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A B S T R A C T   

Introduction: Osteosarcoma, the prevailing primary bone malignancy among children and ado-
lescents, is frequently associated with treatment failure primarily due to its pronounced meta-
static nature. 
Methods: This study aimed to establish potential associations between hub genes and subtypes for 
the treatment of metastatic osteosarcoma. Differentially expressed genes were extracted from 
patients diagnosed with metastatic osteosarcoma and a control group of non-metastatic patients, 
using the publicly available gene expression profile (GSE21257). The intersection of these gene 
sets was determined by focusing on endoplasmic reticulum (ER) stress-related genes sourced from 
the GeneCards database. We conducted various analytical techniques, including functional and 
pathway enrichment analysis, WGCNA analysis, protein-protein interaction (PPI) network con-
struction, and assessment of immune cell infiltration, using the intersecting genes. Through this 
analysis, we identified potential hub genes. 
Results: Osteosarcoma subtype models were developed using molecular consensus clustering 
analysis, followed by an examination of the associations between each subtype and hub genes. A 
total of 138 potential differentially expressed genes related to endoplasmic reticulum (ER) stress 
were identified. These genes were further investigated using Gene Ontology (GO), Kyoto Ency-
clopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathways. 
Additionally, the PPI interaction network revealed 38 interaction relationships among the top ten 
hub genes. The findings of the analysis revealed a strong correlation between the extent of im-
mune cell infiltration and both osteosarcoma metastasis and the expression of hub genes. Notably, 
the differential expression of the top ten hub genes was observed in osteosarcoma clusters 1 and 
4, signifying their significant association with the disease. 
Conclusion: The identification of ten key genes linked to osteosarcoma metastasis and endoplasmic 
reticulum stress bears potential clinical significance. Additionally, exploring the molecular sub-
type of osteosarcoma has the capacity to guide clinical treatment decisions, necessitating further 
investigations and subsequent clinical validations.  
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1. Introduction 

Osteosarcoma, a primary bone tumor prevalent among children and adolescents, exhibits an annual incidence of approximately 
8–11/million [1]. This malignancy is characterized by its highly aggressive nature, heterogeneity, and propensity for metastasis [2], 
leading to a significant risk of disability and mortality following metastatic spread. Osteosarcoma commonly manifests in the vicinity 
of the metaphysis of long bones, including the distal femur, proximal tibia, and humerus [3]. The precise etiology, progression, and 
metastasis of osteosarcoma have not been thoroughly investigated [4,5]. However, the elevated prevalence among adolescents and its 
predilection for specific anatomical sites suggest a correlation with accelerated bone tissue growth [6]. Presently, the primary ther-
apeutic approach for osteosarcoma entails preoperative chemotherapy, surgical excision, and postoperative chemotherapy. Despite 
extensive removal of macroscopic tumor tissue during surgical intervention, recurrence frequently occurs [7]. The implementation of 
neoadjuvant chemotherapy has led to a substantial enhancement in the 5-year survival rate among individuals diagnosed with os-
teosarcoma [8]. When neoadjuvant chemotherapy is combined with surgical resection, the 5-year survival rate for patients with 
non-metastatic osteosarcoma is approximately 60% [9]. However, the survival rate drops significantly to only 20–30% for patients 
with metastatic osteosarcoma [9–11]. The high incidence of metastasis in osteosarcoma is the primary determinant of the unfavorable 
prognosis [12]. Presently, there is no treatment available that significantly improves the 5-year survival rate for patients with met-
astatic osteosarcoma [13]. 

The endoplasmic reticulum (ER) plays a crucial role in the processes of protein synthesis, folding, and structural maturation. ER 
stress, which occurs as a result of genetic or environmental factors, disrupts the ER’s ability to properly modify, fold, and secrete 
proteins, leading to the accumulation of misfolded proteins within organelles [14]. This phenomenon of ER stress is closely linked to 
the onset and progression of various diseases, including tumors, diabetes, and neurodegenerative disorders [15–17]. Unfavorable 
conditions within the tumor microenvironment, including nutritional deficiency, hypoxia, hypermetabolism, and oxidative stress, 
have been shown to disrupt protein folding by the endoplasmic reticulum (ER), leading to the persistent activation of “ER stress.” This 
phenomenon enhances the tumorigenic, metastatic, and drug-resistant properties of malignant cells [14,16,18]. Osteosarcoma is 
characterized by extensive genetic variation, dysregulation of multiple signaling pathways, and genome instability. These factors are 
closely associated with the regulation of bone development, tumor microenvironment, genome homeostasis, cell cycle control, and cell 
signal transduction pathways [16]. The correlation between ER stress-related genes and osteosarcoma metastasis has been established 
[19], and the utilization of molecular subtype models is crucial for predicting tumor risk and evaluating prognosis [20–22]. Never-
theless, there is currently a lack of research on molecular subtype models specifically pertaining to ER stress and osteosarcoma 
metastasis. 

In this study, the author developed a molecular subtype model for osteosarcoma AMI. By analyzing the gene data from 14 met-
astatic osteosarcoma patients and 19 non-metastatic osteosarcoma patients, the study identified co-expressed differential genes 
associated with osteosarcoma metastasis and ER stress. Subsequently, a validation set comprising 10 key genes was established, 
confirming the robustness of the molecular subtype model for osteosarcoma. These key genes hold promise as potential targets for 
targeted therapeutic drugs and molecular markers for prognostic evaluation. 

2. Materials and methods  

1 GEO data difference analysisC 

We performed an analysis on the osteosarcoma dataset. GSE21257 comes from the Gene Expression Omnibus (GEO) database [23]. 
GSE21257 has 53 samples, including 14 samples of osteosarcoma metastases (metastases present at diagnosis) and 19 samples of 
non-metastases (no metastases). The chip platform is a GPL10295 Illumina human-6 v2. 0 expression beadchip (using nuIDs as 
identifiers). 

We used the standardized data expression matrix downloaded from GEO to match, select, and delete gene data based on the 
samples. The selected samples were grouped according to metastasis and non-metastasis for subsequent analysis. For the preprocessed 
data set, we drew a boxplot using the R language’s boxplot function to observe the data distribution. Expression difference P-values and 
expression fold change values were calculated using the R package limma (Version 3.42.2) [24]. We selected genes with a P-value 
<0.05 and |log2FC| > 0.263 (1.2-fold relationship) as significantly differentially expressed mRNAs. The R package heatmap function 
(Version 1.0.12) [25] was used to make differential heat maps and volcano maps for visualization.  

2 Molecular subtype construction 

We calculated the AMI molecular subtypes with the ConsensusClusterPlus package [26] and the Rtsne package [27]. The ggplot2 
package was used for molecular subtype visualization. Correlations between hub genes and molecular subtypes were plotted with the 
gspubr package.  

3 Enrichment analysis of intersection genes 

The GeneCards database (https://www.genecards.org/) [28] provides annotated and predicted human genetic information. The 
database automatically integrated genetic data from approximately 150 network sources, including genomics, transcriptomics, 
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Fig. 1. Flow chart.  

Fig. 2. Difference analysis (Pink is the metastatic group and green is the non-metastatic group): (A) Boxplot before GSE21257 data processing. 
(B) Boxplots after GSE21257 data processing. (C) PCA graph. (D)GSE21257 dataset differential genes volcano plot. Red is up-regulated 
differential genes, blue is down-regulated differential genes, and grey is non-significant genes. (E) GSE21257 datasetdifferential genes heat 
map. Blue is the metastatic group, pink is the non-metastatic group, green is low expression, and red is high expression. (F) Venn diagram of the 
intersection of endoplasmic reticulum stress-related genes and differential genes. 138 potential ER stress-related differentially expressed 
genes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)  

2 Molecular Subtype Construction 
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proteomics, and genetics, as well as clinical and functional information. 
In this analysis, ER stress-related genes were downloaded from the GeneCards database using “endoplasmic reticulum stress” as the 

search key. We took the intersection of differential genes and ER stress-related human genes to create a Venn diagram, which was 
constructed using the R-package Venn diagram function (Version 1.6.20) [29]. 

Gene Ontology (GO) [30] describes our understanding of the field of biology based on three aspects, molecular function (MF), 
cellular components (CC), and biological processes (BP). GO enrichment analysis is typically used to explore the enrichment degree of 
GO terms associated with differentially expressed genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) [31] is a utility database 
resource for understanding advanced functions and biological systems (such as cells, organisms, and ecosystems) based on 
molecular-level information, especially genome sequencing and other high-throughput experimental techniques generated from large 
molecular datasets. KEGG was established in 1995 by Kanehisa’s laboratory at the Center for Bioinformatics at Kyoto University, 
Japan. 

The analysis used in this study was based on the use of the R package clusterProfiler package (version 3.14.3) [32] to perform GO 
function/pathway enrichment analysis on the intersection genes and the significance threshold was set to P ≤ 0.05. Bubble plots were 
created for visualization using the R package ggplot2 (Version 3.3.3) [33]. The pathway network diagram was drawn to visualize the 
pathway relationship using the cytoscape plug-in ClueGo [34]. 

We selected and downloaded the c2.cp.v7.2.symbols.gmt gene set data from the GSEA (http://www.gsea-msigdb.org/gsea/index. 
jsp) [35] database as the reference gene set and performed GSEA enrichment analysis on the two sets of data with the R clusterProfiler 
package. The GSEA statistical process was used to calculate the enrichment score, estimate the significance of the enrichment score, 
correct for multiple hypothesis testing, and select the enrichment results with P < 0.05 to draw the GSEA enrichment map. 

Fig. 3. Molecular typing of osteosarcoma: (A) The cumulative distribution function (CDF) curve. (B) The CDF Delta area curve. (C) Heat map of 
molecular subtype sample clustering. (D) The spatial distribution of different clusters.  

3 Enrichment analysis 
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4 WGCNA analysis 

The gene co-expression network was constructed using the WGCNA R package [36]. By calculating the Pearson correlation co-
efficient between two genes, we used the expression data to create a similarity matrix and chose an appropriate soft threshold β to 
make the constructed network more compatible with the standard of a scale-free network. We transformed the adjacency matrix into a 
topological overlap matrix TOM and used hierarchical clustering to generate a hierarchical clustering tree of genes. The correlations 
between genes and clinical information were calculated, and the significant associations of modules with ER-related DEGs were 
analyzed.  

5 PPI Interaction Network Construction 

Fig. 4. Enrichment analysis: (A) GOBP enrichment bubble chart of intersection genes. The vertical axis is the BP name, the horizontal axis is 
the number of enriched genes, and the dot size is the ratio of the number of enriched genes to the total number of uploaded genes. The larger the 
ratio, the larger the dots. The redder the dot color, the more significant the P value. (B) GOCC enrichment bubble chart of intersection genes. 
The vertical axis is the CC name, the horizontal axis is the number of enriched genes, and the size of the dots is the ratio of the number of enriched 
genes to the total number of uploaded genes. The larger the ratio, the larger the dots. The redder the dot color, the more significant the P value. (C) 
GOMF enrichment bubble chart of intersection genes.The vertical axis is the MF name, the horizontal axis is the number of enriched genes, and 
the size of the dots is the ratio of the number of enriched genes to the total number of uploaded genes. The larger the ratio, the larger the dots. The 
redder the dot color, the more significant the P value. (D) PathwaysEnrichment bubble chart of intersection genes. The vertical axis is the 
pathways name, the horizontal axis is the number of enriched genes, and the size of the dots is the ratio of the number of enriched genes to the total 
number of uploaded genes. The larger the ratio, the larger the dots. The redder the dot color, the more significant the P value. (E) GO enrichment 
histogram of intersection genes. The horizontal axis is the number of genes, and the vertical axis is the GO item. (F) KEGG network diagram. 
Different colors represent different types of KEGG pathways, and bold fonts represent pathways.The more significant the P value, the larger the dots, 
and the two-point line represents the correlation between functions. (G) TOP5 KEGG GSEA diagram. Enrichment Score polyline section.The 
horizontal axis is the sorted gene, and the vertical axis is the corresponding ES.The peak in the line graph is the Enrichment score of this genes set, 
and the genes before the peak are the core genes under the genes set. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)  

4 WGCNA analysis 
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The STRING (version 11.0, http://www.string-db.org/) database [37] was used to perform protein-protein interactions (PPI) on 
critical module genes from the WGCNA results and the ER stress-related differentially expressed genes. We selected Required Con-
fidence (combined score) > 0.4 as the threshold value of the PPI relationship. Cytoscape software [38] was used to construct the PPI 
network of interaction genes, and the top ten hub genes were extracted using the cytohbhs plug-in Ref. [39]. 

Table 1 
GO enrichment.  

ID Type Description pvalue 

GO:0006979 BP response to oxidative stress 2.66E-16 
GO:0034599 BP cellular response to oxidative stress 6.49E-15 
GO:0034976 BP response to endoplasmic reticulum stress 2.97E-13 
GO:0097193 BP intrinsic apoptotic signaling pathway 4.12E-12 
GO:0070997 BP neuron death 1.01E-11 
GO:2001233 BP regulation of apoptotic signaling pathway 1.42E-10 
GO:1901214 BP regulation of neuron death 1.45E-10 
GO:2001242 BP regulation of intrinsic apoptotic signaling pathway 2.58E-10 
GO:0042176 BP regulation of protein catabolic process 3.88E-10 
GO:0043558 BP regulation of translational initiation in response to stress 4.00E-10 
GO:0006888 BP ER to Golgi vesicle-mediated transport 5.34E-10 
GO:1900407 BP regulation of cellular response to oxidative stress 9.02E-10 
GO:0097191 BP extrinsic apoptotic signaling pathway 1.10E-09 
GO:0009896 BP positive regulation of catabolic process 2.05E-09 
GO:1902882 BP regulation of response to oxidative stress 2.38E-09 
GO:0043555 BP regulation of translation in response to stress 2.41E-09 
GO:2001243 BP negative regulation of intrinsic apoptotic signaling pathway 2.63E-09 
GO:0072593 BP reactive oxygen species metabolic process 2.75E-09 
GO:1903201 BP regulation of oxidative stress-induced cell death 3.94E-09 
GO:0045732 BP positive regulation of protein catabolic process 6.27E-09 
GO:0030134 CC COPII-coated ER to Golgi transport vesicle 3.20E-15 
GO:0005798 CC Golgi-associated vesicle 1.27E-13 
GO:0030135 CC coated vesicle 2.02E-10 
GO:0030176 CC integral component of endoplasmic reticulum membrane 8.59E-09 
GO:0031227 CC intrinsic component of endoplasmic reticulum membrane 1.48E-08 
GO:0005793 CC endoplasmic reticulum-Golgi intermediate compartment 1.96E-08 
GO:0030139 CC endocytic vesicle 2.90E-08 
GO:0030660 CC Golgi-associated vesicle membrane 1.08E-07 
GO:0030658 CC transport vesicle membrane 2.47E-07 
GO:0012507 CC ER to Golgi transport vesicle membrane 2.52E-07 
GO:0030666 CC endocytic vesicle membrane 2.82E-07 
GO:0045335 CC phagocytic vesicle 3.80E-07 
GO:0005791 CC rough endoplasmic reticulum 2.21E-06 
GO:1904813 CC ficolin-1-rich granule lumen 2.61E-06 
GO:0030127 CC COPII vesicle coat 2.95E-06 
GO:0005741 CC mitochondrial outer membrane 4.59E-06 
GO:0005635 CC nuclear envelope 4.84E-06 
GO:0005788 CC endoplasmic reticulum lumen 1.15E-05 
GO:0031968 CC organelle outer membrane 1.23E-05 
GO:0019867 CC outer membrane 1.33E-05 
GO:0043028 MF cysteine-type endopeptidase regulator activity involved in apoptotic process 8.04E-07 
GO:0016620 MF oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor 6.96E-06 
GO:0051087 MF chaperone binding 1.43E-05 
GO:0042277 MF peptide binding 1.89E-05 
GO:0016903 MF oxidoreductase activity, acting on the aldehyde or oxo group of donors 1.96E-05 
GO:0033218 MF amide binding 2.13E-05 
GO:0015485 MF cholesterol binding 3.75E-05 
GO:0043027 MF cysteine-type endopeptidase inhibitor activity involved in apoptotic process 3.83E-05 
GO:0031072 MF heat shock protein binding 3.89E-05 
GO:0051787 MF misfolded protein binding 4.50E-05 
GO:0051400 MF BH domain binding 5.23E-05 
GO:0061134 MF peptidase regulator activity 5.26E-05 
GO:0016209 MF antioxidant activity 5.46E-05 
GO:0002020 MF protease binding 6.20E-05 
GO:0051082 MF unfolded protein binding 7.18E-05 
GO:0032934 MF sterol binding 7.19E-05 
GO:0015248 MF sterol transporter activity 9.19E-05 
GO:0046906 MF tetrapyrrole binding 0.00013578 
GO:0044389 MF ubiquitin-like protein ligase binding 0.00014405 
GO:0004857 MF enzyme inhibitor activity 0.00016315 

*Only top 20 BP,CC, MF were displayed. 
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6 Analysis of Immune Cell Infiltration 

CIBERSORT is based on the principle of linear support vector regression to deconvolve the transcriptome expression matrix and 
estimate the composition and abundance of immune cells in mixed cell populations [40]. We used the gene expression matrix data to 
analyze the infiltration of 22 immune genes in the samples using the CIBERSORT algorithm. The samples with P < 0.05 were filtered to 
obtain the immune cell infiltration matrix. The corplot package [41] was used to draw correlation heatmaps to visualize the corre-
lations of the 22 immune cell infiltrations. The gepubr package (https:/CRAN.R-pnojiect.org/package-ggpuby) was used to draw violin 
plots to visualize the differences in the infiltration of the 22 immune cells. We plotted the correlations between the hub genes and 
immune cells.  

7 Statistical analysis 

All statistical analyses were performed using means ± standard deviation. The data were analyzed using R software (version 3.6.3). 
A P-value <0.05 was considered statistically significant, and all statistical tests were two-sided. The overall analysis protocol used in 
this study is shown in Fig. 1. 

3. Results  

1 GEO data variance analysis 

The downloaded standardized data was preprocessed to obtain a boxplot of the data before and after preprocessing (Fig. 2A and B). 
The results of the PCA analysis revealed specific differences between the metastatic and non-metastatic groups (Fig. 2C). The 

Table 2 
KEGG enrichment.  

ID Description pvalue gene 

hsa04141 Protein processing in 
endoplasmic reticulum 

8.78E- 
14 

PRKCSH/TRAM1/RPN2/AMFR/GANAB/CANX/RBX1/UBQLN2/SEC24D/HSPA6/ATF4/DNAJC1/ 
EIF2S1/DNAJC10/EIF2AK2/SEC23B/HSPA1A/SAR1A/SEC23A 

hsa04612 Antigen processing and 
presentation 

9.66E- 
11 

HLA-DRA/CD74/TNF/HSPA4/IFNG/CANX/HSPA6/TAP1/CTSB/TAP2/HLA-B/HSPA1A 

hsa05417 Lipid and atherosclerosis 4.84E- 
10 

TNF/CYBB/BAD/TLR4/HSPA4/BCL2L1/IL1B/HSPA6/ATF4/PIK3CA/SOD2/APAF1/EIF2S1/ 
CYBA/HSPA1A/OLR1/ABCA1 

hsa04210 Apoptosis 6.40E- 
08 

TNF/BAD/MCL1/BCL2L1/ACTG1/ATF4/PIK3CA/APAF1/EIF2S1/ACTB/BIRC2/CTSB 

hsa05164 Influenza A 1.03E- 
07 

HLA-DRA/VDAC1/TNF/TLR4/IFNG/IL1B/KPNA2/ACTG1/PIK3CA/APAF1/EIF2S1/ACTB/ 
EIF2AK2 

hsa04145 Phagosome 2.19E- 
07 

HLA-DRA/CYBB/TLR4/ACTG1/CANX/ACTB/CYBA/PIK3C3/TAP1/TAP2/HLA-B/OLR1 

hsa05020 Prion disease 7.09E- 
07 

VDAC1/TNF/CYBB/CREB3L1/SDHC/BAD/IL1B/HSPA6/ATF4/PIK3CA/APAF1/EIF2S1/CYBA/ 
HSPA1A/ATF2 

hsa04621 NOD-like receptor signaling 
pathway 

1.72E- 
06 

VDAC1/TNF/DNM1L/CYBB/TLR4/BCL2L1/IL1B/TXNIP/BIRC2/CYBA/CTSB/GABARAP 

hsa05166 Human T-cell leukemia virus 1 
infection 

2.07E- 
06 

HLA-DRA/VDAC1/TNF/CREB3L1/BCL2L1/CANX/MYC/ATF4/PIK3CA/IL1R1/PTEN/HLA-B/ 
ATF2 

hsa04217 Necroptosis 2.70E- 
06 

VDAC1/TNF/DNM1L/CYBB/GLUD1/TLR4/IFNG/IL1B/HMGB1/EIF2AK2/BIRC2 

hsa05134 Legionellosis 4.56E- 
06 

TNF/TLR4/IL1B/HSPA6/APAF1/HSPA1A/SAR1A 

hsa05162 Measles 5.57E- 
06 

BAD/TLR4/BCL2L1/IL1B/HSPA6/PIK3CA/APAF1/EIF2S1/EIF2AK2/HSPA1A 

hsa04140 Autophagy - animal 6.33E- 
06 

BAD/BCL2L1/HMGB1/PIK3CA/PTEN/EIF2S1/PIK3C3/CTSB/ATG7/GABARAP 

hsa05131 Shigellosis 6.74E- 
06 

VDAC1/TNF/TLR4/BCL2L1/IL1B/UBC/ACTG1/RBX1/PXN/PIK3CA/IL1R1/ACTB/PIK3C3 

hsa04668 TNF signaling pathway 6.83E- 
06 

TNF/DNM1L/CREB3L1/IL1B/ATF4/PIK3CA/BIRC2/CEBPB/ATF2 

hsa05145 Toxoplasmosis 6.83E- 
06 

HLA-DRA/TNF/BAD/TLR4/BCL2L1/IFNG/HSPA6/BIRC2/HSPA1A 

hsa05163 Human cytomegalovirus 
infection 

1.37E- 
05 

TNF/CREB3L1/IL1B/MYC/ATF4/PXN/PIK3CA/IL1R1/TAP1/TAP2/HLA-B/ATF2 

hsa05140 Leishmaniasis 3.41E- 
05 

HLA-DRA/TNF/CYBB/TLR4/IFNG/IL1B/CYBA 

hsa05010 Alzheimer disease 4.50E- 
05 

VDAC1/TNF/CYBB/SDHC/BAD/IL1B/APOE/ATF4/PIK3CA/APAF1/EIF2S1/EIF2AK2/SNCA/ 
PIK3C3/GAPDH 

hsa05152 Tuberculosis 5.33E- 
05 

HLA-DRA/CD74/TNF/BAD/TLR4/IFNG/IL1B/APAF1/PIK3C3/CEBPB 

*Only top 20 items were displayed. 
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GSE21257 data set screened the expression data for 24,994 genes with |logFC|>0.263, p.adj<0.05 as the threshold. Finally, 1960 
differentially expressed genes were identified, of which 1145 were up-regulated and 815 were down-regulated (Fig. 2D and E). The ER 
stress-related genes were downloaded from the GeneCard database. Then, 138 potential ER stress-related differentially expressed 
genes were identified by their intersection with the previously detected differentially expressed genes from the GSE21257 data set 
(Fig. 2F). 

We used the consensus clustering method to cluster the samples. In the CDF curve of the consensus matrix, when K = 4, the CDF 
curve presented a relatively flat middle segment (Fig. 3A and B). Furthermore, when K = 4 was selected for consensus clustering 
analysis, the interference between subgroups was reduced considerably (Fig. 3C). Therefore, we identified four subgroups, including 
cluster 1 (n = 10), cluster 2 (n = 5), cluster 3 (n = 14), and cluster 4 (n = 4). The expression profiles between the four clusters were 
compared (Fig. 3D). 

As described in the methods, the 138 intersection genes were subjected to enrichment analysis, including 1337 significant items for 
biological processes (BP), 116 significant items for cellular components (CC), 86 significant items for molecular function (MF), and 112 
significant pathways. The significant items were displayed using bubble charts (Fig. 4A–D). As shown in Fig. 4 below, the BP, CC, and 
MF items revealed the top 20 items based on the P-value (Fig. 4E–Table 1). It was noted that the differentially expressed genes related 
to ER stress-affected pathways such as Protein processing in the ER, Apoptosis, and Antigen processing and presentation 
(Fig. 4F–Table 2). Based on the GSEA analysis, the GSE21257 data set had 29 significant gene set pathways (Table 3), and the TOP5 
pathways included Huntington’s disease, cell cycle, the spliceosome, Parkinson’s disease, and ribosomes (Fig. 4G). 

We performed a weighted gene co-expression network analysis (WGCNA) on the gene expression data using the R package WGCNA 
algorithm to identify the co-expression patterns of the genes during osteosarcoma metastasis. First, we performed sample clustering 
analysis to detect any variation across the 35 samples and outliers. Next, we set a soft threshold of 3 to approximate the network to a 
scale-free network (Fig. 5A). Then, the Pearson correlation coefficient of paired genes was calculated to obtain a similarity matrix. The 
similarity matrix was transformed into an adjacent matrix using the threshold and power values listed above. Linkage hierarchical 
clustering was then averaged to identify the modules where genes were closely linked, and genes not assigned to a specific module 
were shown in grey (Fig. 5B). We found one module of significantly co-expressed genes (MEblue, P = 0.01) (Fig. 5C). The identified 
genes were closely associated with osteosarcoma metastasis, suggesting that this was a critical gene set to investigate the risk of os-
teosarcoma metastasis further (Fig. 5D). 

The PPI interaction network analysis was performed on the ER stress-related differentially expressed genes (Fig. 6A) in the 81 blue 
modules. As shown in Fig. 6B and C, there were 218 interaction relationships among 68 key genes, and there were 38 interaction 
relationships among the top ten critical genes, as seen in Fig. 6D. 

The CIBERSORT algorithm was used to assess changes in immune cell infiltration levels before and after osteosarcoma metastasis as 
described in the Methods (Fig. 7A and B). The results of the correlation analysis revealed a positive correlation between osteosarcoma 

Table 3 
GSEA Enrichment results.  

Description ES NES p-val 

huntingtons disease 0.46630952 1.58440333 0.00172712 
cell cycle 0.50538946 1.64173798 0.00177936 
spliceosome 0.51580512 1.62686146 0.00177936 
parkinsons disease 0.51169624 1.61820978 0.00178891 
ribosome 0.63942248 1.9899259 0.00179211 
asthma − 0.8866284 − 2.3835054 0.00204499 
primary immunodeficiency − 0.6713973 − 1.8398342 0.00205761 
allograft rejection − 0.845997 − 2.3734866 0.00208768 
type i diabetes mellitus − 0.7803001 − 2.2486644 0.0021097 
nod like receptor signaling pathway − 0.7042556 − 2.0714756 0.00212766 
graft versus host disease − 0.8501564 − 2.4277465 0.0021322 
cytosolic dna sensing pathway − 0.6094253 − 1.7984544 0.00214592 
systemic lupus erythematosus − 0.8388346 − 2.488651 0.00214592 
autoimmune thyroid disease − 0.8391577 − 2.4826173 0.00215054 
intestinal immune network for iga production − 0.822676 − 2.3955756 0.00215054 
viral myocarditis − 0.7628128 − 2.379273 0.00215983 
b cell receptor signaling pathway − 0.5974895 − 1.8628274 0.00218818 
toll like receptor signaling pathway − 0.6431166 − 2.1193684 0.00220264 
complement and coagulation cascades − 0.7051765 − 2.1764987 0.00220751 
leishmania infection − 0.789533 − 2.4331695 0.00221239 
cell adhesion molecules cams − 0.6483611 − 2.2007646 0.00223214 
natural killer cell mediated cytotoxicity − 0.6285108 − 2.1406363 0.00224719 
lysosome − 0.5284886 − 1.7686821 0.00228833 
hematopoietic cell lineage − 0.6706642 − 2.1650725 0.00230415 
antigen processing and presentation − 0.7504096 − 2.4231959 0.00231481 
chemokine signaling pathway − 0.5715468 − 2.0123182 0.00236967 
cytokine cytokine receptor interaction − 0.5242236 − 1.9269993 0.00239234 
jak stat signaling pathway − 0.4284559 − 1.4716202 0.00473934 
ubiquitin mediated proteolysis 0.45041173 1.49145857 0.00714286 

*Only top 20 items were displayed. 
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metastasis and the infiltration levels of various immune cells, such as naive CD4 T cells and neutrophils (Fig. 7C). A negative corre-
lation was observed for other immune cells such as CD8 T cells and M0 macrophages. The differential analysis demonstrated that the 
infiltration levels of various immune cell subsets were significantly different between the metastatic and non-metastatic groups 
(Fig. 7D), including M0 macrophages, CD8 T cells, and others. The correlation analysis showed that the expression of hub genes was 
primarily related to memory B cells, CD4 T cells, memory resting, and others (Fig. 7E-N). 

To elucidate the immune microenvironmental status of these four subgroups, we explored the expression of ten Hub genes across 
the four clusters. All ten genes were significantly differentially expressed in clusters 1 and 4 (Fig. 8A–J). 

4. Discussion 

ER stress has been found to be associated with the incidence, progression, spread, and resistance to drugs of tumors [14,16,18]. 
Once the accumulation of improperly folded proteins in the ER surpasses a crucial threshold, it triggers a signal transduction pathway 
known as the unfolded protein response (UPR). The heightened activation of UPR signaling is implicated in the 
epithelial-mesenchymal transition (EMT) of tumor cells preceding metastasis [16]. The UPR is initiated by three ER transmembrane 
proteins: PERK, IRE1α, and ATF6 [15]. The up-regulation of LAMP3 by PERK has been shown to facilitate the migration and invasion of 
cancer cells [42]. Tumor metastasis is closely associated with the epithelial-mesenchymal transformation (EMT) process in tumor cells 
[4,43]. Inhibition of the EMT process through small-molecule PERK inhibitors has been found to effectively suppress the migration of 
tumor cells [44]. Additionally, IRE1α and ATF6 play significant roles in regulating various physiological and pathological processes in 
different cell types [45–47]. 

In this study, the author searched for a set of differentially expressed genes associated with ER stress and osteosarcoma metastasis. 
Through bioinformatics analysis of gene data of 14 metastatic osteosarcoma patients and 19 non-metastatic patients, enrichment 

Fig. 5. WGCNA analysis: (A) Soft Threshold. (B) Module and Trait Data Heatmap. Orange means positive correlation, blue means negative 
correlation, the darker the color, the stronger the correlation. (C)Module Clustering Plot. (D)Blue Significant Difference Module Scatter Plot. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)  

5 PPI Interaction Network 
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analysis, immune infiltration analysis, PPI protein interaction network analysis of differentially expressed genes associated with ER 
stress, construction and verification of a molecular subtype model related to metastatic osteosarcoma, 10 key genes were finally 
determined, namely ACTB, ACTG1, ANXA5, APAF1, HSPA1A, HSPA4, MYC, NPM1, SIRT1 and VDAC1, providing possibility for 
inhibiting the occurrence of osteosarcoma metastasis. ACTB, also known as β-actin (ACTB), plays a crucial role in cancer metastasis, 
particularly in liver cancer [43]. The processes of polymerization, localization, cytoskeleton formation, and overexpression of ACTB 
are closely associated with cell growth and migration [43,48]. In the context of prostate cancer (PCa), ACTG1 may impact tumor 
metastasis through the MAPK/ERK signaling pathway [49]. Additionally, Annexin ANXA5 serves as a link between the innate and 
adaptive immune systems and contributes to immune stimulation within the tumor microenvironment (TME). ANXA5-carbon 
nanotube conjugates have been utilized for the physical ablation of tumors through photothermal therapy [50]. Apoptosis protease 
activating factor-1 (APAF-1), a protein weighing 130 kDa, plays a crucial role in regulating programmed cell death. In metastatic 
colorectal cancer, the frequent absence of APAF-1 expression is strongly linked to unfavorable prognosis. Furthermore, the loss of 
APAF-1 expression is more prevalent among patients experiencing early recurrence, emphasizing its significance in tumor metastasis 
[51]. HSPA1A plays a crucial role in facilitating the proper folding of recently synthesized proteins and inhibiting the aggregation of 
pre-existing proteins within the cytoplasm and organelles. In the context of squamous cell carcinoma, HSPA1A exhibits a direct 
binding affinity and interaction with LASP1, thereby effectively stimulating the proliferation, metastasis, and invasion of malignant 
cells [52]. In hepatocellular carcinoma (HCC), the downregulation of HSPA1A, HSPA4, and VDAC1 has been found to impede the 
invasion, migration, and proliferation of HCC cells [53,54]. Additionally, HSPA1A, HSPA4, and VDAC1 have been identified as in-
dependent prognostic factors. The inhibition of miR-93b expression by MYC through direct binding to the promoter region of 
miR-193b, along with the indirect inhibition of MYC expression by miR-194b, suggests that miR-193b may exhibit an anti-tumor effect 
on osteosarcoma by targeting KRAS and STMN1. The reciprocal negative regulatory loop involving MYC and miR-93b potentially leads 
to a persistent upregulation of MYC and downregulation of miR-193b, subsequently leading to enhanced expression of KRAS and 

Fig. 6. PPI interaction analysis of key genes: (A) Venn diagram of the intersection of ER stress-related differential genes and key genes in 
the blue module. (B) PPI interaction network diagramThe blue dots are key genes, and the connectionsare interactions. (C) PPI interaction 
NetworkAnalyzer visualization. The smaller the significance, the larger the dots are.The thickness of edge is the combine score, and the color is 
down-regulated to up-regulated from blue to red. (D) Hub gene interaction diagram. The color from red to light is the MCC score. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)  

6 Immune infiltration correlation analysis 
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STMN1, ultimately culminating in the development and metastasis of osteosarcoma. Suppression of MYC expression has been 
demonstrated to effectively impede osteosarcoma metastasis [55]. In vitro experiments involving the treatment of osteosarcoma cell 
lines KHOS and U2OS with the MYC inhibitor 10058-F4 resulted in a significant reduction in migration distance [56]. The 
NPM1/ERK/NF-κβ pathway has been found to facilitate the growth and metastasis of osteosarcoma, with NPM1 identified as a crucial 
molecule in this process [57]. Sirtuin-1 (SIRT1), a class III histone deacetylase, is extensively implicated in gene regulation, genome 
stability maintenance, apoptosis, autophagy, aging, proliferation, and tumor metastasis [58,59]. SIRT1 plays a pivotal role in gov-
erning the proliferation and metastasis of cancer cells under stress by modulating p53-dependent aging and cell reprogramming [60]. 
Furthermore, it has been determined that the aforementioned 10 crucial genes exhibit a strong correlation with the degree of immune 

Fig. 7. Analysis of immune infiltration: (A) Histogram of immune infiltration distribution. The horizontal axis is the cell type, and the vertical 
axis is the estimated proportion. (B) Histogram of the distribution of immune infiltration samples.The horizontal axis is the sample, the vertical 
axis is the estimated proportion, and different colors represent different immune cells. (C) Heat map related with immune infiltration. Corre-
lation of cellular immune infiltration in each sample, positive correlation in blue, negative correlation in red. (D) Violin plot of the correlation of 
cellular immune infiltration between the metastatic group and the non-metastatic group. The horizontal axis is the type of immune cells, the 
vertical axis is the cell immune infiltration score, the blue is the metastatic group, the red is the non-metastatic group. (E–N) Bar graph related 
with hub genes immune infiltration. The horizontal axis is the correlation score, and the vertical axis is the immune cell type. The size of the dots 
is the correlation, the higher the correlation, the larger the dots. The redder the color, the more significant the P value. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.)  

7 Correlation analysis between Hub genes and different molecular subtypes 
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cell infiltration and the immune microenvironment. The researcher effectively utilized these genes to validate the molecular subtype 
model of osteosarcoma. Notably, there was a significant disparity in the expression of these 10 pivotal molecules between cluster 1 and 
cluster 4, underscoring the potential of the molecular subtype model to facilitate the categorization of osteosarcoma patients and 
provide valuable guidance for personalized therapeutic interventions [61]. The ten identified genes are anticipated to serve as mo-
lecular markers for distinguishing between metastatic and non-metastatic osteosarcoma. Furthermore, these genes hold potential for 
identifying osteosarcoma micrometastasis and osteosarcoma with a pronounced propensity for extensive metastasis, pending further 
development and application. 

Inhibiting osteosarcoma metastasis is a reliable scheme to improve the cure rate of osteosarcoma. Early prevention of osteosarcoma 
metastasis is expected to improve the cure rate of osteosarcoma. In this study, 10 key genes associated with ER stress and osteosarcoma 
metastasis were identified, but the results lack further clinical validation, and the involved cell signaling pathways have not been 
further validated in vivo and in vitro. The study primarily adopts an observational approach, thus it does not establish causal re-
lationships between ER stress and osteosarcoma metastasis. Additional experimental studies are required to validate the mechanistic 
connections between these phenomena. Nonetheless, this study successfully constructs a molecular subtype model of osteosarcoma 
using bioinformatics methods and identifies key molecules, thereby offering significant scientific and potential clinical value. 

5. Conclusion 

The identification of 10 key genes associated with osteosarcoma metastasis and ER stress holds potential clinical significance. 
Furthermore, the molecular subtype of osteosarcoma has the potential to inform clinical treatment decisions However, further in-
vestigations and future clinical validations are necessary to establish the identified key genes and their correlations definitively. 
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