
RESEARCH ARTICLE

Speed and energy optimized quasi-delay-

insensitive block carry lookahead adder

P. BalasubramanianID
1*, D. L. Maskell1, N. E. Mastorakis2

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore,

2 Department of Industrial Engineering, Technical University of Sofia, Sofia, Bulgaria

* balasubramanian@ntu.edu.sg

Abstract

We present a new asynchronous quasi-delay-insensitive (QDI) block carry lookahead adder

with redundant carry (BCLARC) realized using delay-insensitive dual-rail data encoding and

4-phase return-to-zero (RTZ) and 4-phase return-to-one (RTO) handshaking. The proposed

QDI BCLARC is found to be faster and energy-efficient than the existing asynchronous

adders which are QDI and non-QDI (i.e., relative-timed). Compared to existing asynchro-

nous adders corresponding to various architectures such as the ripple carry adder (RCA),

the conventional carry lookahead adder (CCLA), the carry select adder (CSLA), the

BCLARC, and the hybrid BCLARC-RCA, the proposed BCLARC is found to be faster and

more energy-optimized. The cycle time (CT), which is expressed as the sum of the worst-

case times taken for processing the data and the spacer, governs the speed. The product of

average power dissipation and CT viz. the power-cycle time product (PCTP) defines the low

power/energy efficiency. For a 32-bit addition, the proposed QDI BCLARC achieves the fol-

lowing reductions in design metrics on average over its counterparts when considering RTZ

and RTO handshaking: i) 20.5% and 19.6% reductions in CT and PCTP respectively com-

pared to an optimum QDI early output RCA, ii) 16.5% and 15.8% reductions in CT and

PCTP respectively compared to an optimum relative-timed RCA, iii) 32.9% and 35.9%

reductions in CT and PCTP respectively compared to an optimum uniform input-partitioned

QDI early output CSLA, iv) 47.5% and 47.2% reductions in CT and PCTP respectively com-

pared to an optimum QDI early output CCLA, v) 14.2% and 27.3% reductions in CT and

PCTP respectively compared to an optimum QDI early output BCLARC, and vi) 12.2% and

11.6% reductions in CT and PCTP respectively compared to an optimum QDI early output

hybrid BCLARC-RCA. The adders were implemented using a 32/28nm CMOS technology.

1. Introduction

The 2017 edition of the International Roadmap for Devices and Systems [1] suggests that asyn-

chronous design could be a potential solution to address the increasing power/energy con-

sumption of a digital circuit/system. Substantiating this, in [2], a 128-point, 16-bit, radix-8 fast

Fourier transform (FFT) processor was implemented in the robust QDI asynchronous design

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Balasubramanian P, Maskell DL,

Mastorakis NE (2019) Speed and energy optimized

quasi-delay-insensitive block carry lookahead

adder. PLoS ONE 14(6): e0218347. https://doi.org/

10.1371/journal.pone.0218347

Editor: Jun Ma, Lanzhou University of Technology,

CHINA

Received: March 22, 2019

Accepted: May 30, 2019

Published: June 21, 2019

Copyright: © 2019 Balasubramanian et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work was supported by grants

MOE2017-T2-1-002 and MOE2018-T2-2-024,

Ministry of Education (MOE), Singapore, https://

www.moe.gov.sg/, to D.L.M. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-9412-4773
https://doi.org/10.1371/journal.pone.0218347
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218347&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218347&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218347&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218347&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218347&domain=pdf&date_stamp=2019-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218347&domain=pdf&date_stamp=2019-06-21
https://doi.org/10.1371/journal.pone.0218347
https://doi.org/10.1371/journal.pone.0218347
http://creativecommons.org/licenses/by/4.0/
https://www.moe.gov.sg/
https://www.moe.gov.sg/


style and it was compared with a conventional synchronous FFT processor implementation,

and both these were realized using a 65nm CMOS technology. It was noted that, the QDI FFT

processor is 34× more energy-efficient than its synchronous equivalent. The QDI design style

is a promising alternative to the synchronous design style, and different types of QDI imple-

mentations exist.

QDI circuits are known to be robust to process, voltage, timing and temperature variations

[3, 4], which is important to note since the issue of variability [5] is quite common in the

nanoelectronics era. Moreover, QDI circuits are less affected by electromagnetic interference

compared to synchronous circuits [6]. These properties make QDI circuits preferable for

secure applications [7, 8]. Further, QDI circuits and systems are modular [9], and hence they

are convenient to reuse or replace thus obviating the need for extensive timing re-runs and

analysis. Furthermore, QDI circuits are naturally elastic [10] unlike synchronous circuits, and

they are suitable for subthreshold operation [11].

A QDI circuit is the practically realizable delay-insensitive circuit which includes the weak-

est compromise of the isochronic fork [12]. The isochronic fork assumption implies that all

the wires branching out from a node/junction would experience concurrent rising and falling

signal transitions. Usually, the isochronic fork assumption is confined to a small circuit area

and hence their realization would not be difficult. It has been shown in [13] that QDI circuits

are realizable in the nano-electronics regime.

Addition is a fundamental operation in computer arithmetic, which is realized using the

adder, and an effective adder design is of interest and importance. This article deals with the

high-speed and energy-efficient QDI realization of the adder.

In a latest work [14], several asynchronous implementations of a 32-bit adder were consid-

ered and analyzed. QDI full adders based on [15, 16, 17] are strongly indicating (acknowledg-

ing) implying that these full adders would wait for the arrival of all the primary inputs and

then process them to produce the required primary outputs. When such strong-indication full

adders are cascaded to form an N-bit RCA, the RCA would be weakly indicating [14]. The

main drawback with this weakly indicating RCA is that a worst-case critical path delay involv-

ing N full adders would be encountered for processing the ‘data’ (called ‘forward latency’) and

a similar critical path delay would be encountered for processing the ‘spacer’ (called ‘reverse

latency’) which affects their speed (CT) and increases their energy (PCTP). The terminologies

‘data’ and ‘spacer’ in the context of RTZ and RTO handshake protocols are explained in Sec-

tion 3.

Reference [18] yields a weak-indication QDI full adder based on the concept of binary deci-

sion diagram, whose sum output would wait for the arrival of all the primary inputs while its

carry output need not thus potentially speeding-up the carry propagation. When N instances

of the weak-indication full adder of [18] are cascaded to form a QDI RCA, the RCA would be

weakly indicating. Although the forward and reverse latencies of a N-bit QDI RCA based on

[18] are data-dependent, they would still involve N full adders in the worst-case, which is not

optimum from the speed and energy perspectives.

In [19], a biased weak-indication QDI full adder was proposed where the sum output of the

full adder is responsible for indicating the arrival of all the primary inputs while the carry out-

put is not. When N weak-indication full adders corresponding to [19] are cascaded, the result-

ing QDI RCA would encounter a data-dependent forward latency, and a constant reverse

latency governed by the sum of the propagation delays of just two full adders. Although the

forward latency may be dictated by the sum of the delays of N full adders, the reverse latency

would be dictated by the sum of the delays of only two full adders, which is useful for optimiz-

ing the speed and energy parameters. It is to be noted that the forward and reverse latencies of

N-bit QDI RCAs constructed using the full adders of [20] and [21] are theoretically the same

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 2 / 27

https://doi.org/10.1371/journal.pone.0218347


as discussed for [19]. However, [20] presents an improved weak-indication full adder com-

pared to [19], with the carry output logic of the former being better optimized than the latter.

Reference [21] presents an early output QDI full adder whose sum output is responsible for

indicating the arrival of all the primary inputs while the carry output is freed from the indica-

tion constraint. In general, an early output circuit is able to produce all the primary outputs

after receiving a subset of the primary inputs, which may correspond to either data or spacer

but not both. An N-bit weak-indication QDI RCA incorporating the early output full adder of

[21] would have a forward latency equal to the sum of the delays of N full adders, and a reverse

latency equal to the sum of the delays of just two full adders. However, the forward latency of

the RCA based on [21] is less compared to the forward latencies of [19] and [20] since the

carry output logic of the full adder of [21] is better optimized compared to the carry output

logic of the full adders of [19] and [20].

Reference [22] presented early output full adders which when cascaded lead to relative-

timed RCAs. Relative-timed RCAs [22] experience a forward latency equivalent to the sum of

the delays of N full adders and the optimal constant reverse latency equivalent to the delay of

just one full adder. Relative-timed circuits [23] are like early output circuits in that after receiv-

ing a subset of the primary inputs (data or spacer), they are able to produce all the primary out-

puts (data or spacer respectively). However, relative-timed circuits usually incorporate

additional timing assumptions with respect to sequencing the arrival of internal signals within

the circuit besides the assumption of isochronic forks, which may be rather sophisticated to

realize. Relative-timed circuits are not QDI circuits, however they are able to facilitate

improvements in the design parameters such as less area, higher speed, and less energy but at

the expense of a compromise in the robustness. In contrast, strong-indication, weak-indication

and early output QDI circuits are robust.

QDI CLAs have also been discussed in the literature [24, 25, 26, 27] and these correspond

to weak-indication or early output type. Among these, [24] presents a full-custom design at the

transistor level while [25, 26, 27] present semi-custom designs which correspond to a gate-

level synthesis. In general, QDI CLAs are classified into QDI CCLA [25] and QDI BCLAs and

BCLARCs [14, 26, 27]. QDI CCLA, BCLAs and BCLARCs tend to have lesser forward latencies

compared to the forward latencies of some QDI and relative-timed (non-QDI) RCAs [14].

However, this advantage may be offset by their greater reverse latencies compared to the

reverse latencies of QDI and relative-timed RCAs [14]. These observations are also applicable

for a comparison made between QDI CSLAs [28] and QDI and relative-timed RCAs [15, 16,

17, 18, 19, 20, 21, 22]. QDI CLAs and CSLAs consume more area compared to the area occu-

pancies of QDI and relative-timed RCAs, as observed in [14].

A QDI BCLA does not incorporate redundant carry output logic [29] while a QDI BCLARC

does, and the latter is able to facilitate considerable reductions in forward and reverse latencies

and cycle time compared to the former. Hence, QDI BCLARCs are preferable among the cate-

gory of QDI CLAs. A hybrid QDI BCLARC-RCA architecture, which incorporates an appro-

priate size RCA in the least significant adder bit positions as a replacement for one or more

instances of a sub-BCLARC may enable a further optimization of the design metrics compared

to the basic QDI BCLARC architecture. However, this is not guaranteed and should be ascer-

tained case-by-case based on timing analysis. In [14], a hybrid QDI BCLARC-RCA outper-

formed the QDI RCAs, CSLAs, and other BCLAs and BCLARCs mentioned above in terms of

speed and energy.

This article presents a new QDI BCLARC that outperforms all the QDI and non-QDI

RCAs, CSLAs, CCLA, BCLAs, BCLARCs and hybrid BCLARC-RCAs described in [14] and

[22] in terms of speed (CT) and energy (PCTP). The rest of the article is organized as follows.

Section 2 mentions the frequently used acronyms and their expansions for a quick reference.

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 3 / 27

https://doi.org/10.1371/journal.pone.0218347


Section 3 discusses the design preliminaries of QDI and non-QDI (relative-timed) asynchro-

nous circuits. Section 4 describes the proposed QDI sub-BCLA block without and with the

redundant carry output and the resulting QDI BCLAs, BCLARCs and BCLARC-RCAs by con-

sidering an example 32-bit addition. Section 5 presents the design metrics for several 32-bit

QDI and non-QDI asynchronous adders corresponding to 4-phase RTZ and 4-phase RTO

handshaking, and they are compared. Finally, Section 6 draws the conclusions.

2. Acronyms and Expansions

Widely used acronyms and their expansions are given below for a ready reference.

• CLA–Carry Lookahead Adder

• BCLA–Block CLA

• BCLARC–BCLA with Redundant Carry

• BCLG–Block Carry Lookahead Generator

• BCLGRC–BCLG with Redundant Carry

• CCLA–Conventional CLA

• CSLA–Carry Select Adder

• CT–Cycle Time

• PCTP–Power-Cycle Time Product

• RCA–Ripple Carry Adder

• QDI–Quasi-delay-insensitive

• RTO–Return-To-One

• RTZ–Return-To-Zero

3. QDI and Non-QDI Circuits–A Background

The design fundamentals of QDI and non-QDI (i.e., relative-timed) asynchronous circuits are

discussed in this section to provide a background.

3.1. Data encoding, handshaking, and timing parameters

The general schematic of a QDI or a relative-timed circuit stage employing delay-insensitive

data encoding and a 4-phase handshaking is shown in Fig 1A, which corresponds to the trans-

mitter-receiver analogy. The technical schematic is shown in Fig 1B.

In Fig 1B, the current stage and next stage registers are analogous to the transmitter and the

receiver, shown in Fig 1A, and a QDI or a relative-timed circuit is sandwiched between the

current stage and the next stage register banks. The register bank comprises a series of regis-

ters, with one register allotted for each of the rails of a dual-rail encoded data input. A register

implies a 2-input Muller C-element [30]. The C-element will output 1 or 0 if all its inputs are 1

or 0 respectively. If the inputs to a C-element are not identical then the C-element would retain

its existing steady-state. The circles with the marking ‘C’ represent the C-elements in the

figures.

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 4 / 27

https://doi.org/10.1371/journal.pone.0218347


In Fig 1, (X1, X0), (Y1, Y0) and (Z1, Z0) represent the dual-rail encoded primary inputs of

the corresponding single-rail inputs X, Y and Z. According to delay-insensitive dual-rail data

encoding and the 4-phase RTZ handshaking [9], an input W is encoded as (W1, W0) where

W = 1 is represented by W1 = 1 and W0 = 0, and W = 0 is represented by W0 = 1 and W1 = 0.

Both these assignments are called data. The assignment W1 = W0 = 0 is called the spacer, and

the assignment W1 = W0 = 1 is deemed illegal since the coding scheme should be complete

[31] and unordered [32] to maintain the delay-insensitivity.

The application of input data to a QDI or relative-timed circuit which adheres to the

4-phase RTZ handshaking follows the sequence: data-spacer-data-spacer, and so forth. It may

be noted that the application of data is followed by the application of the spacer, which implies

that there is an interim RTZ phase between the successive applications of input data. The

interim RTZ phase ensures a proper and robust data communication i.e., handshaking

between the transmitter and the receiver. The RTZ handshake protocol is specified by the fol-

lowing four steps:

• First, the dual-rail data bus specified by (X1, X0), (Y1, Y0) and (Z1, Z0) assumes the spacer,

and therefore the acknowledgment input (ACKIN) is equal to binary 1. After the transmitter

Fig 1. (a) Transmitter-Receiver analogy of a QDI/non-QDI (relative-timed) asynchronous circuit stage, and (b)

technical schematic portraying the example RTZ and RTO completion detectors for the presumed dual-rail data bus

comprising inputs (X1, X0), (Y1, Y0) and (Z1, Z0). The OR and AND gates used in the RTZ and RTO completion

detectors are duals of each other. The datapath is highlighted by the red dashed line in (b).

https://doi.org/10.1371/journal.pone.0218347.g001

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 5 / 27

https://doi.org/10.1371/journal.pone.0218347.g001
https://doi.org/10.1371/journal.pone.0218347


transmits a data, this would cause rising signal transitions i.e., binary 0 to 1 to occur on one

of the dual rails of the entire dual-rail data bus

• Second, the receiver would receive the data sent and drive the acknowledgment output

(ACKOUT) to 1. ACKIN is the Boolean complement of ACKOUT and vice-versa

• Third, the transmitter waits for ACKIN to become 0 and would subsequently reset the entire

dual-rail data bus, i.e., the dual-rail data bus assumes the spacer again

• Fourth, after an unbounded (but a finite and positive) time duration, the receiver would

drive ACKOUT to 0 and then ACKIN would assume 1. With this, a single data transaction is

said to be completed and the asynchronous circuit is permitted to start the next data

transaction

According to dual-rail data encoding and the 4-phase RTO handshaking [33], an input V is

encoded as (V1, V0) and V = 1 is represented by V1 = 0 and V0 = 1, and V = 0 is represented

by V0 = 0 and V1 = 1. Both these assignments are called data. The assignment V1 = V0 = 1 is

called the spacer, and the assignment V1 = V0 = 0 is deemed illegal to maintain the delay-

insensitivity.

The application of input data to a QDI or relative-timed circuit conforming to the 4-phase

RTO handshaking follows the sequence: spacer-data-spacer-data, and so forth. It may be noted

that there is an interim RTO phase between the successive applications of input data. The

interim RTO phase ensures a proper and robust data communication between the transmitter

and the receiver. The RTO handshaking process is specified by the following four steps:

• First, ACKIN is equal to binary 1. After the transmitter transmits the spacer, this would

cause rising signal transitions i.e., binary 0 to 1 to occur on all the rails of the dual-rail data

bus

• Second, the receiver would receive the spacer sent and drive ACKOUT to 1

• Third, the transmitter waits for ACKIN to become 0 and would then transmit the data

through the dual-rail data bus

• Fourth, after an unbounded (but a finite and positive) time duration, the receiver would

drive ACKOUT to 0 and subsequently ACKIN would assume 1. With this, a single data

transaction is said to be completed and the asynchronous circuit is permitted to start the

next data transaction

In a QDI or relative-timed circuit, the time taken to process the data in the datapath,

highlighted by the red dashed line in Fig 1B, is called forward latency, and the time taken to

process the spacer is called reverse latency. Since there is an intermediate RTZ or RTO phase

between the application of two input data sequences, the cycle time is expressed as the sum of

forward and reverse latencies. The cycle time of a QDI or a relative-timed asynchronous circuit

is the equivalent of the clock period of a synchronous circuit. The cycle time governs the speed

at which new data can be input to an asynchronous circuit.

The gate-level details of example completion detectors corresponding to RTZ and RTO

handshaking is shown at the bottom of Fig 1B, within the dotted green boxes. The completion

detector indicates i.e., acknowledges the receipt of all the primary inputs given to an asynchro-

nous circuit stage. In the case of 4-phase RTZ handshaking, ACKOUT is produced by using a

2-input OR gate to combine the respective dual rails of each encoded primary input and syn-

chronizing the outputs of all the 2-input OR gates using a C-element or a tree of C-elements.

In the case of 4-phase RTO handshaking, ACKOUT is produced by using a 2-input AND gate

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 6 / 27

https://doi.org/10.1371/journal.pone.0218347


to combine the respective dual rails of each encoded primary input and then synchronizing

the outputs of all the 2-input AND gates using a C-element or a tree of C-elements.

3.2. QDI circuits

QDI circuits are classified into three types as strong-indication [34], weak-indication [34], and

early output [35] circuits. The input-output timing relations of QDI circuits are illustrated by

the representative timing diagrams shown in Fig 2A and 2B with respect to RTZ and RTO

handshaking.

Strong-indication circuits would wait to receive all the primary inputs (data and spacer),

and after receiving them would process to produce the required primary outputs (data and

spacer respectively). On the other hand, weak-indication circuits can produce all but one of

the primary outputs after receiving a subset of the primary inputs. Nevertheless, only after

receiving the last primary input, they would produce the last primary output.

A connection of strong-indication sub-circuits may not result in a strong-indication circuit;

rather, a weak-indication circuit may result. For example, if two strong-indication full adders

are connected, a weak-indication 2-bit RCA would result. This is because if all the inputs to

one of the full adders are provided, the corresponding sum and carry output bits of that full

adder could be produced regardless of the arrival/non-arrival of the inputs to the other full

adder in the RCA. However, only after all the inputs to the other full adder are provided, its

corresponding sum and carry output bits would be produced. This scenario is characteristic of

weak-indication.

For implementing arithmetic functions, weak-indication is preferable to strong-indication

and this is due to the following reasons: i) strong-indication arithmetic circuits tend to

encounter worst-case forward and reverse latencies for the application of data and spacer, and

therefore the cycle time of strong-indication arithmetic circuits is always the maximum

(worst-case timing), ii) weak-indication arithmetic circuits may encounter data-dependent

forward and reverse latencies or a data-dependent forward latency and a constant reverse

latency, and so the cycle times of weak-indication arithmetic circuits are usually less compared

to strong-indication arithmetic circuits.

An early output circuit is however more relaxed compared to strong- and weak-indication

circuit counterparts. After receiving a subset of the primary inputs (data or spacer), an early

output circuit can produce all the primary outputs (data or spacer respectively). This implies

the late arriving primary inputs may not be acknowledged by the circuit. However, this is not a

cause for concern because isochronic fork assumptions are imposed on all the primary inputs,

and all the primary inputs are given to the completion detector that precedes the early output

circuit, as seen in Fig 1B. Hence, the acknowledgment of the late arriving primary inputs by

the completion detector also implies the receipt of those primary inputs by the asynchronous

circuit. Thus, the problem of wire orphan(s) i.e., unacknowledged signal transitions on the

wire(s) due to the late arrival of primary input(s) is overcome by the assumption of isochronic

forks, which is imposed on all the primary inputs.

Either the data may be produced early, or the spacer may be produced early in an early out-

put circuit and not both. Accordingly, an early output circuit is categorized as early set or early

reset kind. The early set and reset behaviors of early output circuits are highlighted by the dot-

ted green ovals in Fig 2A and 2B. An early output RCA is preferable to a strong-indication and

a weak-indication RCA for achieving better optimizations in speed and power/energy [14]. In

general, an early output circuit can achieve enhanced optimizations in the design metrics com-

pared to strong- and weak-indication counterparts.

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 7 / 27

https://doi.org/10.1371/journal.pone.0218347


In a QDI circuit, the logic decomposition should be performed safely [36]. Safe QDI logic

decomposition [17] is essential to avoid the problem of gate orphans, which are unacknowl-

edged signal transitions occurring on the intermediate gate output(s). For an illustration of

gate and wire orphans, the interested reader is referred to [37]. However, we discuss about

orphans in the following section.

The signal transitions will have to occur monotonically in a QDI circuit from the first logic

level, which receives the primary inputs, up to the last logic level, which produces the primary

outputs [38]. The signal transitions should either be seen rising or falling throughout an entire

QDI circuit. In general, the signal transitions will be rising (i.e., binary 0 to 1) for the applica-

tion of data, and falling (i.e., binary 1 to 0) for the application of spacer in a QDI circuit that

corresponds to RTZ handshaking. On the other hand, the signal transitions will be rising for

the application of spacer and falling for the application of data in a QDI circuit that corre-

sponds to RTO handshaking.

For monotonicity of signal transitions, the monotonic cover constraint [9] should be incor-

porated into a QDI logic description. For example, if a QDI logic function is expressed in the

sum-of-products form, only one product term should be activated for the application of input

data, i.e., the product terms comprising the sum-of-products expression of a QDI logic func-

tion should be mutually orthogonal (also called disjoint), i.e., the logical conjunction of any

two product terms in a QDI logic function should yield zero. Thus, a QDI logic function is ide-

ally expressed in the disjoint sum-of-products form [39], which would consist of mutually dis-

joint products to satisfy the monotonic cover constraint. An example illustration of the

monotonic cover constraint is given in Section 2.2 of [14], and an interested reader may refer

to the same for details. Embedding the monotonic cover constraint and performing safe QDI

logic decomposition are central to the correct implementation of a QDI circuit.

Incorporating the monotonic cover constraint in a QDI logic function would ensure the

activation of just one signal path from a primary input to a primary output for the application

of an input data. This is useful to facilitate the proper acknowledgment of signal transitions

Fig 2. Input-output timing relation of different QDI circuits corresponding to (a) RTZ handshaking, and (b) RTO handshaking.

Early set and reset behaviors of the early output circuit type are highlighted by the dotted green ovals in (a) and (b).

https://doi.org/10.1371/journal.pone.0218347.g002

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 8 / 27

https://doi.org/10.1371/journal.pone.0218347.g002
https://doi.org/10.1371/journal.pone.0218347


throughout an entire QDI circuit, thus avoiding the likelihood of any gate orphan occurrence

(s). Gate orphans are troublesome unlike wire orphans as they may affect the robustness of a

QDI circuit and if they are imminent, restricting them from affecting the circuit robustness

may require incorporating additional timing assumptions which are likely to be sophisticated,

and may be difficult to realize [22].

3.3. Relative-timed (Non-QDI) circuits

Relative-timed circuits [23] are not QDI circuits although they may embed the monotonic

cover constraint and adopt safe QDI logic decomposition for their physical realization. This is

because relative-timed circuits tend to incorporate extra timing assumptions (in addition to

the assumption of isochronic forks), to eliminate any potential problem due to gate orphan(s).

Usually, the extra timing assumptions are related to the delayed arrival of some internal input

signals, which are subject to a specific time bound. If the timing assumptions are upheld in a

relative-timed circuit the circuit would appear to be QDI, and supposing they are violated, the

circuit would not be QDI. Relative-timed circuits are early output circuits; however, they are

non-QDI unlike the latter. A couple of relative-timed RCAs were presented in [22], which

were realized using early output full adders. Relative-timed circuits are seen to be competitive

to early output QDI circuits as they could pave the way for enhanced optimizations of the

design metrics compared to strong-indication, weak-indication and early output QDI circuits

but at the expense of a compromise in the robustness. Hence, only strong-indication, weak-

indication and early output QDI circuits are robust and are guaranteed to be gate-orphan free.

4. Proposed QDI BCLA and QDI BCLARC

4.1. Generic CCLA and BCLA architectures–A brief comparison

In general, an N-bit CCLA is constructed by cascading (N/M) M-bit CCLAs where N modulo

M equals 0 [40]. The M carry outputs of a M-bit CCLA are produced by lookahead based on

the corresponding generate and propagate functions and also the carry input. Of the M carry

outputs, excepting the most significant lookahead carry output, the remaining (M–1) carry

outputs are XOR-ed with the corresponding propagate functions to produce the respective

sum output bits. The most significant lookahead carry output produced by a M-bit CCLA is

propagated to the next M-bit CCLA to serve as its carry input, which is utilized to produce its

corresponding sum and carry output bits.

An N-bit BCLA [41], also called the section-carry based CLA [25], is also realized using (N/

M) M-bit BCLAs where N modulo M equals 0. However, a M-bit BCLA comprises a M-bit

BCLG, three full adders, and a final 3-input XOR function. A M-bit BCLG produces just one

carry output by lookahead based on the propagate and generate functions and the carry input,

which is then propagated to the successive M-bit BCLA to serve as its carry input. The carry

input to an M-bit BCLA along with its corresponding augend and addend inputs are processed

by a kind of sub-RCA which is also of size M-bits that features a cascade of (M–1) full adders

and a final 3-input XOR function to produce the respective sum output bits. Hence, the inter-

mediate carries in a M-bit BCLA are not produced by lookahead; rather they are produced in a

ripple-carry fashion.

4.2. QDI BCLA and BCLARC architectures

The architectures of QDI BCLA and QDI BCLARC for an example 32-bit addition are shown

in Fig 3. We consider the 32-bit addition here so as to facilitate a straightforward comparison

with the recent published literature [14, 22].

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 9 / 27

https://doi.org/10.1371/journal.pone.0218347


Fig 3A shows a 32-bit BCLA that comprises eight 4-bit BCLGs, 24 full adders, and eight

3-input XOR (XOR3) functions. Fig 3B shows a 32-bit BCLARC that comprises the most sig-

nificant 4-bit BCLG, seven less significant 4-bit BCLGRCs, 24 full adders and eight XOR3

functions. In Fig 3A and 3B, (X01, X00) and (Y01, Y00) denote the least significant dual-rail

encoded augend and addend inputs, and (X311, X310) and (Y311, Y310) represent the most

significant dual-rail encoded augend and addend inputs. The dual-rail encoded carry input

and output are denoted by (C01, C00) and (C321, C320) respectively, and the carry input can

be set to 0 for RTZ handshaking and set to 1 for RTO handshaking. The critical datapaths tra-

versed for the application of data and spacer in the adders are highlighted by the green and red

dashed lines in Fig 3A and 3B respectively. It can be noticed in Fig 3 that the 4-bit BCLG, the

4-bit BCLGRC, the full adder, and the XOR3 function form the basic building blocks of the

QDI BCLA and the QDI BCLARC.

This work presents the novel and efficient design of a 4-bit BCLG and BCLGRC, which are

QDI. The 4-bit BCLG and BCLGRC form the heart of the 4-bit BCLA and the 4-bit BCLARC,

which eventually form the building blocks for the QDI BCLA and the QDI BCLARC. QDI

realizations of the full adder and the XOR3 function, which were discussed in our previous

Fig 3. (a) 32-bit QDI BCLA, and (b) 32-bit QDI BCLARC. The architectures remain the same for RTZ and RTO handshaking. The critical paths traversed for the

application of data and spacer also remain the same for RTZ and RTO handshaking. One non-redundant lookahead carry output is produced by each 4-bit QDI BCLG in

(a), whereas a non-redundant lookahead carry output and a redundant lookahead carry output is produced by each 4-bit QDI BCLGRC in (b). FA refers to the full adder

and XOR3 refers to the 3-input XOR function, and both these belong to (QDI) early output type.

https://doi.org/10.1371/journal.pone.0218347.g003

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 10 / 27

https://doi.org/10.1371/journal.pone.0218347.g003
https://doi.org/10.1371/journal.pone.0218347


work [14], have been utilized here to realize the BCLA and the BCLARC. The XOR3 function

is referred to as the sum logic in [14].

Gate-level realizations of the 4-bit QDI BCLG/BCLGRC, the early output QDI full adder,

and the early output QDI XOR3 function corresponding to RTZ handshaking are shown in

Fig 4A, 4B and 4C respectively. The equivalent gate-level circuits corresponding to RTO hand-

shaking are depicted in Fig 5A, 5B and 5C respectively. It is proved in [42] that any asynchro-

nous circuit corresponding to RTZ handshaking can be transformed into that corresponding

to RTO handshaking and vice-versa by replacing the logic gates by their respective duals while

retaining the C-elements and their respective inputs as such. We shall describe the basic build-

ing blocks shown in Fig 4 which correspond to RTZ handshaking, and the discussion will be

applicable to those in Fig 5, which correspond to RTO handshaking.

Fig 4A shows the proposed 4-bit QDI BCLG/BCLGRC. (C01, C00) represents the dual-rail

carry input, (C41, C40) represents the dual-rail lookahead carry output, and (RC41, RC40) is

the redundant dual-rail lookahead carry output, which is logically equivalent to (C41, C40).

The equations for (C41, C40) are given in (1) and (2), which are applicable for (RC41, RC40).

C41 ¼ G3þ P3G2þ P3P2G1þ P3P2P1G0þ P3P2P1P0C01 ð1Þ

C40 ¼ K3þ P3K2þ P3P2K1þ P3P2P1K0þ P3P2P1P0C00 ð2Þ

In (1) and (2), G3 to G0 represent the carry-generate functions, P3 to P0 represent the

carry-propagate functions, and K3 to K0 represent the carry-kill functions. The logic expres-

sions for these functions are given in Fig 4A. The carry-propagate, carry-generate, and carry-

kill functions are mutually orthogonal, which implies that only one of these functions corre-

sponding to a set of primary inputs will be activated for the application of an input data. For

example, referring to Fig 4A, either G3 or P3 or K3 will alone assume 1 during a data phase

and the rest will continue to maintain 0 from the earlier RTZ phase. Eqs (1) and (2) are thus

inherently in the disjoint sum-of-products form.

Note that in Figs 4A and 5A, if the circuit portion shown in red is omitted, they represent

the ‘4-bit QDI BCLG’, and if the circuit portion shown in red is included, they represent the

‘4-bit QDI BCLGRC’. The circuit portion shown in green lines in Figs 4A and 5A signifies the

internal completion detection, which is crucial to ensure freedom from gate orphan(s). The

QDI BCLG features only the lookahead carry output (C41, C40), and the QDI BCLGRC fea-

tures the extra redundant lookahead carry output (RC41, RC40). The proposed 4-bit BCLG

and 4-bit BCLGRC belong to the early output type; the BCLG and the BCLGRC will wait for

the arrival of required data on the primary inputs to produce the corresponding primary out-

puts. However, after the assumption of spacer by a subset of the primary inputs, all the primary

outputs could assume the spacer.

In Fig 4A, R1, R2, R3, R4, C1, C2, ICD, NC41 and NC40 represent the intermediate out-

puts. These internal outputs manifest in Fig 5A as well. Each set of the respective carry-gener-

ate, carry-propagate and carry-kill functions (for example, G3, P3 and K3) are OR-ed in Fig

4A (AND-ed in Fig 5A) and their outputs viz. R1 to R4 are given to a C-element tree. The out-

put of the C-element tree is denoted as ICD, which is the output of the internal completion

detector. NC41 and NC40 are equivalent to C41 and C40. But NC41 and NC40 are synchro-

nized with ICD to produce C41 and C40. This is to ensure that when C41 and C40 are pro-

duced all the internal data processing within the 4-bit BCLG/BCLGRC is completed and all

the internal outputs have settled to the correct steady-state. Ensuring internal completion

detection is necessary for the proposed BCLG/BCLGRC to guarantee that they are QDI.

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 11 / 27

https://doi.org/10.1371/journal.pone.0218347


Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 12 / 27

https://doi.org/10.1371/journal.pone.0218347


To illustrate the importance of and the need for internal completion detection in Fig 4A

(and Fig 5A), let us assume that P3 = P2 = P1 = G0 = 1 after an RTZ phase. As a result, NC41

would assume 1. Also, R1 = R2 = R3 = R4 = 1. Therefore, C1 = C2 = 1 and ICD = 1. Since

NC41 = ICD = 1, C41 = 1 and C40 = 0. Subsequently, in the next RTZ phase, let us assume

that only P3, P2 and P1 have become 0 and G0 is still 1. Given this, NC41 will assume 0. Sup-

posing, NC41 was used to represent C41, this will incorrectly convey that the BCLG/BCLGRC

has assumed the spacer although the internal data processing has not been completed because

G0 has not yet become 0. This violates the QDI principle because in a QDI circuit, the produc-

tion of primary outputs should unambiguously confirm the receipt of the primary inputs and

the completion of internal computation within the circuit for the processing of data and

spacer. This will avoid the likelihood of any gate orphan(s), which would occur if the output(s)

of intermediate gate(s) remain unacknowledged.

4.3. Cycle time calculation of proposed QDI BCLA and BCLARC

It would be useful to analyze the (worst-case) CTs of the proposed QDI BCLA and BCLARC

to gain an insight into which of these architectures would be beneficial in terms of the speed

prior to physical realization. To estimate the CT, the estimation of forward and reverse laten-

cies is essential since CT is the summation of forward and reverse latencies.

4.3.1. Cycle time of QDI BCLA. To theoretically estimate the (worst-case) CT of the pro-

posed QDI BCLA that corresponds to RTZ handshaking, let us consider Fig 3A and Fig 4. Let

TBCLG, TFA and TXOR3 represent the propagation delays of the QDI early output 4-bit BCLG,

the full adder, and the XOR3 function respectively, which are shown in Fig 4. Let the propaga-

tion delays of the least significant 4-bit BCLG and the intermediate 4-bit BCLG be denoted as

TBCLG_LS and TBCLG_INT. Given these, the forward latency of the 32-bit QDI BCLA

(FLBCLA_RTZ) shown in Fig 3A that corresponds to RTZ handshaking, which incorporates the

building blocks of Fig 4, is expressed by (3). In (3), the last term on the right-side represents

the propagation delay of the input register (TRegister), which is the propagation delay of the

2-input C-element since the C-element represents the register.

FLBCLA RTZ ¼ TXOR3 þ ð3� TFAÞ þ ð6� TBCLG INTÞ þ TBCLG LS þ TRegister ð3Þ

Referring to Fig 4A, the longest (critical) datapath is traversed in the least significant BCLG

which involves an AO22 complex gate, a 3-input OR gate, and three 2-input C-elements. As in

the previous works, the 2-input C-element was custom-realized based on a 32/28nm CMOS

technology [43] by modifying the AO222 complex gate realization by introducing feedback

which required 12 transistors. Besides the C-element, all the other gates in the cell library [43]

were directly utilized. In the subsequent intermediate BCLGs, the datapath traversal would

encounter relatively fewer gates which involves a 2-input C-element, a 2-input OR gate, and a

final 2-input C-element. The datapath traversal in the full adder would involve an AO22 gate,

and the datapath traversal via the XOR3 function would involve a 2-input C-element and a

2-input OR gate.

With TAO22, TOR3, TCE2 and TOR2 representing the propagation delays of an AO22 complex

gate, a 3-input OR gate, a 2-input C-element, and a 2-input OR gate respectively, (3) is

expanded and given by (4). Note that there is a one-to-one correspondence between the terms

Fig 4. (a) Proposed QDI 4-bit BCLG/BCLGRC, (b) early output QDI full adder, and (c) early output QDI XOR3 function. All

the circuits correspond to 4-phase RTZ handshaking. Note that if the circuit portion shown in red is omitted in (a), it is called

4-bit BCLG; if the circuit portion shown in red is included in (a), it is called 4-bit BCLGRC–this interpretation of 4-bit BCLG and

4-bit BCLGRC is also applicable to Fig 5(a). The circuit portion shown in green lines signifies the internal completion detection.

https://doi.org/10.1371/journal.pone.0218347.g004

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 13 / 27

https://doi.org/10.1371/journal.pone.0218347.g004
https://doi.org/10.1371/journal.pone.0218347


Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 14 / 27

https://doi.org/10.1371/journal.pone.0218347


present on the right-side of (3) and (4).

FLBCLA RTZ ¼ ðTCE2 þ TOR2Þ þ ð3� TAO22Þ þ 6� ð2� TCE2 þ TOR2Þ þ ðTAO22 þ TOR3 þ 3

� TCE2Þ þ TCE2 ð4Þ

Let the reverse latency of the QDI BCLA shown in Fig 3A that corresponds to RTZ hand-

shaking be denoted as RLBCLA_RTZ which is expressed by (5).

RLBCLA RTZ ¼ TFA þ ð6� TBCLG INTÞ þ TBCLG LS þ TRegister ð5Þ

Compared to (3), the processing of the spacer in the QDI BCLA involves fewer gates, i.e.,

two full adders and one XOR3 less. This is because the least significant full adder present in the

most significant 4-bit BCLA of Fig 3A would wait for the arrival of the carry input (C281,

C280) to process it to produce the sum output bit (SUM281, SUM280). Referring to Fig 4B,

the carry outputs of all the full adders can be produced early and when they are given as the

carry inputs for the successive full adders in the cascade, the sum outputs of those full adders

could be produced simultaneously. This time delay is less compared to the reverse latency of

the QDI BCLA shown in Fig 3A. Thus, (5) is expanded and given as (6), and there is a one-to-

one correspondence between the terms present on the right-side of (5) and (6).

RLBCLA RTZ ¼ ðTCE2 þ TOR2Þ þ 6� ð2� TCE2 þ TOR2Þ þ ðTAO22 þ TOR3 þ 3� TCE2Þ þ TCE2 ð6Þ

The CT of the QDI BCLA (Fig 3A) can be calculated by substituting the propagation delays

of minimum-size gates present in the cell library in (4) and (6), and then adding up the for-

ward and reverse latencies. Based on the theoretical calculations, the forward and reverse

latencies of the 32-bit QDI BCLA are found to be 2.583ns and 2.367ns, resulting in a CT of

4.95ns for RTZ handshaking.

The detailed expressions for forward and reverse latencies corresponding to RTO hand-

shaking are given by (7) and (8) with reference to Fig 3A and Fig 5. Eqs (7) and (8) are deduced

by replacing the propagation delays of the gates mentioned in (4) and (6) with the propagation

delays of their dual gates, however, with the exception of TCE2, which is retained as such. This

is because the 2-input C-elements and their respective inputs are retained as such while trans-

forming a circuit corresponding to RTZ handshaking into that that corresponds to RTO hand-

shaking [42].

FLBCLA RTO ¼ ðTCE2 þ TAND2Þ þ ð3� TOA22Þ þ 6� ð2� TCE2 þ TAND2Þ þ ðTOA22 þ TAND3 þ 3

� TCE2Þ þ TCE2 ð7Þ

RLBCLA RTO ¼ ðTCE2 þ TAND2Þ þ 6� ð2� TCE2 þ TAND2Þ þ ðTOA22 þ TAND3 þ 3� TCE2Þ

þ TCE2 ð8Þ

Based on (7) and (8), the forward and reverse latencies of the 32-bit QDI BCLA, shown in

Fig 3A, are calculated to be 2.842ns and 2.632ns, resulting in a CT of 5.474ns for RTO

handshaking.

4.3.2. Cycle time of QDI BCLARC. To theoretically estimate the (worst-case) CT of the

proposed QDI BCLARC that corresponds to RTZ handshaking, let us consider Fig 3B and Fig

4. In Fig 3B, one most significant 4-bit BCLA and seven less significant 4-bit BCLARCs are

used. The use of the 4-bit BCLA for the most significant adder nibble position is because only

Fig 5. (a) Proposed QDI 4-bit BCLG/BCLGRC, (b) early output QDI full adder, and (c) early output QDI XOR3 function. All the

circuits correspond to 4-phase RTO handshaking. The circuit portion shown in green lines signifies the internal completion

detection.

https://doi.org/10.1371/journal.pone.0218347.g005

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 15 / 27

https://doi.org/10.1371/journal.pone.0218347.g005
https://doi.org/10.1371/journal.pone.0218347


one (non-redundant) lookahead carry output has to be produced which represents the carry

overflow.

Starting from the least significant 4-bit BCLARC, each 4-bit BCLARC produces a non-

redundant lookahead carry output and a redundant lookahead carry output. The redundant

lookahead carry output of a 4-bit BCLGRC is propagated to the successive 4-bit BCLGRC (or

4-bit BCLG) as its carry input, whereas the non-redundant lookahead carry output is propa-

gated to a cascade of three full adders and an XOR3 present in the successive 4-bit BCLARC

(or 4-bit BCLA).

Referring to Fig 4A, the critical datapath would be traversed in the least significant 4-bit

BCLGRC involving an AO22 complex gate, a 4-input AND gate, a 4-input OR gate, and an

AO21 complex gate. In the subsequent intermediate 4-bit BCLGRCs, the datapath traversal

would involve just one AO21 complex gate.

The forward latency of the BCLARC corresponding to RTZ handshaking (FLBCLARC_RTZ),

shown in Fig 3B, is expressed by (9), where TBCLGRC denotes the propagation delay of the 4-bit

BCLGRC shown in Fig 4A. In (9), TBCLGRC_INT specifies the propagation delay of a 4-bit

BCLGRC present in an intermediate nibble position of the adder, and TBCLGRC_LS specifies the

propagation delay of the least significant 4-bit BCLGRC.

FLBCLARC RTZ ¼ TXOR3 þ ð3� TFAÞ þ ð6� TBCLGRC INTÞ þ TBCLGRC LS þ TRegister ð9Þ

Eq (9) is expanded and given by (10), where TAO21, TAND4 and TOR4 denote the propagation

delays of the AO21 complex gate, the 4-input AND gate, and the 4-input OR gate respectively.

There is a one-to-one correspondence between the terms present on the right-side of (9) and

(10).

FLBCLARC RTZ ¼ ðTCE2 þ TOR2Þ þ ð3� TAO22Þ þ ð6� TAO21Þ þ ðTAO22 þ TAND4 þ TOR4 þ TAO21Þ

þ TCE2 ð10Þ

The critical datapath traversed for the application of the spacer in the case of the 32-bit QDI

BCLARC is highlighted by the red dashed line in Fig 3B. Since the 4-bit QDI BCLGRC shown

in Fig 4A is of early output type, and because this is used to construct the QDI BCLARC of Fig

3B, the redundant lookahead carry outputs of all the 4-bit BCLGRCs could assume the spacer

simultaneously. But, the redundant lookahead carry output produced by a 4-bit BCLGRC is

given as the carry input for the successive 4-bit BCLGRC (or 4-bit BCLG) to produce the cor-

responding non-redundant lookahead carry output. This carry output then serves as the carry

input for the least significant full adder present in the following 4-bit BCLARC (or 4-bit

BCLA) to produce the corresponding sum output bit.

With RLBCLARC_RTZ representing the reverse latency of the QDI BCLARC, that corresponds

to RTZ handshaking, as shown in Fig 3B, and referring to Fig 5, it is expressed by (11). In (11),

TBCLG_LS may be replaced by TBCLG_INT without any loss of generality since the reverse latency

would be the same. The expanded version of (11) is given by (12), and there exists a one-to-

one correspondence between the terms present on the right-side of (11) and (12).

RLBCLARC RTZ ¼ TFA þ TBCLG INT þ TBCLG LS þ TRegister ð11Þ

RLBCLARC RTZ ¼ ðTCE2 þ TOR2Þ þ ð2� TCE2 þ TOR2Þ þ ðTAO22 þ TAND4 þ TOR4 þ TAO21Þ

þ TCE2 ð12Þ

Based on (10) and (12), the forward and reverse latencies of the QDI BCLARC, shown in

Fig 3B, which corresponds to RTZ handshaking are calculated to be 1.171ns and 0.849ns,

which results in a CT of 2.02ns.

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 16 / 27

https://doi.org/10.1371/journal.pone.0218347


The detailed expressions for forward and reverse latencies corresponding to RTO hand-

shaking are given by (13) and (14). Eqs (13) and (14) are deduced by replacing the propagation

delays of the gates mentioned in (10) and (12) with the propagation delays of their dual gates,

however, excluding TCE2 which is retained as such.

FLBCLARC RTO ¼ ðTCE2 þ TAND2Þ þ ð3� TOA22Þ þ ð6� TOA21Þ þ ðTOA22 þ TOR4 þ TAND4

þ TOA21Þ þ TCE2 ð13Þ

RLBCLARC RTO ¼ ðTCE2 þ TAND2Þ þ ð2� TCE2 þ TAND2Þ þ ðTOA22 þ TOR4 þ TAND4 þ TOA21Þ

þ TCE2 ð14Þ

Based on (13) and (14), the forward and reverse latencies of the 32-bit QDI BCLARC (Fig

3B) corresponding to RTO handshaking are calculated to be 1.245ns and 0.933ns, which

results in a CT of 2.178ns.

Based on the theoretical calculations of CT, it is noted that the QDI BCLARC architecture

achieves 59.1% and 60.2% reductions in CT than the QDI BCLA architecture for a 32-bit addi-

tion with respect to RTZ and RTO handshaking respectively. This implies the former

(BCLARC) is more beneficial than the latter for performing addition at an enhanced speed.

Based on the simulation results obtained, which will be discussed in the next section, it is

found that the QDI BCLARC architecture achieves 57% and 55.7% reductions in CT over the

QDI BCLA architecture for a 32-bit addition with respect to RTZ and RTO handshaking

respectively. Hence, a good correlation is evident between the theoretical calculations and the

practical estimates of CT. Although the theoretical calculations of CT may be approximate,

nevertheless they are useful as they give a valuable design insight, which is the QDI BCLARC

architecture is preferable to the QDI BCLA architecture. Nevertheless, differences between the

theoretical calculations and the practical estimates are expected because the interconnect

delays and the parasitic are not accounted for in the theoretical calculations of CT.

5. Results and discussion

Fifty-six 32-bit QDI and non-QDI (relative-timed) asynchronous adders, which correspond to

various architectures such as RCA, CSLA, CCLA, BCLA, BCLARC, and hybrid BCLARC-RCA

were physically realized using a 32/28nm CMOS technology [43], including the input registers

and the completion detector as shown in Fig 1B. Of the fifty-six asynchronous adders, twenty-

eight correspond to RTZ handshaking and a similar number corresponds to RTO handshak-

ing. As mentioned earlier, the 2-input C-element was custom-realized by modifying the

AO222 gate to implement the asynchronous adders. A typical-case PVT specification of a high

Vt standard digital cell library with a recommended supply voltage of 1.05V and an operating

junction temperature of 25˚C was considered for the implementations and simulations. The

registers and completion detectors associated with the asynchronous adders are maintained

the same with respect to RTZ and RTO handshaking. This implies the differences between the

simulation results of the adders are attributable to the differences between their logic composi-

tions. The default wire load model was considered in the simulations. A virtual clock source

was used to constrain the input and output ports of the adders, which did not feature in the

adder designs or simulations and hence it does not contribute to the design metrics.

Test benches comprising about two thousand (random) input vectors including data and

spacer, which separately correspond to RTZ and RTO handshaking, as used in our prior work

[14], were used to verify the functionalities of the adders. The input vectors corresponding to

RTZ and RTO handshaking bear a logical equivalence. Functional simulations of all the adders

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 17 / 27

https://doi.org/10.1371/journal.pone.0218347


were performed and their respective switching activities were captured which were subse-

quently used to estimate the average power dissipation.

Synopsys EDA tools were used to estimate the design metrics of the adders. The design met-

rics estimated include forward and reverse latencies, CT, area, and average power dissipation.

The forward latency of an asynchronous circuit is similar to the critical path delay of a syn-

chronous circuit and it is directly estimated. The reverse latency may differ from the forward

latency, which is evident from the critical datapaths highlighted in Fig 3A and 3B. The reverse

latencies of the asynchronous adders were ascertained from the gate-level timing analysis, and

this method was followed for RTZ and RTO handshaking, as done in our previous work [14].

The design metrics of the adders corresponding to RTZ handshaking are given in Table 1, and

the design metrics corresponding to RTO handshaking are given in Table 2. Adder legends are

provided in the second columns of Tables 1 and 2 to conveniently refer to the individual

adders during the discussion. The related literature references pertaining to those adders are

also given in Tables 1 and 2. The adders have been grouped according to their architectural

type and not according to the chronological order of appearance in the literature.

The area occupancies of various building blocks used to construct the asynchronous adders

such as full adders, XOR3 function, 2:1 multiplexers (MUXes), 4-bit CCLA, 4-bit BCLGs and

4-bit BCLGRCs (and 4-bit BCLAs and 4-bit BCLARCs) pertaining to [14–22, 25, 26, 27] and

the proposed 4-bit BCLG, BCLGRC, BCLA and BCLARC are given in Table 3, which corre-

spond to RTZ and RTO handshaking. The ‘–’ in Table 3 specifies the non-requirement of the

logic block in realizing the corresponding adder.

Referring to Table 1, adders Z2 (O2) and Z4 (O4) were constructed using the full adder of

[16] which correspond to RTZ (RTO) handshaking. Adders Z1 (O1), Z3 (O3), and Z5 (O5) to

Z9 (O9) were constructed using the full adders of [15], [17] and [18] to [22] respectively,

which correspond to RTZ (RTO) handshaking. Adders Z1 (O1) to Z9 (O9) correspond to the

RCA architecture. Adders Z10 and Z11 (O10 and O11) are CSLAs which were constructed

using the early output full adder of [21] and the strong-indication 2:1 MUX of [44], which per-

tain to RTZ (RTO) handshaking.

Adders Z12 and Z13 (O12 and O13) are BCLAs, constructed using the full adder of [19],

the XOR3 function derived from the full adder functionality, and the early output 4-bit BCLG

and BCLGRC of [25], which correspond to RTZ (RTO) handshaking. Adders Z14 and Z15

(O14 and O15) are also BCLAs (BCLA and BCLARC respectively), constructed using the full

adder of [20], the XOR3 function derived from the full adder functionality, and the early out-

put 4-bit BCLG and BCLGRC of [25], which correspond to RTZ (RTO) handshaking.

Adder Z16 (O16) is a CCLA [26], which pertains to RTZ (RTO) handshaking. Adders Z17

and Z18 (O17 and O18) are also BCLAs (BCLA and BCLARC respectively), constructed using

the full adder of [21], the XOR3 function based on the full adder functionality, and the early

output 4-bit BCLG and BCLGRC of [25], which correspond to RTZ (RTO) handshaking.

Adders Z19 and Z20 (O19 and O20) are also BCLAs (BCLA and BCLARC respectively), con-

structed using the full adder of [21], the XOR3 function derived from the full adder functional-

ity, and the early output 4-bit BCLG and BCLGRC of [14], which correspond to RTZ (RTO)

handshaking. Adders Z21 to Z23 (O21 to O23) are hybrid BCLARC-RCAs, which are derived

from Z20 (O20).

Adders Z24 and Z25 (O24 and O25) represent the proposed BCLAs (BCLA and BCLARC

respectively), which were realized using the novel 4-bit BCLG and BCLGRC blocks described

in Section 4.2, the full adder of [21] and the XOR3 function derived from the full adder func-

tionality, which correspond to RTZ (RTO) handshaking. Adders Z26 to Z28 (O26 to O28) are

hybrid BCLARC-RCAs, which are derived from Z25 (O25). It may be seen from Table 3 that

some building blocks require the same area for both RTZ and RTO handshaking. For example,

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 18 / 27

https://doi.org/10.1371/journal.pone.0218347


the full adder of [15] used to construct Z1 and O1 requires the same area for physical imple-

mentation based on RTZ and RTO handshaking. Likewise, the XOR3 function used to con-

struct Z12 to Z15 and O12 to O15 require the same areas for physical realization based on RTZ

and RTO handshaking. This is because some of the dual gate equivalents in the digital cell

library [43] feature the same area, as remarked in [14] and [20]. For examples, the minimum-

size 2-input AND and OR gates of [43] require the same area, which is found to be the case

with the gate duals such as AO22 and OA22 gates, and AO222 and OA222 gates. This kind of

similar area occupancies by the dual gate equivalents may not be common in all standard digi-

tal cell libraries. However, the propagation delay and leakage and dynamic power components

of the gates used for RTO handshaking (such as 2-input AND, OA22 and OA222 gates) are

generally less than the corresponding metrics of the dual gate equivalents used for RTZ hand-

shaking (such as 2-input OR, AO22 and AO222), as noted from [43]. This explains why the

Table 1. Design metrics of several 32-bit asynchronous adders (QDI and non-QDI) corresponding to RTZ handshaking.

Adder Architecture Adder Legends Literature Reference FL1 (ns) RL2 (ns) CT (ns) Area (μm2) Power (μW)

RCA Z1 [15] 14.61 14.61 29.22 2529.00 2190

Z2 [16]3 9.26 9.26 18.52 2504.60 2181

Z3 [17] 9.04 9.04 18.08 2293.14 2172

Z4 [16]4 8.24 8.24 16.48 2423.27 2177

Z5 [18] 7.00 7.00 14.00 2016.63 2171

Z6 [19] 4.43 0.58 5.01 2097.96 2174

Z7 [20] 3.32 0.73 4.05 2049.16 2171

Z8 [21] 3.10 0.61 3.71 1658.80 2161

Z9 [22]5 2.91 0.62 3.53 1658.80 2168

Uniform CSLA Z10 [28] 2.46 1.89 4.35 3000.17 2293

Non-uniform CSLA Z11 3.23 3.23 6.46 3384.44 2312

BCLA Z12 [25] 3.31 2.93 6.24 2951.88 2191

BCLARC Z13 2.46 1.69 4.15 2987.46 2192

BCLA Z14 [25] 3.14 2.88 6.02 2915.29 2188

BCLARC Z15 2.32 1.68 4.00 2950.87 2189

CCLA Z16 [26] 2.75 2.75 5.50 2569.65 2177

BCLA Z17 [27] 3.13 2.88 6.01 2524.92 2178

BCLARC Z18 2.31 1.67 3.98 2560.50 2179

BCLA Z19 [14] 2.76 2.50 5.26 2209.78 2174

BCLARC Z20 2.01 1.38 3.39 2245.36 2176

Hybrid BCLARC-RCA1 Z21 1.93 1.38 3.31 2171.41 2174

Hybrid BCLARC-RCA2 Z22 1.97 1.38 3.35 2097.45 2172

Hybrid BCLARC-RCA3 Z23 2.23 1.38 3.61 2023.49 2170

BCLA Z24 Proposed 3.46 3.20 6.66 2307.37 2187

BCLARC Z25 1.76 1.11 2.87 2342.95 2188

Hybrid BCLARC-RCA1 Z26 1.86 1.11 2.97 2256.80 2184

Hybrid BCLARC-RCA2 Z27 2.11 1.11 3.22 2170.64 2181

Hybrid BCLARC-RCA3 Z28 2.36 1.11 3.47 2084.49 2178

1 Forward Latency
2 Reverse Latency
3 Uses strong-indication full adder
4 Uses weak-indication full adder
5 Uses LOPT_EO_FA of [15] leading to less CT.

https://doi.org/10.1371/journal.pone.0218347.t001

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 19 / 27

https://doi.org/10.1371/journal.pone.0218347.t001
https://doi.org/10.1371/journal.pone.0218347


RTO handshaking usually facilitates less delay and power dissipation compared to the RTZ

handshaking, as observed from Tables 1 and 2, and validated in [33]. Unfortunately, the physi-

cal details about the library components [43] cannot be discussed in detail here due to the pro-

prietary nature of the information.

Referring to the diverse asynchronous adders given in Tables 1 and 2, in terms of area, the

RCA architecture is preferable to the CSLA and CLA architectures. This is true even in the

case of a synchronous digital design [45, 46]. Hence, from the area perspective, Z8 and O8 are

preferable with respect to RTZ and RTO handshaking. Z9 and O9 are discounted as they are

non-robust relative-timed RCAs.

As mentioned earlier, CT governs the speed of a QDI or a relative-timed asynchronous cir-

cuit that employs delay-insensitive data encoding and a 4-phase handshaking. Among the

RCAs, Z9 and O9 report the least CT with respect to RTZ and RTO handshaking. However,

Table 2. Design metrics of several 32-bit asynchronous adders (QDI and non-QDI) corresponding to RTO handshaking.

Adder Architecture Adder Legends Literature Reference FL1 (ns) RL2 (ns) CT (ns) Area (μm2) Power (μW)

RCA O1 [15] 14.15 14.15 28.30 2529.00 2185

O2 [16]3 8.74 8.74 17.48 2374.48 2167

O3 [17] 8.88 8.88 17.76 2293.15 2168

O4 [16]4 8.03 8.03 16.06 2358.21 2167

O5 [18] 6.95 6.95 13.90 2016.63 2167

O6 [19] 3.79 0.56 4.35 2097.96 2170

O7 [20] 3.31 0.72 4.03 2049.16 2167

O8 [21] 2.93 0.61 3.54 1658.80 2157

O9 [22]5 2.76 0.61 3.37 1658.80 2164

Uniform CSLA O10 [28] 2.38 1.85 4.23 3000.17 2285

Non-uniform CSLA O11 3.15 3.08 6.23 3384.44 2303

BCLA O12 [25] 3.19 2.86 6.05 2984.41 2184

BCLARC O13 2.36 1.69 4.05 3019.99 2185

BCLA O14 [25] 3.10 2.84 5.94 2947.82 2182

BCLARC O15 2.30 1.67 3.97 2983.40 2183

CCLA O16 [26] 2.73 2.73 5.46 2553.39 2169

BCLA O17 [27] 3.06 2.76 5.82 2557.45 2171

BCLARC O18 2.26 1.66 3.92 2593.03 2172

BCLA O19 [14] 2.73 2.50 5.23 2193.52 2167

BCLARC O20 1.95 1.37 3.32 2229.10 2168

Hybrid BCLARC-RCA1 O21 1.88 1.37 3.25 2157.17 2167

Hybrid BCLARC-RCA2 O22 1.89 1.37 3.26 2085.25 2165

Hybrid BCLARC-RCA3 O23 2.13 1.37 3.50 2013.33 2164

BCLA O24 Proposed 3.38 3.14 6.52 2315.51 2180

BCLARC O25 1.74 1.15 2.89 2351.09 2181

Hybrid BCLARC-RCA1 O26 1.78 1.15 2.93 2263.92 2178

Hybrid BCLARC-RCA2 O27 2.02 1.15 3.17 2176.74 2175

Hybrid BCLARC-RCA3 O28 2.26 1.15 3.41 2089.57 2172

1 Forward Latency
2 Reverse Latency
3 Uses strong-indication full adder
4 Uses weak-indication full adder
5 Uses LOPT_EO_FA of [15] leading to less CT.

https://doi.org/10.1371/journal.pone.0218347.t002

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 20 / 27

https://doi.org/10.1371/journal.pone.0218347.t002
https://doi.org/10.1371/journal.pone.0218347


Z9 and O9 are relative-timed RCAs which are non-QDI and non-robust, and hence Z8 and

O8, which are weak-indication QDI RCAs are preferable among the RCA architecture. Com-

pared to the CTs of Z8 and O8, the CTs of CSLAs (Z10 and Z11 with respect to RTZ handshak-

ing and O10 and O11 with respect to RTO handshaking) and many CLAs (Z12 to Z19 and

Z24 with respect to RTZ handshaking and O12 to O19 and O24 with respect to RTO hand-

shaking) are greater. This is mainly due to the substantially reduced reverse latency in the case

of Z8 and O8 compared to their respective CSLA and CLA counterparts.

Referring to (10), to process the data, the critical path traversed in the proposed BCLARC

(Z25 of Table 1) would involve two 2-input C-elements including a register, seven AO21 gates,

four AO22 gates, a 4-input AND gate, a 4-input OR gate and a 2-input OR gate, resulting in a

theoretical forward latency of 1.171ns and a practical forward latency of 1.76ns. On the other

hand, the critical path traversed in an RCA (say, Z8 of Table 1) to process the data would

Table 3. Areas of various asynchronous building blocks (in μm2) used in diverse adder architectures based on a 32/28nm CMOS process [43].

Adder Legends Full Adder XOR3 Logic 2:1 MUX 4-bit CCLA 4-bit BCLG 4-bit BCLGRC 4-bit BCLA 4-bit BCLARC

RTZ Handshaking
Z1 54.64 – – – – – – –

Z2 53.88 – – – – – – –

Z3 47.27 – – – – – – –

Z4 51.34 – – – – – – –

Z5 38.63 – – – – – – –

Z6 41.17 – – – – – – –

Z7 39.65 – – – – – – –

Z8 27.45 – – – – – – –

Z9 27.45 – – – – – – –

Z10, Z11 27.45 – 31.22 – – – – –

Z12, Z13 41.17 34.56 – – 113.35 118.43 271.42 276.50

Z14, Z15 39.65 34.56 – – 113.35 118.43 266.86 271.94

Z16 – – – 223.65 – – – –

Z17, Z18 27.45 22.36 – – 113.35 118.43 218.06 223.14

Z19 to Z23 27.45 22.36 – – 73.96 79.04 178.67 183.75

Z24 to Z28 27.45 22.36 – – 86.15 91.24 190.86 195.95

RTO Handshaking
O1 54.64 – – – – – – –

O2 49.81 – – – – – – –

O3 47.27 – – – – – – –

O4 49.30 – – – – – – –

O5 38.63 – – – – – – –

O6 41.17 – – – – – – –

O7 39.65 – – – – – – –

O8 27.45 – – – – – – –

O9 27.45 – – – – – – –

O10, O11 27.45 – 31.22 – – – – –

O12, O13 41.17 34.56 – – 117.41 122.50 275.48 280.57

O14, O15 39.65 34.56 – – 117.41 122.50 270.92 276.01

O16 – – – 221.61 – – – –

O17, O18 27.45 22.36 – – 117.41 122.50 222.12 227.21

O19 to O23 27.45 22.36 – – 71.92 77.01 176.63 181.72

O24 to O28 27.45 22.36 – – 87.17 92.25 191.88 196.96

https://doi.org/10.1371/journal.pone.0218347.t003

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 21 / 27

https://doi.org/10.1371/journal.pone.0218347.t003
https://doi.org/10.1371/journal.pone.0218347


encounter a register, thirty-two AO22 gates, a 2-input C-element and a 2-input OR gate,

resulting in a theoretical forward latency of 2.576ns and a practical forward latency of 3.10ns.

For a similar discussion regarding reverse latency, referring to (12), to process the spacer,

the critical path traversed in the proposed BCLARC (Z25) would involve four 2-input C-ele-

ments including a register, one AO21 gate, one AO22 gate, a 4-input AND gate, a 4-input OR

gate and two 2-input OR gates, resulting in a theoretical reverse latency of 0.849ns and a prac-

tical reverse latency of 1.11ns. On the other hand, the critical path traversed in the RCA (Z8 of

Table 1) to process the spacer would encounter a register, two AO22 gates, a 2-input C-ele-

ment and a 2-input OR gate, resulting in a theoretical reverse latency of 0.416ns and a practical

reverse latency of 0.61ns. Although the reverse latency of Z8 is less than Z25, the significantly

reduced forward latency of Z25 vis-à-vis Z8 compensates to achieve a considerable net reduc-

tion in CT for Z25 compared to Z8.

According to the theoretical calculations, the CT of proposed BCLARC (Z25) is 2.02ns and

the CT of Z8 is 2.992ns, implying a theoretical reduction in CT by 32.5% for Z25 compared to

Z8. According to the practical estimates given in Table 1, Z25 reports a 22.6% reduction in CT

than Z8. Similarly, based on the practical estimates, O25, which is the RTO counterpart of

Z25, achieves a 18.4% reduction in CT than O8, which is the RTO counterpart of Z8. Overall,

the proposed BCLARCs Z25 and O25 feature reduced CTs compared to the CTs of all the

other adders in Tables 1 and 2 respectively.

Usually, BCLA architectures incorporating redundant carries tend to have reduced forward

and reverse latencies and CT compared to those of plain BCLA architectures which do not

have redundant carries, i.e., the QDI BCLARC architecture is preferable to the QDI BCLA

architecture in terms of the timing. This observation is already substantiated by the delibera-

tions in Section IV and would be further evident upon comparing Z12 and Z13, Z14 and Z15,

Z17 and Z18, Z19 and Z20, and Z24 and Z25 in Table 1, and by comparing O12 and O13, O14

and O15, O17 and O18, O19 and O20, and O24 and O25 in Table 2. Further, this agrees with

the observation made in [29] that introducing redundant logic, which can be interpreted as the

redundant carry output logic introduced in the BCLARC architecture, which is not available

in the BCLA architecture, facilitates overall reductions in the timing.

In the case of CCLAs [26] i.e., Z16 of Table 1 and O16 of Table 2, which are QDI and of

early output type, their forward and reverse latencies are equal. This is because the same criti-

cal path would be traversed for processing the data and the spacer, and the critical path is data-

dependent. Moreover, there is no opportunity for introducing redundant carries in the CCLA

architecture to speed-up the carry propagation since the lookahead carry output of say, a 4-bit

CCLA is provided as the carry input for the successive 4-bit CCLA in the cascade. As a result,

CTs of Z16 and O16 are considerably greater than the CTs of all the BCLARCs. The proposed

BCLARC i.e., Z25 achieves a 47.8% reduction in CT compared to Z16. Based on RTO hand-

shaking, O25 achieves a 47.1% reduction in CT compared to O16.

In Tables 1 and 2, hybrid BCLARC-RCAs are also considered. They are denoted by Z21 to

Z23 and Z26 to Z28 in Table 1, and O21 to O23 and O26 to O28 in Table 2. A hybrid

BCLARC-RCA architecture replaces one or more less significant sub-BCLARC(s) with a simi-

lar size RCA, which consists of full adders. For example, Z21 and Z26, Z22 and Z27, and Z23

and Z28 in Table 1 incorporate a 4-bit RCA, an 8-bit RCA and a 12-bit RCA in the least signifi-

cant adder bit positions as a corresponding replacement for one, two and three instances of a

4-bit BCLARC respectively. While the replacement of one or more 4-bit BCLARCs by a corre-

sponding size RCA could help to reduce the area, it is not guaranteed that such a replacement

will always have a beneficial impact on the CT, and rather the contrary might result.

The CTs of Z21, Z22 and Z23, and Z26, Z27 and Z28 given in Table 1 reveal that increasing

the size of the sub-RCA in the least significant adder bit positions increases the forward

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 22 / 27

https://doi.org/10.1371/journal.pone.0218347


latencies of hybrid BCLARC-RCAs although their reverse latencies remain a constant. The

constant reverse latency is because of the traversal of the same critical datapath, shown using

the red dashed line in Fig 3B. The forward latencies of Z26, Z27 and Z28, belonging to Table 1,

are expressed by (15) to (17). These are obtained by modifying (10) while considering the

replacement of sub-BCLARC(s) with a similar sized sub-RCA. To construct the sub-RCA, the

QDI early output full adder of [21] was used, and this was used to construct the hybrid

BCLARC-RCAs in [14, 27] as well.

FLZ26 ¼ ðTCE2 þ TOR2Þ þ ð3� TAO22Þ þ ð6� TAO21Þ þ ð5� TAO22Þ þ TCE2 ð15Þ

FLZ27 ¼ ðTCE2 þ TOR2Þ þ ð3� TAO22Þ þ ð5� TAO21Þ þ ð9� TAO22Þ þ TCE2 ð16Þ

FLZ28 ¼ ðTCE2 þ TOR2Þ þ ð3� TAO22Þ þ ð4� TAO21Þ þ ð13� TAO22Þ þ TCE2 ð17Þ

By substituting the propagation delays of the gates from [43] in (15), (16) and (17), the theo-

retical forward latencies of Z26, Z27 and Z28 in Table 1 were calculated to be 1.226ns, 1.451ns

and 1.676ns respectively. In Section 4.3.2, the theoretical forward latency of Z25 was calculated

to be 1.171ns. Hence, theoretically, Z25 has a reduced forward latency than Z26, Z27 and Z28,

which is supported by the practical estimates given in Table 1.

The reverse latency of Z25 was theoretically calculated to be 0.849ns in Section 4.3.2, and

the same reverse latency is applicable for Z26, Z27 and Z28 in Table 1. Hence, theoretically,

the CTs of Z25, Z26, Z27 and Z28 equate to 2.02ns, 2.075ns, 2.3ns and 2.525ns respectively.

This shows that Z25, which is the proposed BCLARC, has a reduced CT than the CTs of Z26,

Z27 and Z28, which are the hybrid BCLARC-RCAs. Theoretically, the CT of Z25 is 2.7% less

than the CT of Z26, and practically (based on the results given in Table 1), the CT of Z25 is

found to be 3.4% less than the CT of Z26. Thus, there is a correlation between the theoretical

and practical estimates of CT, and the theoretical calculations tend to provide a valuable design

insight.

Based on (15), (16) and (17), and considering the duals of the respective gates with the

exception of the 2-input C-elements, the forward latencies of O26, O27 and O28, which are

the RTO counterparts of Z26, Z27 and Z28, as mentioned in Table 2, could be theoretically

modeled. This can be done by modifying (15), (16) and (17) by replacing the propagation

delays of specified gates with the propagation delays of their dual gate equivalents, however,

excluding the delay of the 2-input C-element which is retained as such. Theoretically, the for-

ward latencies of O26, O27 and O28 are calculated to be 1.286ns, 1.497ns and 1.708ns respec-

tively. Given that (14) is applicable for O25, O26, O27 and O28, their CTs are theoretically

calculated to be 2.178ns, 2.219ns, 2.43ns and 2.641ns. This shows that O25, which represents

the RTO equivalent of the proposed BCLARC, has a reduced CT than the CTs of hybrid

BCLARC-RCAs viz. O26, O27 and O28. Hence, based on the proposed 4-bit BCLGRCs, por-

trayed by Figs 4A and 5A, it is inferred that the proposed BCLARC is preferable to the hybrid

BCLARC-RCAs on the basis of CT with respect to both RTZ and RTO handshaking.

The proposed BCLARC achieves a substantial reduction in CT compared to the CTs of

other BCLARCs and also in comparison with the optimum CT of a hybrid BCLARC-RCA,

reported in the latest work [14]. Hence, hybrid BCLARC-RCAs corresponding to [25, 27] were

not considered as they would be sub-optimum.

With respect to power dissipation, almost all the asynchronous adders, whether they are

QDI or non-QDI, dissipate quite nearly the same power with the standard deviation from the

mean of the power dissipation estimated to be 33.5 for RTZ handshaking (Table 1) and 33.1

for RTO handshaking (Table 2). The small values of standard deviations are because all the

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 23 / 27

https://doi.org/10.1371/journal.pone.0218347


asynchronous adders mentioned in Tables 1 and 2 embed the monotonic cover constraint, dis-

cussed in Section 3.2. Hence, the power dissipation of QDI and non-QDI (relative-timed)

adders do not vary considerably and are confined to small ranges of 2161μW– 2312μW in the

case of Table 1, and 2157μW– 2303μW in the case of Table 2.

PCTP governs the low power/energy aspect. The PCTPs of the asynchronous adders were

calculated and normalized. The normalization was performed such that the highest PCTP

among the set of asynchronous adders corresponding to a particular handshake protocol was

normalized to 1, and the actual PCTPs of the remaining adders were divided by the highest

PCTP. Thus, after normalization, the least value of PCTP reflects the optimum low power/

energy design. The plots of normalized CT and PCTP values corresponding to RTZ handshak-

ing are shown side-by-side in Fig 6A and 6B, and the similar plots for RTO handshaking are

portrayed by Fig 7A and 7B.

Given that the average power dissipation of all the asynchronous adders is quite nearly the

same, it may be observed that the differences in their PCTP are mainly due to the differences

in their CTs. In other words, CT mainly influences the PCTP of the asynchronous adders. This

may be evident upon perusing Fig 6A and 6B, and also Fig 7A and 7B.

6. Conclusions

This article presented a new QDI early output sub-BCLG/BCLGRC that forms the basis for

constructing a QDI early output BCLA/BCLARC. In particular, we discussed the design of a

4-bit QDI BCLA and a 4-bit QDI BCLARC which serve as the building blocks for constructing

the QDI early output BCLARC. For an example, we considered a 32-bit addition and

Fig 6. Plots of normalized values of (a) CT and (b) PCTP of several 32-bit asynchronous adders corresponding to RTZ

handshaking. The adder legends are referenced in Table 1. The red bar in (b) corresponds to the proposed 32-bit

BCLARC (Z25) which is energy-efficient than the rest.

https://doi.org/10.1371/journal.pone.0218347.g006

Fig 7. Plots of normalized values of (a) CT and (b) PCTP of several 32-bit asynchronous adders corresponding to

RTO handshaking. The adder legends are referenced in Table 2. The red bar in (b) corresponds to the proposed 32-bit

BCLARC (O25) which is energy-efficient than the rest.

https://doi.org/10.1371/journal.pone.0218347.g007

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 24 / 27

https://doi.org/10.1371/journal.pone.0218347.g006
https://doi.org/10.1371/journal.pone.0218347.g007
https://doi.org/10.1371/journal.pone.0218347


compared the proposed QDI BCLARC with several asynchronous adders, which are QDI and

non-QDI (relative-timed). Further, hybrid BCLARC-RCAs were considered for the compari-

son. The simulation results show that the proposed QDI early output BCLARC (Z25 of Table 1

and O25 of Table 2) is efficient in terms of speed (CT) as well as low power/energy (PCTP).

With respect to RTZ handshaking, the proposed QDI BCLARC (Z25 of Table 1) achieves

the following reductions in design metrics over its counterparts for 32-bit addition: i) 22.6%

and 21.7% reductions in CT and PCTP respectively compared to an optimum QDI early out-

put RCA (i.e., Z8), ii) 18.7% and 17.9% reductions in CT and PCTP respectively compared to

an optimum relative-timed RCA (i.e., Z9), iii) 34% and 37% reductions in CT and PCTP

respectively compared to an optimum uniform input-partitioned QDI early output CSLA (i.e.,

Z10), iv) 47.8% and 47.6% reductions in CT and PCTP respectively compared to an optimum

QDI early output CCLA (i.e., Z16), v) 45.4% and 45.1% reductions in CT and PCTP respec-

tively compared to an optimum QDI early output BCLA (i.e., Z19), vi) 15.3% and 14.9% reduc-

tions in CT and PCTP respectively compared to an optimum QDI early output BCLARC (i.e.,

Z20), and vii) 13.3% and 12.7% reductions in CT and PCTP respectively compared to an opti-

mum QDI early output hybrid BCLARC-RCA (i.e., Z21).

Based on RTO handshaking, the proposed QDI BCLARC (O25 of Table 2) achieves the fol-

lowing reductions in design metrics over its counterparts for 32-bit addition: i) 18.4% and

17.5% reductions in CT and PCTP respectively compared to an optimum QDI early output

RCA (i.e., O8), ii) 14.2% and 13.6% reductions in CT and PCTP respectively compared to an

optimum relative-timed RCA (i.e., O9), iii) 31.7% and 34.8% reductions in CT and PCTP

respectively compared to an optimum uniform input-partitioned QDI early output CSLA (i.e.,

O10), iv) 47.1% and 46.8% reductions in CT and PCTP respectively compared to an optimum

QDI early output CCLA (i.e., O16), v) 44.7% and 44.4% reductions in CT and PCTP respec-

tively compared to an optimum QDI early output BCLA (i.e., O19), vi) 13% and 12.4% reduc-

tions in CT and PCTP respectively compared to an optimum QDI early output BCLARC (i.e.,

O20), and vii) 11.1% and 10.5% reductions in CT and PCTP respectively compared to an opti-

mum QDI early output hybrid BCLARC-RCA (i.e., O21).

Further work would be to investigate the usefulness of the proposed QDI BCLARC in real-

izing other computer arithmetic operations of practical significance within the realms of accu-

rate and approximate computing.

Author Contributions

Conceptualization: P. Balasubramanian.

Data curation: P. Balasubramanian.

Formal analysis: P. Balasubramanian, N. E. Mastorakis.

Funding acquisition: D. L. Maskell.

Investigation: P. Balasubramanian, D. L. Maskell, N. E. Mastorakis.

Methodology: P. Balasubramanian, D. L. Maskell, N. E. Mastorakis.

Project administration: D. L. Maskell.

Resources: D. L. Maskell, N. E. Mastorakis.

Supervision: D. L. Maskell.

Validation: P. Balasubramanian.

Visualization: P. Balasubramanian.

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 25 / 27

https://doi.org/10.1371/journal.pone.0218347


Writing – original draft: P. Balasubramanian.

References
1. Available from: https://irds.ieee.org/roadmap-2017 (last accessed on 19 November 2018).

2. Tang BZ, Lane F, Low power QDI asynchronous FFT. In: Proceedings of the 22nd IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC); 2016. pp. 87–88.

3. van Berkel CH, Josephs MB, Nowick SM. Applications of asynchronous circuits. Proceedings of the

IEEE. 1999; 87: 223–233. https://doi.org/10.1109/5.740016

4. Martin AJ, Nystrom M. Asynchronous techniques for system-on-chip design. Proceedings of the IEEE.

2006; 94: 1089–1120. https://doi.org/10.1109/JPROC.2006.875789

5. Kundu S, Sreedhar A. Nanoscale CMOS VLSI circuits: Design for manufacturability. New York, USA:

McGraw-Hill; 2010.

6. Bouesse G, Sicard G, Baixas A, Renaudin M, Quasi delay insensitive asynchronous circuits for low

EMI. In: Proceedings of the 4th International Workshop on Electromagnetic Compatibility of Integrated

Circuits (EMC Compo); 2004. pp. 27–31.

7. Plana LA, Riocreux PA, Bainbridge WJ, Bardsley A, Temple S, Garside JD et al. SPA–a secure amulet

core for smartcard applications. Microprocessors and Microsystems. 2003; 27: 431–446. https://doi.

org/10.1016/S0141-9331(03)00093-0

8. Renaudin M, Monnet Y, Asynchronous design: fault robustness and security characteristics. In: Pro-

ceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS); 2006. pp. 1–4.

9. Sparsø J, Furber S. Principles of asynchronous circuit design: A systems perspective. Dordrecht:

Kluwer Academic Publishers; 2001.

10. Martin AJ, Can asynchronous techniques help the SoC designer?. In: Proceedings of the IFIP Interna-

tional Conference on Very Large Scale Integration (VLSI-SoC); 2006. pp. 7–11.

11. Chang K-L, Chang JS, Gwee B-H, Chong K-S. Synchronous-logic and asynchronous-logic 8051 micro-

controller cores for realizing the internet of things: a comparative study on dynamic voltage scaling and

variation effects. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2013; 3: 23–

34. https://doi.org/10.1109/JETCAS.2013.2243031

12. Martin AJ, The limitation to delay-insensitivity in asynchronous circuits. In: Proceedings of the 6th MIT

Conference on Advanced Research in VLSI; 1990. pp. 263–278.

13. Martin AJ, Prakash P, Asynchronous nano-electronics: preliminary investigation. In: Proceedings of the

14th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC); 2008. pp. 58–

68.

14. Balasubramanian P, Maskell D, Mastorakis N. Low power robust early output asynchronous block carry

lookahead adder with redundant carry logic. Electronics. 2018; 7: 1–21, Article #243. https://doi.org/10.

3390/electronics7100243

15. Singh NP. A design methodology for self-timed systems. M.Sc. Thesis, Massachusetts Institute of

Technology. 1981. Available from: https://pdfs.semanticscholar.org/c019/

0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-

1229169596.1553256324

16. Sparsø J, Staunstrup J. Delay-insensitive multi-ring structures. Integration, the VLSI Journal. 1993; 15:

313–340. https://doi.org/10.1016/0167-9260(93)90035-B

17. Toms WB. Synthesis of quasi-delay-insensitive datapath circuits. Ph.D. Thesis, The University of Man-

chester. 2006. Available from: http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Toms06_phd.pdf

18. Folco B, Bregier V, Fesquet L, Renaudin M, Technology mapping for area optimized quasi delay insen-

sitive circuits. In: Proceedings of the IFIP 13th International Conference on Very Large Scale Integration

(VLSI-SoC); 2005. pp. 146–151.

19. Balasubramanian P, Edwards DA, A delay efficient robust self-timed full adder. In: Proceedings of the

IEEE 3rd International Design and Test Workshop (IDT); 2008. pp. 129–134.

20. Balasubramanian P. A latency optimized biased implementation style weak-indication self-timed full

adder. Facta Universitatis, Series: Electronics and Energetics. 2015; 28: 657–671. https://doi.org/10.

2298/FUEE1504657B

21. Balasubramanian P. A robust asynchronous early output full adder. WSEAS Transactions on Circuits

and Systems. 2011; 10: 221–230.

22. Balasubramanian P, Yamashita S. Area/latency optimized early output asynchronous full adders and

relative-timed ripple carry adders. SpringerPlus. 2016; 5:440: 1–26. https://doi.org/10.1186/s40064-

016-2074-z PMID: 27104128

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 26 / 27

https://irds.ieee.org/roadmap-2017
https://doi.org/10.1109/5.740016
https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.1016/S0141-9331(03)00093-0
https://doi.org/10.1016/S0141-9331(03)00093-0
https://doi.org/10.1109/JETCAS.2013.2243031
https://doi.org/10.3390/electronics7100243
https://doi.org/10.3390/electronics7100243
https://pdfs.semanticscholar.org/c019/0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-1229169596.1553256324
https://pdfs.semanticscholar.org/c019/0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-1229169596.1553256324
https://pdfs.semanticscholar.org/c019/0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-1229169596.1553256324
https://doi.org/10.1016/0167-9260(93)90035-B
http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Toms06_phd.pdf
https://doi.org/10.2298/FUEE1504657B
https://doi.org/10.2298/FUEE1504657B
https://doi.org/10.1186/s40064-016-2074-z
https://doi.org/10.1186/s40064-016-2074-z
http://www.ncbi.nlm.nih.gov/pubmed/27104128
https://doi.org/10.1371/journal.pone.0218347


23. Stevens KS, Ginosar R, Rotem S. Relative timing, IEEE Transactions on VLSI Systems. 2003; 11:

129–140. https://doi.org/10.1109/TVLSI.2002.801606

24. Cheng F-C, Unger SH, Theobald M. Self-timed carry-lookahead adders. IEEE Transactions on Com-

puters. 2000; 49: 659–672. https://doi.org/10.1109/12.863035

25. Balasubramanian P, Edwards DA, Toms WB. Self-timed section-carry based carry lookahead adders

and the concept of alias logic. Journal of Circuits, Systems, and Computers. 2013; 22: 1350028–1–

1350028–24. https://doi.org/10.1142/S021812661350028X

26. Balasubramanian P, Dhivyaa D, Jayakirthika JP, Kaviyarasi P, Prasad K, Low power self-timed carry

lookahead adders. In: Proceedings of the 56th IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS); 2013. pp. 457–460.

27. Balasubramanian P, Dang C, Maskell DL, Prasad K, Asynchronous early output section-carry based

carry lookahead adder with alias carry logic. In: Proceedings of the IEEE 30th International Conference

on Microelectronics (MIEL); 2017. pp. 293–298.

28. Balasubramanian P. Asynchronous carry select adders. Engineering Science and Technology, an Inter-

national Journal. 2017; 20: 1066–1074. https://doi.org/10.1016/j.jestch.2017.02.003

29. Balasubramanian P, Edwards DA, Toms WB. Redundant logic insertion and latency reduction in self-

timed adders. VLSI Design. 2012; 2012: 1–13, Article ID 575389. https://doi.org/10.1155/2012/575389

30. Muller DE, Bartky WS, A theory of asynchronous circuits. In: Proceedings of an International Sympo-

sium on the Theory of Switching; 1959. Part I, pp. 204–243.

31. Bose B. On unordered codes. IEEE Transactions on Computers. 1991; 40: 125–131. https://doi.org/10.

1109/12.73583

32. Piestrak SJ, Nanya T, Towards totally self-checking delay-insensitive systems. In: Proceedings of the

25th International Symposium on Fault-Tolerant Computing (FTCS); 1995. pp. 228–237.

33. Moreira MT, Guazzelli RA, Calazans NLV, Return-to-one protocol for reducing static power in C-ele-

ments of QDI circuits employing m-of-n codes. In: Proceedings of the 25th Symposium on Integrated

Circuits and Systems Design (SBCCI); 2012. pp. 1–6.

34. Seitz CL. System timing. In: Mead C, Conway L, editors. Introduction to VLSI systems. Reading, Mas-

sachusetts; 1980. pp. 218–262.

35. Brej C. Early output logic and anti-tokens. Ph.D. Thesis, The University of Manchester. 2006. Available

from: http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Brej06_phd.pdf

36. Balasubramanian P, Mastorakis NE, QDI decomposed DIMS method featuring homogeneous/hetero-

geneous data encoding. In: Proceedings of the International Conference on Computers, Digital Com-

munications and Computing (ICDCC); 2011. pp. 93–101.

37. Balasubramanian P. Comments on “Dual-rail asynchronous logic multi-level implementation”. Integra-

tion, the VLSI Journal. 2016; 52: 34–40. https://doi.org/10.1016/j.vlsi.2015.08.001

38. Varshavsky VI. Self-timed control of concurrent processes: The design of aperiodic logical circuits in

computers and discrete systems. (Translated from the Russian by Yakovlev AV). Dordrecht: Kluwer

Academic Publishers; 1990. pp. 77–85.

39. Balasubramanian P, Arisaka R, Arabnia HR, RB_DSOP: a rule based disjoint sum of products synthesis

method. In: Proceedings of the 12th International Conference on Computer Design (CDES);

2012. pp. 39–43.

40. Weinberger A, Smith JL. A logic for high-speed addition. National Bureau of Standards Publications.

1958; 591: 3–12.

41. Omondi AR. Computer arithmetic systems: Algorithms, architecture and implementations. London:

Prentice Hall International (UK) Limited; 1994.

42. Balasubramanian P. Comparative evaluation of quasi-delay-insensitive asynchronous adders corre-

sponding to return-to-zero and return-to-one handshaking. Facta Universitatis, Series: Electronics and

Energetics. (Invited Paper). 2018; 31: 25–39. https://doi.org/10.2298/FUEE1801025B

43. Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0, 2012.

44. Balasubramanian P, Edwards DA, Power, delay and area efficient self-timed multiplexer and demulti-

plexer designs. In: Proceedings of the IEEE 4th International Conference on Design and Technology of

Integrated Systems in Nanoscale Era (DTIS); 2009. pp. 173–178.

45. Nagendra C, Owens RM, Irwin MJ. Power-delay characteristics of CMOS adders. IEEE Transactions

on VLSI Systems. 1994; 2: 377–381. https://doi.org/10.1109/92.311649

46. Balasubramanian P. Performance comparison of some synchronous adders. arXiv preprint,

arXiv:1810.01115; 2018. pp. 1–9. Available from: https://arxiv.org/ftp/arxiv/papers/1810/1810.01115.

pdf (last accessed on 18 May 2019).

Speed and energy optimized quasi-delay-insensitive block carry lookahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0218347 June 21, 2019 27 / 27

https://doi.org/10.1109/TVLSI.2002.801606
https://doi.org/10.1109/12.863035
https://doi.org/10.1142/S021812661350028X
https://doi.org/10.1016/j.jestch.2017.02.003
https://doi.org/10.1155/2012/575389
https://doi.org/10.1109/12.73583
https://doi.org/10.1109/12.73583
http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Brej06_phd.pdf
https://doi.org/10.1016/j.vlsi.2015.08.001
https://doi.org/10.2298/FUEE1801025B
https://doi.org/10.1109/92.311649
https://arxiv.org/ftp/arxiv/papers/1810/1810.01115.pdf
https://arxiv.org/ftp/arxiv/papers/1810/1810.01115.pdf
https://doi.org/10.1371/journal.pone.0218347

