of data available in 
existing repositories [34, 35]. Despite promising results and 
the availability of web-platforms to computationally identify 
new targets for uncharacterized molecules or secondary 

targets for known molecules such as SwissTargetPrediction 
[34], in general, the available methods remain too inaccurate 
for systematic binding predictions and physical experiments 
remain the state of the art for binding determination. 
In this field, DL-based methods, such as the recently 
released methods AtomNet based on deep convolutional 
neural networks [36] have allowed to circumvent several 
limitations and outperform more traditional computational 
methods including RFs, SVMs for QSAR and ligand-
based virtual screening [37–39]. One can expect that the 
development of DL-methods making use of the GAN 
framework will also lead to significant improvement with 
respect to prediction accuracy and power.

MATERIALS AND METHODS

Data set selection

In this work, we used NCI-60 cell line assay 
full dose response data (released on September 2014) 
available at the Developmental Therapeutics Program 
(DTP) website of NCI/NIH (http://dtp.nci.nih.gov/index.
html). The SMILES annotation for compounds generated 
using program CACTVS v. 3.2 was also downloaded 
from the DTP website. We utilised the Open Babel 
chemistry toolbox [40] to convert SMILES string into 
166-bit Molecular ACCess System (MACCS) chemical 
fingerprints. In total, we generated MACCS fingerprints 
for a total of 6252 molecules with known growth 
inhibition percentage (GIPRCNT or GI) in NCI-60 assay. 
MACCS fingerprints were also generated from 72200431 
molecules derived from Pubchem database [25].

Design and training of the GAN

The architecture of the GAN used in this study was 
inspired by recent work in this field [18, 41]. According 
to original studies, the adversarial network and the 
autoencoder are trained jointly with SGD in two phases 
– the reconstruction phase and the regularization phase – 
executed on each mini-batch. In the reconstruction phase, 
the autoencoder updates the encoder and the decoder to 
minimize the reconstruction error of the inputs. In the 
regularization phase, the adversarial network first updates 
its discriminative network to tell apart the true samples 
(generated using the prior) from the generated samples 
(the hidden codes computed by the autoencoder). The 
adversarial network then updates its generator (which 
is also the encoder of the autoencoder) to confuse the 
discriminative network. Once the training procedure 
is done, the decoder of the autoencoder will define a 
generative model that maps the imposed prior of p(z) to 
the data distribution.

We divided the input layer into a fingerprint part and 
a concentration input neuron. So, our AAE was trained to 
encode and reconstruct not only molecular fingerprints, but 
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also experimental concentrations. The Encoder consists of 
two consequent layers L1 and L2 with 128 and 64 neurons, 
respectively. The decoder consists of the two layers L’1 and 
L’2, comprising 64 and 128 neurons respectively. The latent 
layer consists of 5 neurons, one of which is the GI and 
the four others are discriminated with normal distribution. 
Since we train an encoder net to predict ‘efficiency’ against 
‘cancer’ in a single neuron of latent layer, we divided the 
latent vector in two parts - ‘GI’ and ‘representation’. So 
we added a regression term to the encoder cost function. 
Furthermore, we restrict our encoder to map the same 
fingerprint to the same latent vector independently from 
input concentration by additional ‘manifold’ cost. Here we 
compute mean and variance of the concentrations through 
all dataset and then use them to sample concentrations 
for ‘manifold’ step. On each step we sample fingerprint 
from trainset and batch of concentration from normal 
distribution with given mean and variance. The training 
net with ‘manifold’ loss is performed by maximization 
of cosine similarity between ‘representations’ of similar 
fingerprints with different concentrations

All these changes resulted in a 5-step train iteration 
instead of a 3-step in AAE basic model:

a) Discriminator trained to distinguish between 
given latent distribution and encoded ‘representation’; b) 
Encoder trained to confuse Discriminator with generated 
‘representations’; c) Encoder and Decoder trained jointly 
as Autoencoder; d) Encoder trained to fit ‘score’ part of 
latent vector; e) Encoder trained with ‘manifold’ cost.

The two first steps (a,b) are trained as usual 
adversarial networks. The Autoencoder cost function was 
computed as a sum of logloss [42] of fingerprint part and 
MSE of concentration parts and MSE was also used as a 
regression cost function.

The code for the AAE implemented in this paper is 
available at https://github.com/spoilt333/onco-aae.

ACKNOWLEDGMENTS

We would like to thank NVIDIA and Mark Berger 
and Andrea de Souza personally for providing samples 
of the Tesla K80 and early access to Titan X GPUs. We 
would like to thank Franco Cortese of the Biogerontology 
Research Foundation for suggestions and edits to the 
manuscript, and Michael Palovich of GlaxoSmithKline 
for the insightful advice and valuable comments.

Authors would also like to acknowledge the many 
valuable biologically relevant and technical comments 
from reviewers during all phases of review that 
substantially improved the paper.

CONFLICTS OF INTEREST

The authors are affiliated with Insilico Medicine, 
Inc, which is applying deep learning techniques, including 
generative adversarial networks to drug discovery for 

internal research, providing services to the pharmaceutical 
companies and identifying novel geroprotectors. The 
authors have vested interest in demonstrating and 
popularizing the successful applications of the deep learning 
techniques for drug discovery and biomarker development.

FUNDING

The work of Arthur Kadurin was performed 
according to the Russian Government Program of 
Competitive Growth of Kazan Federal University and 
partially supported by the Government of the Russian 
Federation (grant 14.Z50.31.0030).

Insilico Medicine’s Pharma.AI project is supported 
by a grant from the Life Extension Foundation 2016-LEF-
AA-INSIL.

REFERENCES

1. Munos BH, Chin WW. How to revive breakthrough 
innovation in the pharmaceutical industry. Sci Transl Med. 
2011; 3:89cm16.

2. Mignani S, Huber S, Tomás H, Rodrigues J, Majoral J-P. 
Why and how have drug discovery strategies in pharma 
changed? What are the new mindsets? Drug Discov Today. 
2016; 21:239-49.

3. Kola I, Ismail K, John L. Opinion: Can the pharmaceutical 
industry reduce attrition rates? Nat Rev Drug Discov. 2004; 
3:711-6.

4. Thomas DW, Burns J, Audette J, Carrol A, Dow-Hygelund 
C, Hay M. Clinical development success rates 2006-2015. 
San Diego: Biomedtracker/Washington, DC: BIO/Bend: 
Amplion; 2016.

5. Yu MJ. Druggable chemical space and enumerative 
combinatorics. J Cheminform. Springer; 2013; 5:19.

6. Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, 
Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design 
of efficient computational workflows for in silico drug 
repurposing. Drug Discov Today. 2016;. doi: 10.1016/j.
drudis.2016.09.019.

7. Oquab M, Bottou L, Laptev I, Sivic J. Learning and 
Transferring Mid-level Image Representations Using 
Convolutional Neural Networks. 2014 IEEE Conference 
on Computer Vision and Pattern Recognition. IEEE; p. 
1717-24.

8. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, 
Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov 
A. Deep biomarkers of human aging: Application of deep 
neural networks to biomarker development. Aging (Albany, 
NY). 2016; 8 :1021-33. doi: 10.18632/aging.100968.

9. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, 
Zhavoronkov A. Deep Learning Applications for Predicting 
Pharmacological Properties of Drugs and Drug Repurposing 
Using Transcriptomic Data. Mol Pharm. 2016; 13:2524-30.



Oncotarget10889www.impactjournals.com/oncotarget

10. Mamoshina P, Polina M, Armando V, Evgeny P, Alex Z. 
Applications of Deep Learning in Biomedicine. Mol Pharm. 
2016; 13:1445-54.

11. Krizhevsky, A, Sutskever, I, Hinton, G. ImageNet 
classification with deep convolutional neural networks. 
NIPS’2012.

12. Hinton G, Deng L, Yu D, Dahl G, Mohamed A-R, Jaitly N, 
Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingsbury B. 
Deep Neural Networks for Acoustic Modeling in Speech 
Recognition: The Shared Views of Four Research Groups. 
IEEE Signal Process Mag. 29:82-97.

13. Huanhuan M, Yue Z. Classification of Electrocardiogram 
Signals with Deep Belief Networks. 2014 IEEE 17th 
International Conference on Computational Science and 
Engineering. IEEE; p. 7-12.

14. Jarrett K, Kavukcuoglu K, Ranzato MA, LeCun Y. What 
is the best multi-stage architecture for object recognition? 
2009 IEEE 12th International Conference on Computer 
Vision. IEEE; p. 2146-53.

15. Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, 
Bengio Y. Maxout Networks. arXiv:1302.4389v4 [stat.
ML]. 2013.

16. Denton, Emily L., Soumith Chintala, Rob Fergus. Deep 
Generative Image Models using a  Laplacian Pyramid of 
Adversarial Networks. Adv Neural Inf Process Syst. 2015; 
: 1486-94.

17. van den Oord Matthias Bethge LTA. A note on the 
evaluation of the generative models. arXiv:1511.01844v3 
[stat.ML]. 2016.

18. Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing 
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, 
Yoshua Bengio. Generative adversarial nets. Adv Neural 
Inf Process Syst. 2014; : 2672-80.

19. Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, Roland 
Memisevic. Generating images with recurrent adversarial 
Networks. arXiv:1602.05110v4 [cs.LG]. 2016.

20. Costello JC, Heiser LM, Georgii E, Gönen M, Menden 
MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, 
Khan SA, Mpindi J-P, Kallioniemi O, Honkela A, et al. A 
community effort to assess and improve drug sensitivity 
prediction algorithms. Nat Biotechnol. 2014; 32: 1202-12.

21. Azuaje F. Computational models for predicting drug 
responses in cancer research. Brief Bioinform. 2016; doi: 
10.1093/bib/bbw065.

22. Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, 
Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483:603-7.

23. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur 
A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, 
Liu Q, Iorio F, Surdez D, et al. Systematic identification of 
genomic markers of drug sensitivity in cancer cells. Nature. 
2012; 483:570-5.

24. Shoemaker RH. The NCI60 human tumour cell line 
anticancer drug screen. Nat Rev Cancer. 2006; 6:813-23.

25. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte 
A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang 
J, et al. PubChem Substance and Compound databases. 
Nucleic Acids Res. 2016; 44:D1202-13.

26. Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, 
Shoemaker BA, Gindulyte A, Bryant SH. PubChem 
BioAssay: 2014 update. Nucleic Acids Res. 2013; 
42:D1075-82.

27. Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin 
MB, Zabolotneva AA, Shegay PV, Sokov DG, Gaifullin 
NM, Rusakov IG, Aliper AM, Roumiantsev SA, Alekseev 
BY, Borisov NM, et al. Novel robust biomarkers for human 
bladder cancer based on activation of intracellular signaling 
pathways. Oncotarget. 2014; 5:9022-32. doi: 10.18632/
oncotarget.2493.

28. Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, 
Medintsev S, Vanhaelen Q, Aliper A, Vijg J, Osipov AN, 
Labat I, West MD, Buzdin A, Cantor CR, et al. In silico 
Pathway Activation Network Decomposition Analysis 
(iPANDA) as a method for biomarker development. Nat 
Commun. 2016; 7:13427.

29. Zhu Q, Izumchenko E, Aliper AM, Makarev E, Paz K, 
Buzdin AA, Zhavoronkov AA, Sidransky D. Pathway 
activation strength is a novel independent prognostic 
biomarker for cetuximab sensitivity in colorectal cancer 
patients. Hum Genome Var. 2015; 2:15009.

30. Mitchell JBO. Machine learning methods in 
chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 
2014; 4:468-81.

31. Lusci A, Pollastri G, Baldi P. Deep architectures and deep 
learning in chemoinformatics: the prediction of aqueous 
solubility for drug-like molecules. J Chem Inf Model. 2013; 
53:1563-75.

32. David Duvenaud, Dougal Maclaurin, Jorge Aguilera-
Iparraguirre Rafael Gomez-Bombarelli, Timothy Hirzel, 
Alan Aspuru-Guzik, Ryan P. Adams. Convolutional 
Networks on Graphs for Learning Molecular Fingerprints. 
arXiv:1509.09292v2 [cs.LG]. 2015.

33. Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay 
Pande, Patrick Riley. Molecular Graph Convolutions: 
Moving Beyond Fingerprints. arXiv:1603.00856v3 [stat.
ML]. 2016.

34. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, 
Zoete V. SwissTargetPrediction: a web server for target 
prediction of bioactive small molecules. Nucleic Acids Res. 
2014; 42:W32-8.

35. Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, 
Bender A. Target prediction utilising negative bioactivity 
data covering large chemical space. J Cheminform. 2015; 
7:51.

36. Izharwallach Michael Dzamba. AtomNet: A Deep 
Convolutional Neural Network for Bioactivity Prediction 



Oncotarget10890www.impactjournals.com/oncotarget

in Structure-based Drug Discovery. arXiv:1510.02855v1 
[cs.LG]. 2015.

37. George E. Dahl, Navdeep Jaitly, Ruslan Salakhutdinov. 
Multi-task Neural Networks for QSAR Predictions. 
arXiv:1406.1231v1 [stat.ML]. 2014.

38. Thomas Unterthiner, Andreas Mayr, Günter Klambauer, 
Sepp Hochreiter. Toxicity Prediction using Deep Learning. 
arXiv:1503.01445v1 [stat.ML]. 2015.

39. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep 
neural nets as a method for quantitative structure-activity 
relationships. J Chem Inf Model. 2015; 55:263-74.

40. O’Boyle NM, Banck M, James CA, Morley C, 
Vandermeersch T, Hutchison GR. Open Babel: An open 
chemical toolbox. J Cheminform. 2011; 3:33.

41. Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian 
Goodfellow, Brendan Frey. Adversarial Autoencoders. 
arXiv:1511.05644v2 [cs.LG]. 2016.

42. Bishop C. Pattern Recognition and Machine Learning. 
Springer-Verlag New York; 2006.


