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Subnetwork representation 
learning for discovering network 
biomarkers in predicting lymph 
node metastasis in early oral cancer
Minsu Kim1, Sangseon Lee2, Sangsoo Lim3, Doh Young Lee4* & Sun Kim3,5,6,7,8*

Cervical lymph node metastasis is the leading cause of poor prognosis in oral tongue squamous cell 
carcinoma and also occurs in the early stages. The current clinical diagnosis depends on a physical 
examination that is not enough to determine whether micrometastasis remains. The transcriptome 
profiling technique has shown great potential for predicting micrometastasis by capturing the 
dynamic activation state of genes. However, there are several technical challenges in using 
transcriptome data to model patient conditions: (1) An Insufficient number of samples compared to 
the number of genes, (2) Complex dependence between genes that govern the cancer phenotype, 
and (3) Heterogeneity between patients between cohorts that differ geographically and racially. We 
developed a computational framework to learn the subnetwork representation of the transcriptome 
to discover network biomarkers and determine the potential of metastasis in early oral tongue 
squamous cell carcinoma. Our method achieved high accuracy in predicting the potential of metastasis 
in two geographically and racially different groups of patients. The robustness of the model and the 
reproducibility of the discovered network biomarkers show great potential as a tool to diagnose lymph 
node metastasis in early oral cancer.

Oral tongue squamous cell carcinoma (OTSCC) is one of the most common malignant tumors in the oral cavity1. 
Cervical lymph node metastasis is a major factor in a poor prognosis for OTSCC and also occurs even in early 
stages2. Currently, clinical diagnosis relies on physical examinations such as palpation, ultrasonography, com-
puted tomography (CT-scan), and magnetic resonance imaging (MRI). Unfortunately, these physical examina-
tions are not accurate enough to determine if micrometastasis remains in the lesion. Micrometastasis indicates 
that a small number of cancer cells that have spread from the primary tumor to other parts of the body are too few 
to be detected by screening or physical examination. For this reason, clinicians recommend lymphadenectomy 
for patients who do not require resection3. Lymphadenectomy refers to surgery to remove lymph nodes, which 
can cause serious side effects. Therefore, being able to detect micrometastases with molecular-level data could 
be of significant benefit to patients with OTSCC.

Transcriptome data are whole genome-scale molecular profiles generated by high-throughput RNA profiling 
techniques such as microarrays and RNA sequencing (RNA-seq), which are known to have great potential to 
identify micrometastasis in cancer patients4–6. There are several challenges in modeling patient conditions using 
transcriptome data. First, despite advances in high-throughput RNA profiling technology, the cost of production 
per sample is still at a non-negligible level, and the number of genes to consider is relatively large compared to 
the number of samples, which is a challenge for many researchers. This problem is also referred to as the low 
sample high dimension problem7. In addition, cellular proteins rarely act individually and generally cooperate 
to perform specific functions and express a specific phenotype8. Therefore, the complex dependence between 
genes due to protein interactions should also be considered. Finally, heterogeneity between patient samples is 

OPEN

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 2Institute 
of Computer Technology, Seoul National University, Seoul 08826, Korea. 3Bioinformatics Institute, Seoul National 
University, Seoul 08826, Korea. 4Seoul National University College of Medicine, Seoul 03080, Korea. 5Department 
of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea. 6Interdisciplinary Program in 
Bioinformatics, Seoul National University, Seoul 08826, Korea. 7Interdisciplinary Program in Artificial Intelligence, 
Seoul National University, Seoul  08826, Korea. 8AIgenDrug, Co., Ltd, Seoul, Korea. *email: gedo0212@
naver.com; sunkim.bioinfo@snu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-03333-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23992  | https://doi.org/10.1038/s41598-021-03333-5

www.nature.com/scientificreports/

known to have a significant impact on cohort studies due to the genetic diversity between individuals with dif-
ferent geographic and ethnic backgrounds9, 10.

Subnetwork level representation (SLR) is one of the most promising ways to reduce the high dimensions of 
transcriptome data using biological networks. Studies have shown that the SLR approach using protein-protein 
interaction (PPI) network is excellent for predicting the clinical status of cancer patients in terms of robustness 
and effectiveness11–14. Additionally, the SLR approach can provide a comprehensive understanding of the under-
lying mechanisms by which the disease progresses and influences prognosis15, 16.

The biggest challenge when using PPI networks is the sparse network representation17, 18. The integration 
of the gene expression matrix and the adjacent matrix is not an easy task even without sparsity because they 
have completely different shapes. Subsystem Activation Score (SAS) is one of the most effective ways to solve 
this problem19. SAS introduced a natural way to integrate PPI networks with the transcriptome. In a recent 
study, Lim et al.20 compared several SLR methods including SAS in terms of 1) reproducibility of RNA-seq data 
characteristics, 2) robustness to noise, 3) classification for tumor versus normal information, 4) classification 
for survival information, and 5) classification for cancer subtypes. They devised various statistics to measure 
the performance of each method on each criterion. The study showed that SAS has the best overall performance 
compared to other SRL methods when evaluated for the above five criteria.

According to BioGrid21 , each gene has an average number of PPI interactions of 9.56, meaning each gene 
is linked to an average of 9.56 genes. Since there are at least 20 000 whole genomes, looking at the vector rep-
resentation of the adjacency matrix of the PPI network, these vectors will look very sparse. That is, most values 
are 0 and very few (average 9.56) values are 1. As Perozzi et al.18 stated, this sparsity can make generalizations in 
statistical learning models extremely difficult. DeepWalk18 is a well-designed solution to this sparsity problem 
and we wanted to take advantage of it. The proposed method was largely motivated by the work of Perozzi et al.18 
using DeepWalk as a graph embedding method.

In this paper, we propose a method to discover network biomarkers and determine their metastasis potential 
in early OTSCCs designed to overcome the aforementioned challenges. To achieve this goal, we have developed 
three new computational techniques that are combined into a single computational framework, including a 
supervised subnetwork level representation learning system for extending SAS , a subnetwork extraction method 
using the DeepWalk graph embedding technique , and an attention-based classification system for integrating 
subnetwork level representations and discovering network biomarkers. In the following sections, we described 
(1) how the proposed method defined subnetworks for identifying network biomarkers, (2) how the problem is 
addressed as a machine-learning framework that calculated the representation of each subnetwork based on the 
given input and target variables, and (3) how it was applied to early oral cancer to predict lymph node metastasis.

Materials and methods
The proposed method works in three stages: (1) subnetwork extraction using graph embedding technique, (2) 
construction of subnetwork level representation, and (3) integration of subnetwork level representation into the 
master-level decision.

Subnetwork extraction using graph embedding technique.  Extracting subnetworks from a given 
PPI network , taking into account its biological significance, is an important task in constructing subnetwork-
level representations. Essentially, the problem can be thought of as a clustering node within a PPI network rep-
resented in the form of an adjacency matrix (Fig. 1). The sparsity of network representation is useful for defin-
ing clusters, but at the same time is a huge challenge to the generalization of machine learning. DeepWalk is a 
powerful tool to deal with this problem, deploying representation learning techniques based on neural networks 
such as Word2Vec18, 22. It works as a graph embedding tool and shows good performance when used for node 
classification18. In the study of Perozzi et al.18, DeepWalk was compared with five other methods in terms of the 

Figure 1.   Extracting subnetworks using graph embedding technique . This involves 1) generating an adjacency 
matrix from a given PPI network, 2) random work sampling from a given PPI graph, and 3) generating a 
word2vec representation of the sampled works to generate a dense representation of each gene.
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multi-label classification task, which is a problem of erasing some of the labels and guessing the erased labels 
through node clustering when given a graph with labels on each node. DeepWalk outperformed all other oppo-
nents under various experimental conditions. Based on the Macro-f1 score, DeepWalk’s performance reaches 
up to 43.05%.

DeepWalk receives the sparse representation of the PPI network and generates a dense representation of 
the individual nodes encoding the relationship between each node in a continuous vector space with a reduced 
number of dimensions (Fig. 1). Using the encoded vector as a new representation of each node, we can solve the 
problem of extracting subnetworks by transforming it into a clustering problem. We used the Gaussian Mixture 
Model (GMM) and Bayesian Information Criteria (BIC) (Eq. 1) to estimate the optimal number of clusters for a 
given PPI network , and each resulting cluster can be considered a subnetwork (Fig. 2). For this step, the Python 
library scikit-learn-0.19.2 was used23.

where x is the observed data, n is the number of data points in x, and k is the number of clusters. d is the number 
of dimensions of the latent representation generated by DeepWalk. p(x | θ̂ ,M) represents the maximum value 
of the GMM likelihood function. Where θ̂  is the parameter value that maximizes the likelihood function. The 
model with the lowest BIC value is considered optimal.

In order to improve interpretability and reduce noise, we took the Hallmark Gene Set (HGS) from the 
molecular signature database (MSigDB)24 to limit the gene space. HGS is a well-selected group of functional 
genes, in which genes associated with a common cancer phenotype are grouped into a set of genes. HGS has 
50 genesets containing a total of 4,384 genes. For each geneset, we first generated a PPI network graph using 
the protein-protein interactions between the genes of each geneset. Here , PPI networks were extracted from 
BioGrid21 using only high-confidence protein interactions . For each PPI network graph, we applied DeepWalk 
to create a vector space, then applied GMM to create subnetworks (Figs. 1 and 2). By defining sub-networks 
within each HGS geneset, the genes in each sub-network are not only closely linked in terms of PPI network , 
but also in terms of cancer phenotype. In summary, 279 subnetworks were obtained, each subnetwork assigned 
to one of the 50 HGS genesets.

Construction of subnetwork level representation.  Constructing a subnetwork-level representation 
of cancer transcriptome requires the integration of gene expression levels and PPI networks between genes so 
that the activity of each subnetwork can be quantified. SAS is one of the most effective tools to this end19. SAS 
uses RNA-seq samples and subnetworks generated from PPI networks as inputs to quantify subnetwork level 
activation for each sample. As explained in the Eqs. (2a), (2b), (2c) and (2d), SAS is a single value called Subnet-
work Activation Score for the subnetwork level representation of the transcriptome. It is defined as a nonlinear 
combination of gene expression using the closeness centrality of each gene with a coefficient defined by a given 
PPI network . 

(1)BIC = ln (n)(kd)− 2 ln (p(x | θ̂ ,M))

(2a)ACTi,j = Ni,j ∗
(ciri + cjrj)

2

2(ri + rj)

Figure 2.   Subnetwork clustering using latent representation. This involves (1) applying a Gaussian mixture 
model to a given dense representation of the PPI network using a wide range of the number of components 
as parameters, (2) evaluating each model by calculating the BIC criterion, and (3) choosing the best model to 
create a subnetwork for a given PPI network.
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ACTi,j represents the edge level activation score between the two genes i and j. ri represents the expression 
level of the gene i (TPM in this case). ci represents the closeness centrality of the gene i within a given subnetwork 
PPI network . SAS is the total activation score for the subnetwork. ai,j is an indicator of whether two genes are 
linked within a given PPI network , and Ni,j is the normalized term for ai,j.

While SAS does not use sample labels when calibrating subnetwork representations, our goal is to predict 
metastasis potential in early OTSCC, so we modified SAS to better serve this purpose and named it supervised 
SAS (sSAS). sSAS inherited the basic idea of SAS, but calculated the coefficients in different ways (e.g. ci and Ni,j ). 
Rather than defining the coefficients directly in the network topology, they were estimated by maximizing the 
log-likelihood function (Eq. 3f) designed to be considered as a latent variable and minimize prediction errors 
for the labels of each sample. As shown in Eq. (3a) and (3b), sSAS is defined as a logit in a logistic regression 
problem rather than a single activation score. x is defined as a vector containing a nonlinear combination of 
gene expression combined by paired combinations of genes, and θ is the latent weight corresponding to x. The 
problem definition is as follows.

First, the ACTi,j term is divided into three parts: r2i
ri+rj

 , 
r2j

ri+rj
 , and rirjri+rj

 . Then, all coefficients are considered as 
latent variables such as wij1 , wij2 , and wij3 . Then the linear combination of the three division terms replaces ACTi,j 
(Eq. 3a). We named it sACTi,j as a supervised ACTi,j . Then the term SAS is also changed to a supervised format 
(e.g. sSAS) to estimate the latent weights by target variable (ie, sample label) (Eq. 3b). The original observations 
are transformed into a nonlinear combinatorial vector of gene expression x (Eq. 3c) and their weights are defined 
by the model parameter θ (Eq. 3d). Based on this, the logistic function qk(x) is defined to represent the estimated 
probability of observation x with target label k (Eq. 3e). Finally, a log-likelihood function l(θk) is defined so that 
the model parameter θk can be estimated by maximizing l(θk) (Eq. 3f and 3g). 

The representation of a subnetwork t of a sample m is defined in Eq. (4a) and (4b). In the case of multiple 
classes, the model parameter for each class θk is independently estimated in a “one versus the rest” way, then 
consolidated into pmtk as in Eq. (4b). In our scheme, therefore, the subnetwork level representation of a sample 
is probability distribution estimated from the given data at each subnetwork by logistic regression model (Eq. 4c 
and Fig. 3). For example, if RNA-seq samples have k classes of labels then each RNA-seq sample will have a 
vector with dimensions of 279 ∗ k because we used 279 subnetworks in this study. scikit-learn-0.19.2 
was used for this step23. 

(2b)SAS =
∑

i

∑

j

ACTi,j

(2c)Ni,j =
aij∑

s

∑
t ast

(2d)aij =

{
1 if gene i and j are connected
0 otherwise

(3a)sACTi,j = wij1(
r2i

ri + rj
)+ wij2(

r2j

ri + rj
)+ wij3(

rirj

ri + rj
)

(3b)sSAS = ln
q

1− q
=

∑

i

∑

j

sACTi,j

(3c)x =

〈
r21

r1 + r2
,

r22
r1 + r2

,
r1r2

r1 + r2
, ...

〉

(3d)θ = �wij1,wij2,wij3, ...�

(3e)qk(x) =
1

1+ e−θTk x

(3f)l(θk) =
∑

m

ymk ln qk(xm)+ (1− ymk) ln(1− qk(xm))

(3g)ymk =

{
1 if the label of sample m is k
0 otherwise

(4a)qmtk =
1

1+ e−θTk xm
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Integration of subnetwork level representation into master‑level decision.  The remaining prob-
lem is to incorporate the constructed subnetwork level representation into a single master level decision. We 
solved this ensemble learning problem using the attention layer built into the neural network. The attention 
mechanism stems from the problem of sequence-to-sequence mapping in machine translation25. In the work of 
Bahdanau et al., the attention layer was inserted between the encoder and decoder layer to act as memory25. In 
other words, they are trained to dictate which context to focus on at a specific point in time and which context 
to not. The attention mechanism has been applied to various tasks and has been shown to exhibit excellent 
performance26, 27. Also, Choi et al.27 suggested that the attention mechanism can be used to make models more 
explainable. In this model, the attention layer acts as a master-level decision agent trained to decide which sub-
network to focus on based on the certainty computed with each sub-network level representation (Fig. S1). As 
shown in Eq. (5a) and (5b), the attention layer takes the negative Shannon’s entropy28 of each subnetwork level 
representation. Since the entropy of a given probability distribution represents the level of uncertainty, negative 
entropy was used to quantify how certain each subnetwork level predictor is for a given classification task.

The negative entropy values of each subnetwork are concatenated into a single vector (Eq. 5b) and passed to 
the next fully concatenated layer (FC). Then softmax activation is applied, resulting in a proportional distribution 
that is the attention layer (Eq. 6a and 6b). Hence, the actual parameter that can be learned here is the W matrix 
(Eq. 6a), which learns to decide which subnetworks to focus on based on the C vector. The actual decision-making 
process is described in Eq. (6c) and (6d) (Fig. S2). It is basically the weighted sum of subnetwork level representa-
tion for each class, where the weights are learned by the attention mechanism. The prioritization of features by the 
model is an instance-wise process, so each sample gets a different attention value depending on their subnetwork 
level representation. Python libraries tensorflow-1.10.029 and keras-2.2.230 were used for this step. 

(4b)pmtk =
qmtk∑
r qmtr

(4c)Submt = �pmt1, pmt2, ..., pmtk�

(5a)ct =
∑

k

ptk ln ptk

(5b)C = �c1, c2, ..., ct�

(6a)H = softmax(WCT )

(6b)H = �h1, h2, ..., ht�

(6c)dk =
∑

t

ht ∗ ptk

Figure 3.   Constructing subnetwork level representation. This includes (1) calculating the sSAS representation 
for each optimized subnetwork and (2) integrating the representations into the subnetwork-level representation 
for each sample.
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Evaluation design
Two sets of experiments were prepared to evaluate the proposed method. 1) The first used breast invasive car-
cinoma (BRCA) cohort data from the Cancer Genome Atlas (TCGA) consortium31 (referred to as BRCA-case). 
2) The second used squamous cell carcinoma of the head and neck (HNSC) cohort data from TCGA​32 and 
proprietary data provided by SMG-SNU Boramae Medical Center (referred to as ORAL-case). The purpose of 
the first experiment was to test the model’s performance with a well-known dataset so that the results could be 
compared to previously studied knowledge that corresponds to the case. The second experiment was the main 
subject of the study.

Data description: BRCA‑case.  For BRCA-case, we collected 981 RNA-seq samples from TCGA, where 
each of them is labeled with PAM50 classes33. PAM50 is a standard de facto method for identifying the molecular 
status of breast cancer, which has five subtypes: lumen A (LumA), lumen B (LumB), HER2-enriched (HER2), 
basal (Basal), and normal (Normal) subtypes, which was initially defined by unsupervised clustering analysis 
using a whole-genome scale gene expression profile. There were 499 LumA, 197 LumB, 78 HER2, 171 Basal, and 
36 Normal . Note that they were all primary tumors and samples with the Normal subtype were excluded. Note 
that all the RNA-seq samples have gene expression levels measured by the Transcripts Per Million (TPM) scale 
for 20,501 genes.

Data description: ORAL‑case.  For ORAL-case, we collected 97 RNA-seq samples from both TCGA and 
SMG-SNU Boramae Medical Center, where 64 RNA-seq samples (will be referred to as TCGA-ORAL samples) 
were from TCGA and 33 RNA-seq samples (will be referred to as SNUH-ORAL samples) were from SMG-SNU 
Borame Medical Center. Each of them was primary tumors with oral tongue origin and cancer stages I and II. 
They were labeled with their lymph node metastatic status as Positive and Negative. For TCGA-ORAL samples, 
there were 31 samples labeled with Positive and 33 samples labeled with Negative, while there were 11 samples 
labeled with Positive and 22 samples labeled with Negative in SNUH-ORAL samples. The gene expression levels 
were measured the same as in the BRCA-case.

Validation.  For each experiment, we divided the dataset into train and test sets to validate the performance 
of the method. In BRCA-case, we randomly sampled 30% of the overall samples with class label balanced and 
considered them as a test set. In summary, 689 samples (LumA: 350 , LumB: 138 , Her2: 55, Basal: 120, and Nor-
mal: 26 ) were used as a train set, while 292 samples (LumA: 149 , LumB: 59 , Her2: 23, Basal: 51, and Normal: 10 
) were used as a test set. In ORAL-case, the 64 TCGA-ORAL samples (Positive: 31 and Negative: 33) were used 
as a train set, while the 33 SNUH samples (Negative: 22, Positive: 11) were used as a test set. Note that the SNUH 
samples had completely different geographical and ethnic compositions (ie, Korean) compared to the TCGA 
samples in ORAL-case. Three types of metrics were used in the evaluation. 1) Averaged area under the curve 
(mAUC) , 2) Accuracy (ACC), and 3) F1 score (F1). mAUC is the adjusted value of AUC for class imbalance in a 
multiclass classification problem. mAUC is the average AUC for each class when treated as a binary classification 
(i.e. one versus the rest). The mAUC, ACC, and F1 measured with the training set are mAUCtrain , ACCtrain , and 
F1train and the values measured with the test set are mAUCtest , ACCtest , and F1t est .

Prediction power evaluation.  For evaluation, we first set the baseline performance using existing 
machine learning methods such as Logistic Regression (LR), K Nearest Neighbors (KNN), Random Forest (RF), 
Support Vector Machine (SVM) , and Multi-Layer Perceptron (MLP) in each case (ie, BRCA-case and ORAL-
case). The experimental setup was prepared with all possible combinations of parameters listed in Table S2. The 
total number of combinations was 25,664. We chose the model with the best performance in terms of mAUC and 
mACC and used it as the baseline performance to evaluate the proposed method. scikit-learn-0.19.2 
was used for this test23. Similarly, we evaluated all the possible combinations of the parameters listed in Table S1 
to select the parameters to be used in the proposed method. The total number of combinations was 4,900. By 
comparing the best performances between the conventional methods and our method after searching for each 
parameter space with comparable sizes, we can estimate the extent to which our method can perform relatively 
better than conventional methods. The python library tensorflow-1.10.029 and keras-2.2.230 were 
used for this setup.

Network biomarker evaluation.  The attention layer assigns weights to each subnetwork level prediction 
(Eqs. 6a, 6b and 6c), where the weights are the probability distribution due to softmax activation. Therefore, each 
weight can be considered the importance of the features learned in the decision model (Fig. S2). The weights are 
defined instance-wise, so the overall feature importance (i.e. FIt ) was defined as the average value of all samples 
(Eq.7). Then, each subnetwork was ranked in ascending order. The feature ranking of the subnetwork t is called 
FIRt.

(6d)fk =
edk∑
s e

ds

(7)FIt =

∑N
n=1 hnt

N
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Note that the hnt indicates the attention value of the subnetwork t of sample n.
We conducted a test to evaluate how well the decision model prioritizes features. In BRCA-case, since the 

PAM50 subtyping is based on the 50 genes33, we can use this information to design a permutation test. First, we 
defined a function that defines a score for the reference geneset (ie, PAM50 genes) against a given feature rankings 
of subnetworks (Eqs. 8a, 8b, and 8c). Then, the score of PAM50 genes with the feature rankings provided by the 
decision model was set as a baseline score (Eq. 8a). Next, a permutation test was performed with feature rankings 
shuffled 1-million times (Eqs. 8d, 8e, 8f, and 8g). The purpose of shuffling is to simulate the null hypothesis by 
generating randomized rankings. Then, the number of randomized settings that exceed the baseline score was 
counted for calculating empirical p-value (Eq. 8d). The purpose of this test was to evaluate how significantly the 
feature rankings learned by the attention layer reproduce the prior knowledge corresponding to the given data 
(ie, PAM50 genes). 

Results
BRCA‑case.  As mentioned, we designed an evaluation scheme for comparing the baseline methods and the 
proposed method in terms of mAUC and mACC. As noted, the figures below are the results of PAM50 label pre-
dictions for the TCGA-BRCA cohort. In BRCA-case, the SVM algorithm with cosine kernel PCA with 18 com-
ponents, TPM legalization, and no feature selection showed the best performance ( mAUCtest : 0.8700, mACCtest : 
0.8390, and F1test : 0.8320 ) for the baseline performance. Our method showed a better performance ( mAUCtest : 
0.9006, mACCtest : 0.8664, and F1test : 0.8623 ) (Fig. 4), using adagrad, squared hinge loss, 10% dropout, 25% split, 
and with feature selection. Also, we conducted the permutation test over the feature rankings that were gener-
ated by the attention layer of the best model, which showed that PAM50 genes are significantly highly ranked in 
the resulted attention layer (empirical p-value: 1.1e−05). See the resulting confusion matrix of our approach in 
Supplementary Table S3.

ORAL‑case.  In ORAL-case, the RF algorithm with linear kernel PCA, dimension reduction size 4, TPM 
logarization, and using feature selection showed the best performance ( mAUCtest : 0.7045, mACCtest : 0.7576, and 
F1test : 0.7570 ) for the baseline performance. This is the result of predicting lymph node metastasis in OTSCC. 
Our method showed better performance ( mAUCtest : 0.9174 , mACCtest : 0.8864 , and F1: 0.8333 ) (Fig. 5), using 
AdaGrad, Mean absolute percentage error, 50% dropout, 10% split, and a feature selection. The more detailed 
metrics are in Table 1 and the top-5 subnetworks highlighted by the attention layer are in Table 2. See the result-
ing confusion matrix of our approach in Supplementary Table S3.

Discussion
As described, the proposed method outperformed the baseline methods in both BRCA-case and ORAL-case, 
and the attention map of the best model was found to greatly reproduce the prior knowledge in BRCA-case. 
This indicates that our method can construct a computational model for predicting patient status based on the 
subnetwork level representation of transcriptome. Also, the proposed method outperformed the baseline method 
in ORAL-case, showing that the model constructed by our method is robust enough to be reproduced between 
two groups of different geographical and ethnic origins.

(8a)SCORE =

∑50
g=1 RANKg

50

(8b)RANKg =

∑
t SUBgt ∗ FIRt∑

t SUBgt

(8c)SUBgt =

{
1 if gene g is included in subnetwork t
0 otherwise

(8d)p-value =

∑1,000,000
iter=1 Iiter

1, 000, 000

(8e)Iiter =

{
1 if SCORE

permute
iter > SCORE

0 otherwise

(8f)SCORE
permute
iter =

∑50
g=1 RANK

permute
g ,iter

50

(8g)RANK
permute
g ,iter =

∑
t SUBgt ∗ FIR

permute
t,iter∑

t SUBgt
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Robustness of the method.  Since there were not many samples available (64 for ORAL), two additional 
evaluations were performed instead of cross-validation to determine if the method was overfitting. In BRCA-
case, we performed a permutation test to determine how the PAM50 gene was enriched in the resulting attention 
map of the best model, as described in the “Network biomarker evaluation” section. The PAM50 subtype is based 
on 50 genes, so if the model truly reflects the underlying biology and is not overfitted to noise, those 50 genes 
should rank higher than the others. In this regard, the results in the“ BRCA-case” section clearly show that the 
model did not overfit in the BRCA-case (permutation test p-value: 1.1e−05).

In ORAL-case, we performed an extensive literature search to find out how the high-rank sub-networks in 
ORAL-case are associated with lymph node metastasis in OTSCC. The literature search results strongly suggest 
that the top-ranked subnetworks are closely linked with lymph node metastasis. This also implies that the model 
is not overfitting. The attention layer were able to capture core mechanisms known to be associated with lymph 
node metastasis in OTSCC as well as other cancer types, which are listed as follows. 

Figure 4.   Performance evaluation results for PAM50 subtype prediction in breast cancer. The color-coding 
indicates the actual class label of samples.

Figure 5.   Performance evaluation results for lymph node metastasis prediction in early oral tongue cancer. The 
color-coding indicates the actual class label of samples.
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(1)	 Epithelial-Mesenchymal Transition (EMT, 9.12%): EMT is a series of critical events observed during cancer 
progression including invasion and metastasis caused by the acquisition of fibroblast-like phenotype of 
cancer cells, which is the core mechanism of lymph node metastasis in various types of carcinoma includ-
ing OTSCC34.

(2)	 E2F Targets (9.06%): E2F is a class of transcription factors that regulates the expression of genes associated 
with cell proliferation35, which has been known to affect the Disease-Free Survival (DFS) in oral cancer36.

(3)	 TNFα Signaling via NFκ B (7.45%): Tumour Necrosis Factor Alpha (TNFα ) is an import inflammatory 
factor that has a critical role in proliferation, migration, invasion, and angiogenesis, which frequently 
collaborates with the Nuclear Factor Kappa B (NFκB), inducing tumor cell invasion and metastasis37. The 
TNFα and NFκ B signaling have been known to be associated with invasion and metastasis in oral cancer38.

The highlighted subnetwork of the attention map showed a strong association with the results of previous studies, 
suggesting that the model is very reliable in terms of consistency with prior knowledge. This also suggests that 
other subnetworks (eg, Mitotic spindle and Myogenesis) may be unknown regulators of lymph node metastasis 
in OTSCC. A complete list of the attention maps for BRCA-cases and ORAL-cases is listed in Table S3.

Biological significance of the subnetworks of PPI network extracted by DeepWalk.  In our 
method, a neural network-based graph embedding technique DeepWalk18 was used for extracting subnetworks 
from a given PPI network . DeepWalk generates vectors of real numbers for each protein in a given PPI network 
, where vector distances between adjacent proteins in the PPI network are smaller than the distant proteins. 
Hence, clusters generated by using the DeepWalk representation can be considered as well-optimized collections 
of interacting proteins in terms of the PPI network . It has been known to show better performances than the 
classical graph clustering approaches such as SpectralClsutering and Modularity-based clustering18. The strength 
of DeepWalk comes from the random-walk-based estimation of topological distances between two proteins, 
meaning that it considers not only the direct edges between two proteins but also considers indirect connec-
tions implied in the neighborhood information between two proteins. It allows the model to capture the hidden 

Table 1.   Detailed metrics for lymph node metastasis prediction in early oral tongue cancer. * Note that the 
metrics are not class-balanced.

Measure Value* Description

TP 10 # of True positive

TN 19 # of True negative

FP 3 # of False positive

FN 1 # of False negative

Sensitivity 0.9091 TPR =
TP

TP+FN

Specificity 0.8636 SPC =
TN

FP+TN

Precision 0.7692 PPV =
TP

TP+FP

Negative predictive value 0.9500 NPV =
TN

TN+FN

False positive rate 0.1364 FPR =
FP

FP+TN

False discovery rate 0.2308 FDR =
FP

FP+TP

False negative rate 0.0909 FNR =
FN

FN+TP

Accuracy 0.8788 ACC =
TP+TN

P+N

F1 score 0.8333 F1 =
2TP

2TP+FP+FN

Table 2.   Attention map of the best model using the proposed method. Note that the top-5 subnetworks are 
listed. 1 SUBNETWORK column indicates the name of subnetworks, where the prefix is the name of HGS 
geneset and the postfix (the integer number) is the index. 2 ATTENTION column indicates the attention values 
generated by the best model of the proposed method averaged by all samples (including the TCGA and SNUH 
samples).

Subnetwork1 Attention2 (%) Genes

EPITHELIAL_MESENCHYMAL

_TRANSITION_2 9.12 BMP1,DAB2,FBLN5,GADD45A,GEM,LOXL1,LUM,SNAI2,TPM1, VEGFA

E2F_TARGETS_5 9.06 AURKB,BRCA1,CCNE1,CDC20,CDKN2C,EXOSC8,GINS3,IPO7, MAD2L1,MCM7,POLA2,PRIM2,PTTG1,RAD1,RAD2
1,RANBP1, SYNCRIP,TK1,TUBB,XPO1

MYOGENESIS_6 7.97 ADAM12,CDKN1A,HSPB8,KIFC3,MB,MYOZ1,PSEN2,TNNC2, TNNT3,TPM3

TNFA_SIGNALING_VIA_NFKB_6 7.45 CCND1,CEBPB,CFLAR,ETS2,FOS,GADD45A,MAP3K8,MYC, NFE2L2,SMAD3,SPHK1,TNF,TRAF1,TRIB1

MITOTIC_SPINDLE_2 4.78 ARHGAP27,ARHGEF11,CENPE,CEP250,KIF4A,KIF5B,KIFAP3, LLGL1,LMNB1,RACGAP1,RASA1,TUBA4A
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relationships between two proteins, which might not be explicitly specified in the PPI network due to the lack 
of knowledge.

In addition, we used MSigDB Hallmark Gene Set (HGS) to annotate sub-networks, a set of cancer hallmark 
genes, so the framework is currently only valid for cancer tissues. It is designed to work for any cancer tissues, 
as it has been shown to be effective in both oral and breast cancers.

Advantages of the supervised setting for constructing subnetwork level representa‑
tions.  Originally, the SAS19 method was not designed for a classification problem. Hence, we replaced the 
coefficients in the SAS framework with latent variables estimated by using each sample label (Eq. 3f). It virtually 
rewires edges within each subnetwork to be suited for solving the given classification problem. There are three 
advantages to this setting. First, it can fill the gap of knowledge from the data, such as unknown interactions 
between proteins. Secondly, it can calibrate the edge weights to reflect condition-specific interactions or broken 
interactions that are specific to given data. Lastly, it can reduce the weights of passenger interactions, redistribut-
ing to the drivers39.

There are many dimensionality reduction techniques such as principal component analysis (PCA)40 . The 
main difference between PCA and SLR is the interpretability of the results each model produces. For PCA, the 
output is just a coefficient assigned to each gene to transform each sample’s gene expression vector into a reduced 
vector embedding space. It is difficult to infer biological knowledge or therapeutic targets from the results. On 
the other hand, our approach can generate subnetwork-level attention maps highlighting the subnetworks that 
are important for predicting specific cancer phenotypes. It is much more intuitive and informative in terms of 
biological and clinical applications.

Clinical implication of the decision making process by the attention layer.  In our method, the 
final prediction was made by combining each subnetwork level representation, which can be considered a type 
of multimodal learning. The multimodal learning approach has been applied to cancer genomics as a tool to 
integrate heterogeneous data sources such as multi-omics integration41. In our model, subnetworks that are 
optimally defined in terms of PPI network and HGS are considered multimodal units, meaning that each sub-
network level prediction has been independently generated to recognize patient status. This is not a new concept 
on the clinical bench. Clinicians routinely use heterogeneous sources of information to make well-adjusted 
decisions42. Thus, the human clinician’s decision-making process is inherently multimodal. Our model can be 
considered a computationally well-optimized tool for simulating the decision-making process of human clini-
cians based on transcriptome data. In addition, explainability is a key challenge for maximizing the utility of a 
machine learning model43. Reducing high dimension transcriptome data into a much smaller but biologically 
meaningful subnetwork space will be helpful to explain the prediction result in a more acceptable way for both 
clinicians and patients. Moreover, since the attention layer operates in an instance-wise manner, the attention 
map of each patient represents the highlights of the importance of each subnetwork customized to each patient, 
which can be useful for the personalized medicine44. Lastly, even though the attention map mostly focused on 
the subnetworks well-known to be associated with metastasis, some of them (eg, Mitotic spindle and Myogen-
esis) were relatively not studied for their connection to the metastasis. It suggests that the attention model can be 
used as a tool for discovering previously unknown network biomarkers, which can lead to a new understanding 
of cancer biology or new therapeutic targets.

Limitations and future works.  As stated in “Biological significance of the subnetworks of  PPI network 
extracted by DeepWalk”, the HGS geneset is pre-customized for each cancer phenotype, so the proposed method 
is essentially tailored only to cancer samples. Although it is designed to act on all cancer tissues, it has only been 
tested for oral and breast cancers, so its applicability to other cancer types is unknown. To clarify this, future 
experiments need to be conducted to apply the proposed method to a wide range of cancer samples, such as the 
pan-cancer project ? data.

Conclusion
The proposed method is a computational framework that learns subnetwork representations of the transcrip-
tome to discover network biomarkers and determine metastatic potential in early oral tongue squamous cell 
carcinoma. This method achieved high accuracy in predicting the likelihood of metastasis in two geographically 
and racially different groups of patients. The robustness of the model and the reproducibility of the discovered 
network biomarkers show great potential as a tool to diagnose lymph node metastasis in early oral cancer. Our 
contribution can be summarized as follows . 

(1)	 Developed a method to define optimized subnetworks from a given PPI network using a state-of-the-art 
graph embedding technique.

(2)	 Developed a supervised subnetwork representation learning system to successfully reduce the input dimen-
sion of transcriptome data by considering complex dependencies between genes, leading to robust predic-
tion models with good performances.

(3)	 Developed an attention-based classification system to integrate the subnetwork level representations, cre-
ating an attention map that highlights important network biomarkers tailored to each patient, leading to 
feature rankings that significantly reproduced the prior knowledge.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23992  | https://doi.org/10.1038/s41598-021-03333-5

www.nature.com/scientificreports/

Data availability
TPM-quantified gene expression levels for TCGA-BRCA and TCGA-HNSC were downloaded from http://
firebrowse.org/, where the archive name is illuminahiseq_rnaseqv2-RSEM_genes in the mRNASeq section. The 
PAM50 label of TCGA-BRCA was extracted from https://www.cbioportal.org/study/summary?id=brca_tcga_
pan_can_atlas_2018. The OTSCC annotation information such as tissue origin and the tumor stage is based on 
the clinical information of the TCGA-HNSC cohort downloaded from http://firebrowse.org/, where the archive 
name is Clinical_Pick_Tier1 in the Clinical section. A cleaned dataset is deposited on Zenodo, whose link is 
“https://zenodo.org/record/5485336#.YTfuPp5Kiqk”. All the other related data and source codes are available 
at https://github.com/mdy89/subnet-learn. Supplementary Tables S1, S2, Supplementary Figs. S1 and S2 are 
included in the supplementary information section.
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