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Abstract 

Germline stem cells (GSCs) are germ cells with the capacities of self-renewal and differentiation into functional 
gametes, and are able to migrate to their niche and reconstitute the fertility of recipients after transplantation. There-
fore, GSCs transplantation is a promising technique for fertility recovery in the clinic, protection of rare animals and 
livestock breeding. Though this novel technique faces tremendous challenges, numerous achievements have been 
made after several decades’ endeavor. This review summarizes the current knowledge of GSCs transplantation and its 
utilization in mammals, and discusses the application prospect in reproductive medicine and animal science.
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Background
GSCs initiate from primordial germ cells (PGCs) in 
embryonic stage. As a group of germ cells capable of self-
renewal and differentiation into functional gametes, they 
are fundamental cells for reproduction.

Male germline stem cells, also called spermatogonial 
stem cells (SSCs), are the foundation of spermatogen-
esis in post-natal mammals. The main characteristic of 
SSCs is the ability to differentiate into spermatozoa while 
maintaining the capacity of self-renewal [1]. SSCs reside 
in a microenvironment consisting of Sertoli cells, Leydig 
cells as well as the basement membrane of seminiferous 
tubules [2]. The quantity and quality of SSCs are greatly 
affected by microenvironment. An optimal microenvi-
ronment is essential for maintaining the homeostasis 
of SSCs, and impaired function of microenvironment is 

usually accompanied with ageing. Since the 1950s, sev-
eral methods have been used for identification of SSCs, 
including histological approaches, whole-mount analy-
ses, and isotope pulse-chase monitoring, but none of the 
results was effective [1]. Until 1994, testicular transplan-
tation was first explored as a method to identify SSCs 
through evaluating ability to re-establish spermatogen-
esis in recipient testes [3], and subsequently it was used 
as a tool for biomedical science [4], for example,  for trac-
ing the homing of donor SSCs and mechanism of sper-
matogenesis [5]. Methods for evaluation of SSCs homing 
efficiency in mice and the strategies for further improve-
ment were reported, as well [6, 7]. Functions of different 
signaling pathways on the self-renewal or differentiation 
of SSCs can also be verified through this way [8, 9]. Fur-
thermore, in order to detect subtle defects of SSCs in 
different culture systems, competitive transplantation 
can be applied [10]. Nowadays, livestock and some other 
animals, including non-human primates have been used 
as recipients for further research, and spermatogenesis 
could be observed in some species [11–13].

In 2004, a study indicated that mitotically active germ 
cells in postnatal ovaries were likely to be responsible for 
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oocyte production [14]. However, the identity of puta-
tive germline stem cells in postnatal mammalian ovary 
was questioned by some researchers due to the lack of 
direct evidence [15–17]. In 2009, germ cells with capac-
ity of self-renewal were isolated and purified from mouse 
ovaries, and their germline stem cell identity was proven 
using ovarian transplantation. Due to the fact that these 
mitotically active cells were capable of reconstituting 
oogenesis in the recipient’s ovaries, they were nomi-
nated as female germline stem cells (FGSCs) [18]. As a 
promising technique for fertility recovery and biological 
research, FGSCs transplantation is now feasible to obtain 
donor-derived offspring in mice [18, 19] and rats [20]. 
It is also a powerful tool to reveal the biological mecha-
nism, for example, tracing the development and behavior 
of transplanted FGSCs in vivo enables to explore the tra-
jectory of FGSCs homing [21].

Both SSCs transplantation and FGSCs transplantation 
have made some progress despite that a number of chal-
lenges still remain. Functional sperms can be produced 
in the recipient testes of many species, including dogs 
[12], tree shrews [22], and rhesus macaques [23]. Since 
these animals are good models for biomedical research, 
the success of transplantation on them is encouraging, 
especially in non-human primates. However, the success 
rate of obtaining donor derived offspring is actually very 
low [12, 13, 24]. On the other hand, oogenesis could be 
observed when human FGSCs were transplanted into 
human cortical tissue followed by xenografting the tis-
sue into mice [25], while the application of FGSCs trans-
plantation in the clinic remains undetermined. Therefore, 
further research is needed to raise the transplantation 
efficiency and ultimately lay a solid foundation for the 
application of GSCs transplantation in clinic. In this 
review, current progress achieved in GSC transplantation 
as well as its perspectives for future application in mam-
mals are discussed.

The process of germline stem cell transplantation
GSC transplantation can be simply described as below: it 
is a technique that aims to realize homing and germline 
transmission in vivo of donor SSCs or FGSCs. The qual-
ity of donor cells, the condition of recipients, and the 
transplantation technology are critical for transplanta-
tion success. Moreover, the assessment of colonization 
efficiency and functional analysis are necessary after 
transplantation.

Preparation of donor cells
Isolation and culture of SSCs
SSCs are rare in the testis. The number of SSCs is only 
about 35,000 per testis, which only takes 0.03% among 
the whole cells of neonatal mouse testis [26]. An obvious 

increase in the number of functional SSCs occurs during 
postnatal development. However, the size of colonies that 
derived from transplanted SSCs appears to be independ-
ent of the age of the donors [27]. Considering the fact 
that only 10% of the SSCs remain after 7  days’ culture 
[28], various methods are applied to enrich SSCs in vitro 
for transplantation. It is noteworthy that in patients 
with cancer, sufficient healthy spermatogonia  should be 
obtained from testicular tissue before chemotherapy [29].

Collection of SSCs usually starts from a two-step enzy-
matic digestion (collagenase and trypsin), which is fol-
lowed by centrifugation and differential adhesion method 
to primarily enrich SSCs [3]. To purify SSCs, additional 
steps such as density gradient centrifugation, immuno-
magnetic bead-based sorting, or flow cytometry are usu-
ally applied [30–32]. The latter two methods rely on the 
surface markers such as ITGA6 [33], THY1 [34], MCAM 
[32], c-KIT [35], MHC-I [34], ITGAV [35], PLD6 [36], 
CD9 [37] to efficiently enrich SSCs for hundreds of folds 
[38].

In addition to cell purity, establishing an effective cul-
ture system is equally important for SSC proliferation. 
Usually two strategies are applied in traditional culture 
systems, adding growth factors necessary for self-renewal 
of SSCs in the culture medium [39, 40] and decreasing 
the influence of feeder cells or serum [41, 42]. Nowadays, 
many cell lines from SSCs have been established.

Isolation and culture of FGSCs
In 2009, a group of germ cells isolated from mouse ova-
ries with a diameter of 12-20  μm were characterized as 
mitosis active and can be cultured on fibroblast feeder 
layers. More importantly, they successfully recovered the 
reproductive ability of sterile recipient after transplanta-
tion into ovary, thus were named as FGSCs [18]. FGSCs 
are even more scarce than SSCs, only 50–100 MVH posi-
tive  (MVH+) cells can be obtained from 6–8 adult mice 
while 200–300  MVH+ cells can be obtained from 9–12 
neonatal mice, with FGSCs among them [18]. Subse-
quently, a more efficient sorting marker for the enrich-
ment of FGSCs, Fragilis, was identified, and about 1100 
FGSCs were collected from ovaries of 20 five-day mice 
[43]. These cells could be maintained on MEF feeder lay-
ers in 24-well plate for enrichment, and need to be puri-
fied to remove the feeders before transplantation.

The identity of FGSCs was identified using BrdU/
DDX4 dual immunostaining. Subsequently, more mark-
ers were discovered, such as FRAGILIS, STELLA, OCT4 
and SSEA-4 [44]. DDX4, FRAGILIS and OCT4 have 
been used in FACS- and MACS-based isolation meth-
ods. Although DDX proteins are usually localized in 
cytoplasm, studies revealed that DDX4 contains a trans-
membrane domain on the C-terminal, which could be 
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recognized by the antibody for cell sorting [18, 25, 45, 
46].

The culture system of FGSCs is similar to that of SSCs, 
which requires feeder cells as well as several growth fac-
tors for self-renewal [44]. Addition of LIF significantly 
increases the number of FGSCs colonies and GDNF is 
essential for FGSCs maintenance on MEF feeder layer 
[47]. Moreover, the use of BIO, a GSK3 inhibitor can 
increase the number of colonies as well [48].

Preparation of recipients
Preparation of recipients is a critical step towards suc-
cessful transplantation as the microenvironment remark-
ably affects colonization efficiency. Different strategies 
have been developed to obtain a microenvironment-
intact recipient that lack of endogenous spermatogenesis, 
including busulfan treatment [49], testicular irradiation 
[50], gene editing [51], and heat shock treatment [52]. In 
some instances,  CdCl2 may be used in combination with 
busulfan for sterile models with eliminated Sertoli cells 
[53]. These techniques have both advantages and disad-
vantages. As a chemotherapeutic drug, busulfan is com-
monly used for eliminating endogenous spermatogenesis. 
It is worth to mention that the optimal dose of busulfan 
remains to be determined in large animals because of its 
toxicity and the inevitable recovery of endogenous sper-
matogenesis [52, 54]. Moreover, at least 35  days are 
required before the treated animals can be used as recipi-
ents according to the epithelial cycle of spermatogenesis. 
Compared with that in busulfan treatment, spermatogen-
esis recovery is inevitable in heat shock treatment, but it 
is safer and shortens the time required for recipient prep-
aration [52]. Athough local irradiation is more efficient 
and safer, it is the most expensive of the four methods 
since it needs special equipment [50]. Knockout of piv-
otal genes has also been widely used for sterile recipients, 
as well. Both W mutant mice [51] and Nanos2 knock-
out male animals [55] are infertile with intact testicu-
lar microenvironment, and have been used as efficient 
recipients for SSCs transplantation. For preparation of 
female recipient mice, intraperitoneal injection of busul-
fan (30  mg/kg) is accompanied with cyclophosphamide 
(120 mg/kg) to eliminate endogenous germ cells in ovary 
[18, 21], since cyclophosphamide can directly induce 
oocytes in primordial follicles death, avoiding endog-
enous oogenesis to some degree [56].

Transplantation technique in rodents
For SSCs transplantation, selection of the appropri-
ate injection site in recipient testis greatly influences 
the transplantation efficiency. Considering the differ-
ential reproductive anatomy of species, injection sites 
are optional, including seminiferous tubules, efferent 

ducts and rete [57]. Seminiferous tubules are widely 
chosen in mice since they spread all over the testis and 
are most accessible for investigators. However, the dis-
advantages are time-consuming and requiring extra liq-
uid for injection with a number of incisions to ensure 
the tubules are filled as much as possible. The efferent 
ducts are considered as more efficient injection sites 
but careful dissection is demanded. Excessive internal 
testicular pressure may cause ischemia and damages 
microenvironment or harms donor cells, that is why 
it may be necessary to inject with the aid of a pressure 
injector. The last one is rete, where allows quick filling 
of tubules. Notably, this injection site is only applicable 
in species with the rete closer to the surface of the tes-
tis, such as mice and rats [58].

According to our experiences, the efferent ducts of a 
mouse recipient appear to be the most convenient site, 
because it requires less cells to achieve high filling effi-
ciency, and could be finished with appropriate needles 
under stereoscope.

The assessment of colonization efficiency
Once GSCs are transplanted into the tubules success-
fully, their abilities of homing, proliferation, gametogen-
esis and producing offspring need to be verified. The 
efficiency of transplantation is assessed mainly by the 
colonization of donor GSCs and the production of sper-
matozoa or oocytes. The recovery of gametogenesis in 
recipient testes or ovaries is usually assessed with his-
tological analysis [18], and it is also important to test 
whether those spermatozoa or oocyte are donor-derived. 
Usually, donor cells carrying fluorescence or containing a 
LacZ transgene are used for tracking donor-derived cells 
[25, 55, 59]. And the success of germline transmission 
needs to be confirmed through detection of the reporter 
gene in offspring at DNA level, using PCR or Southern 
blot [18]. Although PCR is fast, convenient and eco-
nomical, the accuracy of is not satisfying, while Southern 
blot is the gold standard to confirm the inserted DNA 
sequences.

Current progresses of germline stem cell 
transplantation in domestic animals
GSCs transplantation is well studied in rodents, whereas 
some obstacles still need to be solved in livestock and 
poultry. Here we highlight the progress of GSCs trans-
plantation in animal husbandry.

Livestock biotechnology has greatly progressed and 
SSCs manipulation is one of the most promising tech-
niques because it can be used as the basis for transgenic 
technology in the future [60]. However, the long-term 
cultivation of livestock SSCs in vitro is still a challenge in 
many species. The culture system established originally 
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in rodents is impossible to transfer directly to livestock, 
except for growth factors, many other factors are prob-
ably needed to be modified [61, 62].For example, a stable 
long-term culture system for porcine SSCs was eventually 
established, through searching for necessary cytokines,  
level of serum,  culture temperature as well as opti-
mal  feeder cells [63]. Neonatal Sertoli cells were proven 
to be a type of efficient feeder cells for porcine SSCs, and 
the culture medium supplemented with KSR and a com-
bination of GDNF, GFRα1, bFGF, and IGF1 was used. 
Porcine SSCs formed consistent colonies showing typical 
grape-like morphology in vitro for over 2 months under 
this culture condition [63]. This encouraging result repre-
sents huge progress of long-term culture systems of SSCs 
from large animals.

In addition, preparation of recipient animals is another 
obstacle since many methods applied in rodents are 
inappropriate. Busulfan treatment [64] and testicular 
irradiation [65] are not ideal for large animals because 
the structure of their seminiferous tubules may be 
destructed. A recent study on the effect of busulfan on 
the depletion of pig endogenous SSCs claimed that 3 mg/
kg of busulfan can be injected through intratubular to 
establish recipient pigs, which is a safe dosage. How-
ever, no donor-derived sperm was found even though 
donor-derived SSCs colonized in the recipient testes for 
over 4  months. The author postulated that recovery of 
endogenous germ cells possibly happened [66]. This case 
supports the view again that neither busulfan treatment 
nor testicular irradiation could prevent the recovery of 
endogenous SSCs [54].

However, SSCs transplantation has succeeded in boar 
[67], ram [11], and bull [55]. It is worth mentioning that  
seminiferous tubules of some species locate deeper in the 
testis or with smaller tubular diameter. Rete is the opti-
mal injection site with the aid of ultrasonographic-guided 
technique when it is difficult to inject directly into the 
seminiferous tubules [68].

Until now, the function and vitality of donor SSCs have 
been verified in some species of livestock. The produc-
tion of embryos or even progeny has been reported in 
rams [11] and boars [67]. If this technique is well applied 
in dairy cattle, producing offspring with superior traits 
will be remarkably accelerated. It is also applicable in beef 
cattle, swine, sheep, and goats since it not only shortens 
the time of production, but also efficiently extends the 
use of donor-derived sperm worldwide [54].

Technical improvement
Both GSCs and supporting cells contribute to spermato-
genesis in recipient testes. Thus, a lot of methods have 
been explored to improve their functional activities. The 
quality of donor cells as well as the microenvironment in 

the recipient testes are critical for success. Besides, the 
efficiency of colonization may be greatly impacted by the 
levels of hormones and timing for transplantation.

Improvement in the quality of donor cells
Donor cells may lose their characters of stem cells dur-
ing the transplantation process while only part of them 
persist and successfully regenerate.  To solve this prob-
lem, additional treatments are required to increase the 
proportion of undifferentiated stem cells before coloni-
zation. Recently, a study reported that the transient sup-
pression of differentiation using WIN 18,446, a chemical 
inhibitor of retinoic acid synthesis was able to expand 
the  GFRa1+ SSC pool and increase the repopulation 
efficiency [7], suggesting that SSCs tend to differentiate 
before they arrive in niche.

Apart from suppression of stem cell differentiation, 
improvement of ability to self-renew is another option. 
Our previous study identified that activation of AKT3 
could promote FGSCs self-renewal [47], which indicates 
that addition of SC-79, an AKT3 specific activator, might 
improve transplantation efficiency of FGSCs.

Establishment of a culture system that mimics the 
microenvironment in  vivo may be another method for 
more active donor cells. Cell morphology, proliferation 
activity, differentiation ability, gene expression, stress 
response and other factors are potentially affected when 
cells are maintained on conventional culture system. 
Numerous solutions are proposed, including the use of 
different conditioned media [41, 42], feeder cells [69], 
and growth factors [39], but the process of spermatogen-
esis has not been accomplished in two-dimensional cul-
ture system [70, 71].

Recently, three-dimensional (3D) culture was applied to 
provide an ideally spatial environment for both testicular 
organoid and bioengineered ovaries [72, 73]. Many bio-
logical processes can be more accurately studied through 
the use of 3D culture system such as the spermatogenic 
process [74]. A novel 3D culture system is based on a soft 
agar culture system (SACS) [75], with two major constit-
uents of SSCs niche, somatic cells [72] and the extracel-
lular matrix (ECM) [76]. SACS makes it more efficient 
than some other 3D culture systems that are based on 
collagen, gelatin or matrigel, attributing to the thick layer 
for germ cells and supporting cells to embed in [77]. To 
extract ECM components, a novel three-dimensional 
multilayer model, called decellularized testicular matrix 
(DTM) scaffold, was used. This model well preserves the 
3D structure as well as biocompatibility. Using this tech-
nology, SSCs of mice and many other species such as por-
cine [78], chickens [79], primates [77], and even human 
[80] can be cultivated in this system.
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Similar methods can be applied to the 3D culture of 
ovarian organoids. As the prerequisite step, decellulariza-
tion method only succeeded in ovarian pieces and some-
times cortical slides [81]. In order to acquire a whole 
decellularized ovary, several methods were explored, and 
ultimately physical and chemical methods were com-
bined to remove cellular components [73, 81]. In contrast 
to 2D culture system, using 3D culture system greatly 
promotes the cell expansion and enriches sufficient cells 
for transplantation. Moreover, it eliminates potential var-
iability and contamination of feeder cells [82]. Therefore, 
GSCs cultured in a 3D system may be better resource for 
SSCs transplantation.

Differentiation of FGSCs into oocyte has been achieved 
in 2D system into germinal vesicle (GV)‐stage oocytes 
[83], indicating the potential to obtain functional oocytes 
in  vitro using a 3D system in the future. FGSCs trans-
plantation may benefit even more from 3D culture in the 
future. For instance, donor cells cultured in a 2D system 
need to be resuspended with buffer solution after diges-
tion from the feeder cells. This makes it hard to ensure 
sufficient FGSCs are maintained in the ovarian cortex. To 
solve this problem, Matrigel Matrix is an ideal material 
for stem cell culture [84] and maybe FGSC transplanta-
tion as well, because it can convert from a liquid state to a 
solid state as the temperature increases from 4℃ to 37℃. 
And it is easier to confirm transplanted FGSCs are local-
ized in the injection site.

Restoration of damaged microenvironment
An intact microenvironment is essential for homing 
and survival of GSCs, but some recipients may suffer 
from supporting cell defects [85]. Therefore, restoring 
the impaired niche is an effective way to improve the 
outcome of GSCs transplantation. Sertoli cell is known 
as the most important component of testicular niche. 
A previous study revealed that transplantation of tes-
tes cells derived from perinatal mice efficiently repaired 
the microenvironment of the recipient and generated 
donor-derived spermatogenesis [86], suggesting that 
co-transplantation of Sertoli cells may contribute to a 
higher success rate of GSCs transplantation. Besides, co-
transplantation of mesenchymal stem cells (MSCs), also 
improves SSCs transplantation efficiency in mice. More-
over, even higher efficiency can be achieved when MSCs 
are treated with TGFß1, which makes them lose their 
migratory property and retain in the testis [53, 87].

For female, the application of MSCs is also an impor-
tant method that effectively improves ovarian func-
tion due to their abilities of differentiation and restoring 
endometrial function [88]. Besides, human endometrial 
MSCs can differentiate into granulosa cells and improve 

the renewal of GSCs [89]. These findings imply the pos-
sibility of co-transplantation of MSCs in females as well.

Although co-transplantation facilitates in the restora-
tion of fertility, it is required to thoroughly check effec-
tiveness and safety before clinic use, especially on genetic 
and epigenetic levels.

Regulation of hormones
The proliferation and differentiation of GSCs are related 
to the regulation of various hormones such as testoster-
one and follicle-stimulating hormone (FSH). Research-
ers revealed that the efficiency of colonization is notably 
enhanced when the recipient mice were treated with leu-
prolide, a gonadotropin-releasing hormone (GnRH) ago-
nist [90]. It was also verified in irradiated rats [91] and 
monkeys [92], implying the potential of this method in 
restoring fertility of patients after cancer treatment [93]. 
However, there are still some issues in monkeys assays 
because the authors proposed that the proportion of 
filled tubules might have a greater influence on the colo-
nization efficiency [24, 94]. In addition to leuprolide, FSH 
appears to be useful in facilitating the process of sper-
matogenesis in infertile mice [95].

Hormone can be used to regulate the integrity of 
the niche. During the process of SSCs homing, blood-
testis barrier (BTB) hampers the transplanted cells to 
migrate to the niche in the seminiferous tubules [96], 
and researchers found that using acyline, another GnRH 
agonist that can transiently damage BTB by modulating 
the expression of claudin proteins, and improved the effi-
ciency of SSCs homing [97].

Despite that the above-mentioned hormones may 
facilitate transplanted SSCs to colonize in the niche, the 
effects of hormones in infertile mice could be affected 
by different factors. For example, our previous study 
revealed that androgen level in rodent testis affected Ser-
toli cells on the expression level of ITGB1 [98], which is 
a pivotal surface protein for SSCs homing via regulat-
ing cellular interaction [99]. Therefore, maintenance 
of appropriate hormone level in recipients, especially 
patients after chemotherapy, is probably a prerequisite 
for successful transplantation of SSCs.

Although much remains unknown about the microen-
vironment of FGSCs, our previous study demonstrated 
that Cadherin-22 (CDH22) is a potential transmembrane 
protein in FGSCs niche [100]. Similarly, the expression 
level of surface marker on FGSCs is important for main-
tenance and homing of transplanted FGSCs.

Selection of the appropriate timing of transplantation
With the purpose of increasing the efficiency of colo-
nization and spermatogenesis, the appropriate time 
gap between the use of chemotherapeutic drugs and 
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transplantation time was critical. A delay in the SSC 
transplantation timing was found to decrease the recep-
tivity of recipient testes [101]. Similar observations were 
found in FGSCs transplantation [102].

Conclusion
There are still many unaddressed questions regard-
ing GSC transplantation, especially the efficiency 
and safety. The efficiency of colonization is affected 
by various factors, including the microenvironment, 
endogenous GSCs, viability of donor GSCs and so on. 
Meanwhile, safety of this technique need full evalua-
tion especially when it is used for assisted reproduc-
tive technology [103]. In our previous experiments, 
hair loss was observed in some recipients several 
weeks after transplantation. We speculated that it 
might be associated with immunological rejection. 
Currently there are still many difficulties in GSC trans-
plantation, but it is a prospective technology for clinic 
and animal science in the future. If combined with 
gene editing and other assisted reproductive technolo-
gies such as in vitro fertilization and cryopreservation, 
GSC transplantation can not only benefit clinical med-
icine, for example patients who suffer from reproduc-
tive diseases or received chemotherapy will hopefully 
be cured through this way, but also improve livestock 
industry. An illustration of GSCs purification, culture 
and transplantation is summarized (Fig. 1).
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