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Abstract: Nucleotide excision repair (NER) is the most versatile DNA repair pathway, which can
remove diverse bulky DNA lesions destabilizing a DNA duplex. NER defects cause several au-
tosomal recessive genetic disorders. Xeroderma pigmentosum (XP) is one of the NER-associated
syndromes characterized by low efficiency of the removal of bulky DNA adducts generated by
ultraviolet radiation. XP patients have extremely high ultraviolet-light sensitivity of sun-exposed
tissues, often resulting in multiple skin and eye cancers. Some XP patients develop characteristic
neurodegeneration that is believed to derive from their inability to repair neuronal DNA damaged
by endogenous metabolites. A specific class of oxidatively induced DNA lesions, 8,5′-cyclopurine-
2′-deoxynucleosides, is considered endogenous DNA lesions mainly responsible for neurological
problems in XP. Growing evidence suggests that XP is accompanied by defective mitophagy, as in
primary mitochondrial disorders. Moreover, NER pathway is absent in mitochondria, implying
that the mitochondrial dysfunction is secondary to nuclear NER defects. In this review, we discuss
the current understanding of the NER molecular mechanism and focuses on the NER linkage with
the neurological degeneration in patients with XP. We also present recent research advances regard-
ing NER involvement in oxidative DNA lesion repair. Finally, we highlight how mitochondrial
dysfunction may be associated with XP.

Keywords: nucleotide excision repair; xeroderma pigmentosum; neurodegeneration; base excision
repair; oxidative stress; mitophagy

1. Introduction

In all cells, DNA is the carrier of genetic information from generation to generation;
thus, its integrity must be maintained to ensure the survival of the cell, the whole organism,
or even the whole species. Nonetheless, DNA is constantly jeopardized by multiple external
adverse factors, such as ultraviolet (UV) light, ionizing radiation, chemotherapy drugs,
or environmental pollutants. DNA damage can also be caused by endogenous factors
such as replication errors or cellular oxidative metabolism products from mitochondria
or inflammation [1]. The lesions can disrupt the basic processes of DNA metabolism by
blocking replication and transcription. To counteract these adverse effects, eukaryotic
cells are equipped with several DNA repair mechanisms acting on different types of DNA
damage [2,3]. In some cases, if the lesions cannot be eliminated—either because the damage
load is too high or because a requisite repair pathway is deficient—the cell cycle can be
arrested until the damage is repaired, and if this does not occur rapidly, the cell may be
eliminated by apoptosis or may accumulate mutations and transform into a potentially
cancerous cell that might proliferate uncontrollably and give rise to a tumor. Ultimately,
cells can tolerate some DNA lesions owing to translesion DNA synthesis.

Typical types of DNA lesions include a variety of oxidative DNA modifications involv-
ing base or sugar damage, DNA crosslinks, strand breaks, and adducts with chemically
active molecules [2,3]. Moreover, DNA can be damaged because of internal instability
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due to the spontaneous hydrolysis of the glycosidic bond with the formation of an abasic
site (i.e., apurinic/apyrimidinic site, hereafter: AP site). As a rule, base excision repair
(BER) deals with the repair of nonbulky base damage and AP sites in both the nuclear and
mitochondrial cellular compartments [1,4,5].

The nucleotide excision repair (NER) pathway is the most universal repair pathway
to remove a wide range of helix distorting lesions from DNA [6,7]. NER substrates are
UV photoproducts, e.g., cyclobutane pyrimidine dimers (CPDs), pyrimidine-pyrimidone-
(6-4)-photoproducts (6-4PPs), intrastrand crosslinks, and bulky adducts of DNA bases
with reactive metabolites of some chemical carcinogens or chemotherapeutic agents [8].
These kinds of lesions can be substrates for two NER sub-pathways—global genome
NER (GG-NER) and transcription-coupled NER (TC-NER)—that overlap, except for the
mode of DNA damage recognition. Specific damage sensing proteins of GG-NER scan
the entire genome at any moment of the cell cycle [6–8]. In contrast to GG-NER, TC-NER
rapidly eliminates transcription-blocking lesions from actively transcribed DNA strands
only. During TC-NER DNA damage can be detected in the template DNA strand when
it stalls the RNA polymerase [9,10]. After the lesion has been recognized, all subsequent
steps require the same NER core factors in GG-NER and TC-NER.

Mutations in NER-related genes cause several hereditary diseases, such as xeroderma
pigmentosum (XP) and Cockayne syndrome (CS) [11]. Mutations in XP-related gene
products (except proteins that exclusively taking part in GG-NER damage recognition) lead
to the disruption of both NER sub-pathways. At the same time, mutations in CS proteins
affect only TC-NER. XP is characterized by extreme sensitivity of the skin to sunlight and
a dramatically increased risk of skin cancer [12,13]. A subset of XP patients develops a
profound neurodegenerative condition known as XP neurological disease [14]. XP and
CS are often grouped together as related diseases owing to overlapping sun sensitivity
phenotypes and progressive neurodegeneration, but the specific nature of the neurological
pathologies is qualitatively different between them [15–17].

Progressive neurodegeneration occurs when a loss of neuronal structure or function
leads to a decline in the number of neurons owing to apoptotic cell death [2]. Neurons
have a high metabolic load and consume large amounts of energy, which is supplied by
mitochondria in the form of ATP. Byproducts of the ATP formation give rise to reactive
oxygen species (ROS), which can cause many types of oxidative DNA damage to genomic
and mitochondrial DNA [18,19]. Nowadays, it is widely accepted that the accumulation of
oxidative DNA lesions is the cause of the neuropathology that takes place with aging as in
several neurodegenerative disorders. Moreover, the accumulation of damaged mitochon-
dria due to a decrease in mitophagy is also a hallmark of the aging process and a clinical
feature of XP and CS [18,20,21].

This review focuses on the link of NER with the neurological disease in patients
with XP. Firstly, we provide general information about the molecular mechanism of NER.
Next, we briefly review the clinical features of XP disorder and discuss the clinical and
neuropathological characteristics of XP neurological disease. Then, we overview the
involvement of NER in the repair of oxidative DNA lesions and discuss the specific class
of oxidatively induced DNA lesions, 8,5′-cyclopurine-2′-deoxynucleosides, which are
considered as the endogenous DNA lesions responsible for the neurological problems in
XP patients. Finally, we describe the way in which mitochondrial dysfunction is believed
to be associated with XP.

2. Nucleotide Excision Repair
2.1. Classic NER Substrates

One of the most astonishing features of the NER pathway is its broad ability to
recognize and process many structurally and chemically diverse lesions. NER is the only
repair pathway that protects our skin from DNA photodamage induced by UV light. The
latter is the high-energy component of sunlight that reaches the Earth surface. According
to the wavelength, UV radiation can be subdivided into several ranges. Fortunately,
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the atmosphere blocks ~3/4 of the sun’s UV light, and its most powerful part, UV-C
(100–280 nm), is completely absorbed. The ozone layer filters most of UV-B (280–315 nm).
Thus, most of the UV light that reaches the Earth surface is UV-A (315–400 nm) with a
small remainder of UV-B. UV-A can penetrate more deeply into the skin than UVB can
because of its longer wavelength. Photodamage formation (and sunburn) in human skin
starts near the boundary between UV-A and UV-B light (~315 nm) and continues during
UV-B exposure. Notably, a wavelength closer to the nucleotide light absorption maximum
produces more lesions in DNA.

CPDs are the major DNA photoproducts of UV light (Figure 1) [7,8,22,23]; 6-4PPs are
formed in a 25–30% lower amount than CPDs and are the second most prevalent UV lesion.
CPDs only minimally distort the double helix, whereas 6-4PPs produce a pronounced DNA
backbone bending and base-pairing disruption. The DNA thermodynamic destabilization
ability correlates with repair efficiency of these lesions; CPDs are excised by NER with
much slower kinetics as compared to 6-4PPs [1,22,24,25].
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otide pairs TC, CC, and TT, with the ratio and yields depending on irradiation wavelength and 
adjacent sequences [8]. This figure is based on several studies [8,22]. 
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TC-NER, which is responsible for the accelerated repair of lesions in the template DNA 
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In the case of mammalian GG-NER, lesions are recognized by xeroderma pigmen-
tosum factor C (XPC) complexed with proteins RAD23B and centrin 2 (CETN2) [6]. Small 

Figure 1. Chemical structures of DNA photoproducts caused by sunlight. The majority of cyclobutane
pyrimidine dimers (CPDs) is formed between adjacent thymine residues (TT) but can eventually
arise between adjacent T and C, C and T, or C and C, depending on the wavelength, irradiation dose,
and adjacent sequences. CPD can be formed with cis-syn isomer representing large majority of CPDs
within duplex DNA, and trans-syn occurring exclusively within single-stranded DNA. Pyrimidine-(6-
4)-pyrimidone photoproducts (6-4PPs) are generated preferentially in nucleotide pairs TC, CC, and
TT, with the ratio and yields depending on irradiation wavelength and adjacent sequences [8]. This
figure is based on several studies [8,22].
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Another source of DNA damage is various electrophilic compounds that directly
penetrate the cell from an external medium or are produced inside the organism after
metabolic activation. These compounds include environmental mutagens like polycyclic
aromatic hydrocarbons (benzo[a]pyrene and various aromatic amines) and adducts of
cancer chemotherapeutic drugs such as cisplatin. These electrophilic compounds can react
with nucleophilic atoms of DNA, especially with N7 of the guanine base [7,8].

DNA damage recognition is the first key step, which affects overall efficiency of
DNA repair [6]. The fact that NER can repair so many structurally different types of
DNA damage indicated early on that the system may not recognize a lesion per se but
rather some specific conformational features caused by the lesion within DNA [7]. In
general, a good NER substrate should be bulky and must destabilize a DNA double helix
(disrupt base pairing and bend the duplex). To detect both conditions, NER has evolved
special bipartite substrate discrimination: firstly, it recognizes a local thermodynamically
destabilized site, and then the latter is probed for lesion presence. The double recognition
allows NER to avoid processing mismatched but damage-free sites.

2.2. The Damage Recognition Step

DNA damage can be recognized by NER in one of two modes. GG-NER can search for
damage anywhere in the genome throughout the cell cycle. The second mode is TC-NER,
which is responsible for the accelerated repair of lesions in the template DNA strand of
actively transcribed genes only.

In the case of mammalian GG-NER, lesions are recognized by xeroderma pigmento-
sum factor C (XPC) complexed with proteins RAD23B and centrin 2 (CETN2) [6]. Small
subunits collectively stabilize the XPC structure, possibly modulate some protein–protein
interactions, and stimulate the DNA binding of the major subunit of the complex (XPC)
thereby increasing NER efficiency in vitro and in vivo ([26] and references within). The
XPC–RAD23B–CETN2 complex (hereinafter, XPC) can detect and bind DNA sites where
the regular double-helical structure is perturbed, and as a result, one or more base pairs are
disrupted and/or destabilized [6,7]. X-ray crystal structure of Rad4—the yeast ortholog of
XPC—has revealed a structural basis for the unique DNA damage-searching ability [27,28].
A series of subsequent biophysical studies indicates that Rad4/XPC can bind to DNA
nonspecifically via a damage-independent DNA-binding domain (TGD) and freely dif-
fuse mainly by a one-dimensional-diffusion mechanism [7,29,30]. It is noteworthy that
Rad4/XPC diffuse along DNA not by “sliding” but rather by “hopping” (diffusion through
repeated microscopic dissociation and reassociation with the DNA). An advantage of the
hopping mode is that it allows a protein to overcome protein obstacles on DNA [29]. At a
suspicious DNA site of certain single-stranded character (where DNA is “breathing” too
much because of a mismatch or an AT-rich sequence, where DNA can transiently melt),
Rad4/XPC are slowed down [29,30]. The presence of a helical distortion and base pair
disruption enables XPC to insert two β-hairpin modules from BHD2/BHD3 domains into
the DNA duplex and to form a stable protein–DNA complex. In this complex, Rad4/XPC
interacts exclusively with the nucleotides on the undamaged strand and flips out damage-
containing nucleotide pairs to form an “open” conformation [30]. The reason is that the
damaged DNA is already destabilized and has a lower free-energy barrier for “opening,”
thus increasing the probability that Rad4 (or XPC) can use the hairpin modules to sense
the lesion presence and not diffuse away [7,30]. Notably, DNA duplexes containing bulky
lesions on both strands are not processed by NER [31,32].

CPDs—the most abundant photolesions—are poorly recognized by XPC because
they cause only a minimal distortion in DNA. These lesions are recognized by a special
protein (UV-damaged DNA-binding protein (UV-DDB), a heterodimeric protein consisting
of DDB1 and DDB2/XPE), which has extraordinarily high binding affinity and specificity
for CPD and 6-4PP [6,7]. In contrast to XPC, DDB2 interacts directly with UV light–induced
photolesions in DNA, introduces a kink into the duplex, and creates a more suitable
substrate for XPC (Figure 2A). Structural studies have revealed that DDB2 flips out the
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two nucleotides of CPD into a shallow binding pocket, which can accommodate such
lesions as CPDs or 6-4PPs via shape complementarity [6,7]. In addition, DDB2 is thought
to facilitate XPC recruitment within chromatinized DNA through the ability to promote
chromatin reorganization. Moreover, DDB1 is also a connector protein for ubiquitin ligase
CUL4–RBX1 [7,33]. The ubiquitin ligase is activated upon DDB2 binding and ubiquitinates
DDB2 and XPC [33]. The ubiquitination of DDB2 launches its proteasomal degradation
after extraction from NER complexes. By contrast, the XPC ubiquitination increases its
DNA-binding activity [34]. Damage handover from DDB2 to XPC coincides with the
arrival of the TFIIH complex, which further promotes DDB2 dissociation [33,35]. It should
be noted that both UV-DDB and XPC proteins are also targets of poly(ADP-ribosyl)ation
catalyzed by poly(ADP-ribose)polymerase 1 (PARP1) in response to UV-irradiation. Taking
in account that PARP1 participates in the UV-induced chromatin decondensation and
PARP1 activity promotes DDB2 interaction with XPC, this modification can facilitate lesion
recognition in the chromatin context (reviewed in [36]).
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Figure 2. An overview of the damage recognition step of nucleotide excision repair (NER). (A) Global genome NER
(GG-NER) can search for damage anywhere in the genome throughout the cell cycle. The UV-DDB protein recognizes CPD
or 6-4PP, directly binds to it through its DDB2 subunit, and facilitates efficient recognition of the lesion by the XPC–RAD23B–
CETN2 complex. The DDB1 subunit is also a connector protein for ubiquitin ligase CUL4, which ubiquitinates DDB2 and
XPC [33]. (B) Transcription-coupled NER (TC-NER) is responsible for accelerated repair of lesions in the template DNA
strand of actively transcribed genes only. The CSB protein and then proteins CSA and UVSSA bind to DNA damage stalled
RNAPII. CSB and CSA associate with CRL ubiquitin ligase and contribute to the ubiquitination of the RNAPII RPB1 subunit
at K1268. This ubiquitination stimulates the association of TFIIH with the stalled RNAPII through a transfer mechanism
that also involves UVSSA-K414 ubiquitination [9,35].

TC-NER is initiated by the stalling of elongating RNA polymerase II (RNAPII) at DNA
lesions (Figure 2B). The CSB protein (Cockayne syndrome group B protein, a member of
the SNF2 family of DNA-dependent ATPases) interacts loosely with the elongating RNAPII
and stimulates transcription but becomes more tightly bound after transcription arrest [10].
It is suggested that CSB participates in RNAPII backtracking to make a DNA lesion accessi-
ble to repair proteins. Upon RNAPII stalling at a lesion, the RNAPII-bound CSB recruits
the CSA protein (Cockayne syndrome group A protein), and both together contribute to
the polyubiquitination of the K1268 residue of RPB1, a subunit of RNAPII [35,37,38]. The
RPB1 ubiquitination acts as a master switch for the alternation of transcription, RNAPII
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degradation, and initiation of DNA repair [9]. At the next step, CSA facilitates the associa-
tion of UVSSA (UV-sensitive syndrome protein A) with the stalled RNAPII. UVSSA is the
key factor that recruits the TFIIH complex [37].

When the RPB1 K1268 residue is mutated or some of CSB/CSA/UVSSA accessory
proteins are absent, TC-NER cannot start. In this situation, transcription does not shut
down, leading to multiple transcription restarts (resulting primarily in the transcription of
short genes) and subsequent RNAPII stalling instances; therefore, eventually, the RNAPII
pool is depleted, and transcription is dysregulated ([38] and reviewed in [9]).

A recent study has discovered that RNAPII stalling could follow by nascent RNA
hybridization with DNA template strand generating an RNA–DNA hybrid and displaced
ssDNA. Such kind of structures called an R-loop could occur physiologically during an
early step in transcription elongation (especially are abundant at promoters) and transcrip-
tion termination [39,40]. Moreover, it is proposed that R-loops can regulate gene expression
through multiple context-dependent mechanisms. At the same time, R-loop can be prob-
lematic for cells as it blocks efficient transcription and replication. The accumulation of
R-loops is associated with cancer and several neurological diseases. It was shown that NER
proteins participate in R-loops resolving process, but the mechanism of R-loop resolution is
not clear. The TFIIH (transcription factor IIH) complex is a multifunctional protein machine
required for transcription initiation and NER [41]. Depending on a context, its composition
changes from a core of seven subunits, including the XPB translocase and XPD helicase,
to 10 subunits, through the addition of three CAK (Cdk-activating-kinase module) kinase
subunits. Recent advances in breakthrough cryo-electron microscopy give investigators a
unique opportunity to investigate the TFIIH structure [41–43]. TFIIH assumes an arch-like
conformation with subunits curving from XPD on the one end to XPB located on the second
end. The CAK components close the ends of this structure and stabilize the arch. It is
suggested that TFIIH core structure becomes more flexible after CAK module dissociation,
and this arrangement may be sufficient for subsequent functioning during NER [7]. The
release of the CAK complex from core TFIIH transforms TFIIH from a transcription factor
into a repair factor [37].

2.3. Damage Verification and Pre-Incision Complex Formation

The TFIIH complex is the key protein for the damage verification step. TFIIH probes
the lesion itself and unwinds the DNA duplex around the lesion, thereby making room
for the subsequent assembly of a repair machine; we simply could even say that NER
machinery is built around TFIIH.

In the case of GG-NER (Figure 3A), TFIIH is recruited via XPB engagement to the DNA
duplex and interaction with the C terminus of XPC as well as an additional interaction of
the p62 subunit with XPC’s N terminus [7]. After that, the XPD helicase may get loaded on
the DNA because of its location on the other end of the TFIIH arch. A striking similarity
between GG-NER and TC-NER is that XPC and UVSSA share an interaction surface on the
p62 subunit of TFIIH, suggesting that the two pathways at least partially share a mechanism
for the engagement of TFIIH with the lesion site [41].

Notably, human TFIIH binds downstream of RNAPII (which moves in the 3′→5′ di-
rection) in the transcription pre-initiation complex [44]. In line with these data, we propose
that in TC-NER initiation, TFIIH should also bind downstream of RNAPII for subsequent
movement on the same damaged strand in the opposite 5′→3′ direction (Figure 3B). In the
case of R-loop formation behind the RNAPII, it cannot be easily displaced by TFIIH to
make a space for repair process. The sequence of events in this situation should be a subject
for future investigations.
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Figure 3. Schematic view of the damage verification step of NER and pre-incision complex formation. (A) GG-NER. TFIIH
initially interacts with XPC’s N terminus by means of p62 subunits, then tumbles to XPC’s C terminus, where the interaction
with XPB promotes its binding to a duplex part. XPA releases an inhibitory CAK module and together with XPG stimulates
XPD activity [45]. The XPD helicase binds to the damaged strand and starts to a repair bubble formation [7]. When XPD
gets to the lesion and stalls on it, XPC is displaced, and XPG binds to the 3′ edge of the repair bubble. (B) TC-NER. XPC
and UVSSA share an interaction surface on the p62 subunit of TFIIH [41]. RNAPII moves in the 3′→5′ direction on the
damaged strand, then, after its lesion stalling and assembly of factors CSB, CSA, and UVSSA, the latter promotes TFIIH
binding downstream of RNAPII [37]. Thereafter, XPA and XPG stimulate XPD activity, and TFIIH starts to move in the
5′→3′ direction and may “push” RNAPII for a backtracking movement. (C) The NER pre-incision complex (PIC): TFIIH
stalls on the lesion-bearing strand, RPA covers the undamaged strand, XPA marks the 5′ edge of the repair bubble, XPG
marks the 3′ edge of the repair bubble, and XPF–ERCC1 binds behind XPA.

TFIIH structure flexibility allows XPD to unwind DNA while tracking along in the
5′→3′ direction [7]. During the tracking process, XPD pulls the DNA through a narrow
tunnel that is too small for bulky DNA lesions to pass through [7]. This “damage filtration”
process is simple but effective.

The release of the CAK module from core TFIIH is triggered by the association of
repair factors XPA and XPG (XP factors A and G) [45]. Biochemical data show that XPA
can stimulate the overall helicase activity of TFIIH, and on the contrary, can inhibit the
helicase activity in the presence of lesions; therefore, XPA also contributes to damage
verification [46]. Moreover, XPA has some bulky-damage recognition ability as well and
especially prefers to bind kinked and branched DNA structures [47,48]. It was shown re-
cently by atomic force microscopy, scanning force microscopy, and mathematical modeling
that XPA undergoes episodic one-dimensional diffusion to search DNA for damage [49].
Furthermore, biochemical research revealed that XPA is located on the 5′ side from a
lesion at the damaged bubbled DNA [47]. Cryo-electron microscopy data have extended
our knowledge of the modulation of TFIIH activity by XPA and XPG [45]: (1) XPA and
XPG stabilize an alternative conformation of TFIIH, where the XPD helicase is opened for
functioning; (2) XPA and XPG also stimulate XPB and XPD, and this event may facilitate
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DNA opening; consequently, they are present in a ternary complex in the lesion-scanning
mode; (3) XPA interacts with an XPB subunit in the TFIIH–DNA complex and marks the
DNA at the 5′ edge of the repair bubble; (4) XPA forms a bridge between XPB and XPD
and thus possibly facilitates XPD positioning on the single-stranded 3′ extension.

Immediately after forming single-stranded undamaged DNA inside the repair bubble,
it binds to the replication protein A (RPA) [50]. RPA interacts with the undamaged strand
and protects it from a nuclease attack [47]. The size of the NER-excised fragment coincides
with maximal length of the single-stranded–DNA platform for RPA binding (approximately
30 nt), to which RPA binds tightly with defined 5′→3′ polarity [51]. RPA tightly interacts
with XPA inside the repair bubble, and they together regulate the correct orientation and
activation of NER nucleases [52]. Moreover, an ability of RPA and XPA to form a complex
in the absence of DNA as well as a ternary complex with DNA was reported, and XPA
interaction with RPA is indispensable for NER [51]. Crystal structure of Ustilago maydis
RPA stably bound to single-stranded DNA was resolved some time ago [53]. These data
revealed that single-stranded DNA in complex with RPA is also U-shaped; for this reason,
the 5′ edge and 3′ edge of the repair bubble are pulled together.

During the lesion scanning by TFIIH, XPG “rides” on the XPD subunit [45]. After
XPD stalls on the lesion, XPG binds to the 3′ edge of the repair bubble (possibly by
simultaneous displacement of XPC). NER pre-incision complex formation is completed by
the engagement of XPF–ERCC1, which is recruited by XPA [54].

Thus, the interior of the NER pre-incision complex is as follows: TFIIH stalls at the
lesion, RPA covers the undamaged opposite strand, XPA marks the 5′ edge of the repair
bubble, XPG marks the 3′ edge of the repair bubble, and XPF–ERCC1 binds behind XPA.
The XPA is a central component in the pre-incision complex room because it interacts with
all its compartments: with the damage recognition proteins XPC and DDB2, verifies the
damage and interacts with TFIIH and RPA, promotes correct positioning of both nucleases.
Patients with reported mutations in the XPA gene have the severest form of XP (we discuss
it in the next chapter). Today, XPA is considered as organizing or scaffold component of
the pre-incision complex, which makes sure that all the NER factors are in the right place
for the incision to occur [23,48].

2.4. Dual Incision, Resynthesis, and Ligation

Two endonucleases XPF–ERCC1 and XPG can now incise the lesion-containing DNA
strand (Figure 4). The DNA incision is first carried out by XPF–ERCC1 from the 5′ side to the
damage site with the formation of a free 3′-OH group [55]. Next, replication machinery can
be loaded to start repair synthesis [56]. RPA promotes the arrival and positioning of RFC
and enhances repair synthesis with possible help of XPA as it interacts with PCNA [57,58].

Repair synthesis can proceed halfway through the gap in the absence of an XPG-made
incision [23]. The XPG-made 3′ incision is possibly triggered by PCNA–XPG interaction [59].
The lesion-containing oligonucleotide (~30 nt) is released from the repair bubble in complex
with TFIIH [60]. Then, after ATP binding, TFIIH slowly dissociates from the excised
oligonucleotide, and the latter is bound by RPA or degraded by cellular nucleases.

Repair synthesis may be performed by different sets of replication machines: DNA
polymerases δ/sliding clamp PCNA/clamp loader RFC or DNA polymerases ε/PCNA/
a modified form of RFC or DNA polymerases κ/ubiquitinated PCNA/XRCC1 [23,61].
Which set of replication factors will be loaded possibly depends on the cell cycle but in
general remains unknown. The XPG-made incision leaves a 5′-phosphate that is utilized in
the nick-sealing reaction by DNA ligase I or by DNA ligase IIIα (with XRCC1) [62]. Now,
NER is completed.
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3. The Molecular Basis of Xeroderma Pigmentosum

Efficient DNA repair is incredibly important for the health of an organism. Mutations
in NER genes can result in a genetic disorder called xeroderma pigmentosum (XP), which
is characterized by extreme UV sensitivity, abnormal skin pigmentation, and a dramatically
increased risk of skin cancer in sun-exposed mucocutaneous areas and ocular structures.
XP is an autosomal recessive genetic disorder that is extremely rare in Europe and North
America (frequency of ~2.3 per million live births), but its prevalence is higher in Japan
(frequency of 1 per 22,000), the Middle East, North Africa, and India [13,63]. Corresponding
to causative mutation proteins, all XP cases are divided into clinically heterogeneous
complementation groups (CGs): XP-A to XP-F and variant form XP-V. Patients with
mutations in one XP gene belong to one CG. Patients with CG XP-V bear mutations in the
bypass polymerase POLH gene encoding DNA polymerase η.

The skin of affected individuals is normal at birth, but then, usually within first weeks
of life, the infants can get sunburn after minimal exposure to sunlight (~60% of cases). In the
other cases (~40%), the infants have a normal acute response to sun exposure. Nevertheless,
they all develop an unusually high number of freckle-like pigmentary changes in sun-
exposed areas, often by 2 years of age (Table 1) [12,64]. The next clinical manifestations
are malignant skin neoplasms on the face, neck, and upper trunk. The average age of
the first skin cancer is less than 10 years, and a patient can develop hundreds of skin
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cancers [12]. It has been estimated that XP patients have a 10,000-fold higher risk of basal
and squamous cell carcinomas and a 2000-fold higher risk of malignant melanoma before
the age of 20 [63,65]. Besides, XP patients exhibit a greatly increased frequency of cancer of
the oral cavity, particularly squamous cell carcinoma of the tip of the tongue [12].

Table 1. Comparison of clinical features of patients with XP, XP neurological disease, XP/CS, and CS [11,12].

Clinical Features XP XP Neurological
Disease XP/CS CS

Molecular defects XP-A, -B, -C, -D, -E,
-F and XP-V

XP-A and XP-D followed
by XP-B, XP-G, and XP-F XP-B, XP-D, XP-G CS-A, CS-B

Skin sun sensitivity + + + +
Increased freckling + + + -

Sunlight—induced skin cancer + + + -
Photophobia + + + +

Anterior eye cancer + + + -
Retinal degeneration - - + +

Sensorineural deafness - + + +
Developmental delay - + + +

Progressive neurological degeneration - + + +
Primary neuronal degeneration - + - -

Demyelination of brain - - + +
Cerebral atrophy - + + +

Cerebellar atrophy - + + +
Calcification (basal ganglia) - - + +

“+”—indicated clinical feature is associated with the disease; “-”—this clinical feature does not observed.

CGs XP-A and XP-C are more common (approximately 50% of patients), and XP-F is
one of the rarer CGs [13,63]. Six years ago, a study was published with detailed clinical
and molecular information on the largest analyzed cohort of XP patients [13]. This paper
revealed clinical symptoms differences among XP CGs and heterogeneity within each
CG. Moreover, the clinical features are strongly dependent on distinct locations and types
of mutations in the causative genes [13]. Most patients in CGs XP-A, -B, -D, -F, and -G
present with severe sunburn reactions starting from an early age (Table 1). In contrast,
TC-NER–competent groups XP-C, -E, and -V have normal sunburn reactions for a skin
type. Paradoxically, those XP-C, -E, and -V patients get an XP diagnosis at a later age and
therefore accumulate more photodamage, meaning an earlier age of the first skin cancer.
XP-F and XP-G patients seem to be remarkably resistant to the development of skin cancers
as compared to other XP CGs.

At least 40% of patients have ocular diseases, but they are strikingly limited to the
anterior, UV light–exposed structures of the eye. Blepharospasm and photophobia are
common symptoms, and continued sunlight exposure may result in severe keratitis and
cancers (epithelioma, squamous cell carcinoma, and melanoma) [63,64]. XP-C patients are
especially susceptible to ocular problems [13]. In addition to the common XP symptoms,
XP patients under the age of 20 have an approximately 50-fold higher prevalence of cancers
of the brain and other parts of the central nervous system. The reason for brain cancer
predisposition is currently poorly understood [12].

4. XP Neurological Disease

Between 20% and 30% of XP patients have neurological problems referred to as XP
neurological disease (Table 1) [66]. Such infants are normal at birth, and the clinical mani-
festations may start between 2 years and a middle age [64]. The earliest signs of the disease
are reduced tendon reflexes and high-frequency sensorineural hearing loss, and these can
be employed in screening tests [12]. In some cases, the affected individuals demonstrate a



Int. J. Mol. Sci. 2021, 22, 6220 11 of 23

delay in developmental milestones. The disease progresses to uncoordinated movements
(ataxia) with subsequent loss of the ability to walk, and eventually, the patient becomes
wheelchair bound. Other clinical features of these patients may include a loss of the ability
to swallow, areflexia, microcephaly, and progressive cognitive impairment [64]. Some
XP patients also show progressive neurodegeneration with some features of premature
aging [14].

The progressive neurological abnormalities are seen primarily in XP patients belonging
to the CGs in which both NER subpathways are compromised (Table 1): XP-D and XP-A
(followed by XP-B, XP-G, and XP-F) [13,14,64,65]. Patients belonging to the CGs with
intact TC-NER (XP-C, -E, and -V) in general do not have neurological problems [14].
Nonetheless, there are some data suggesting that XP-C associates with the development
of intracranial lesions [13]. Accordingly, we can conclude that the TC-NER pathway is
essential for neurons, in contrast to the GG-NER pathway whose deficiency leads only to
mild neurodegeneration. By means of the NT2-hNT human cell system, it was found that
terminally differentiated neurons can have another repair phenotype as opposed to mitotic
cells [67]. The GG-NER activity in these post-mitotic neurons is greatly impaired, whereas
the TC-NER activity is normal. This observation was partially confirmed on cultured
neurons and astrocytes derived from rat embryonic brains that have significantly lower
NER capabilities than fibroblasts do [68].

These neurological abnormalities are due to a progressive atrophy of the brain, spinal
cord, and peripheral nervous system. The pathology is primary neurodegeneration without
evidence of other obvious causative processes [14]. This progressive neurodegeneration is
due to apoptotic neuronal death. Given that terminally differentiated neurons no longer
divide, apoptosis may result in an uncompensated cell loss for the organism, and up to 40%
of brain tissue mass can be lost [15]. This finding is supported at the histological level by the
observation that losses of neurons occur in several different regions of the brain [2]. Large
neurons appear to be more strongly affected by the degeneration than smaller neurons.
The peripheral nervous system is also frequently involved in the degenerative process.

XP patients with neurodegeneration have poorer survival rates than XP patients
without. The median age of death of the affected patients has been reported to be 29 years,
as compared to 37 years for the patients without neurodegeneration. The most common
causes of death are skin cancer (34%), neurodegeneration (31%), and internal cancer
(17%) [14].

XP overlaps with CS in terms of sun sensitivity phenotypes (Table 1). CS is also a rare
autosomal recessive disease caused by mutations in the CSB gene (CS-B patients, 62% of
cases) or in CSA (CS-A patients), whereas certain mutations in XPB, XPD, or XPG yield
a disease with combined features of CS and XP [11,69]. CS clinical features often include
photosensitivity and cataracts as well as an abnormal “bird-like” facies and severe cachectic
dwarfism; special hallmarks are profound postnatal growth failure of the soma and brain
associated with premature senescence and progressive multiorgan degeneration [2,11].
The neurological symptoms include demyelination in the cerebral and cerebellar cortex,
calcification in basal ganglia and cerebral cortex, neuronal loss, sensorineural hearing loss,
and decreased nerve conduction. CS patients’ brains show an unusual severe patchy myelin
loss (“tigroid leukodystrophy”) and segmental demyelinating peripheral neuropathy. This
specific type of pathology is not observed in XP or in any other neurological diseases
associated with defective DNA repair. In addition, a calcification of basal ganglia and
other regions of the brain is observed in CS but not in XP [2,11,15,70]. The disease does not
seem to confer an increased risk of cancer. The life expectancy of CS patients is 12.5 years,
and because many of the disease’s signs resemble normal aging, it has been classified as
premature aging syndrome.

5. Neurological Abnormalities Due to High Oxidative DNA Damage in Neurons

The reasons for neurodegeneration are not well understood. Clearly, there cannot
be a direct connection between neurodegeneration and UV light exposure: sun UV ra-
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diation cannot penetrate the skull. At the same time, we know that the blood–brain
barrier (BBB) protects the central nervous system from many exogenous substances, even
though part of chemical compounds, probably at lower concentrations, can normally
pass the BBB [71] Chemotherapy agents (such as cisplatin) could pass through the BBB
and cause chemotherapy-related cognitive impairment because of hippocampal synaptic
damage and neural cell loss [72,73]. Moreover, the BBB structure and functioning is also
reduced with age [71,74]. Age-related BBB permeability increasing could lead to addi-
tional central nervous system damage and eventually to neurodegeneration. Anyway,
as we mentioned above XP neurological disease could manifested in very young age, so
we do not have enough data about this disease linkage with the BBB impairment and
chemotherapy toxicity.

More than 40 years ago, it was proposed that some types of endogenous DNA damage
may arise in the brain that are repaired by NER, and that a deficiency in this repair
pathway causes damage accumulation and subsequent neurodegeneration (reviewed
in [75]). A similar neurodegenerative process due to permanent neuron loss may proceed
with aging. The “free radical theory of aging” postulates that accumulation of unrepaired
oxidative damage leads to a cellular decline and associated age-related deterioration [2,21].
This “aging” theory for XP neurodegeneration is supported by the findings of Lindahl and
colleges indicating that DNA exposure to ROS generates a class of DNA lesions that are
normally repaired by NER (reviewed in [15]). They have proposed that oxidative stress
may be the source of the DNA damage that causes neuronal death in XP patients. Thus,
the search for this damage type has become an area of active research.

5.1. NER Impact in Oxidative Lesions Repair

It is known that neurons have a high metabolic load, consume large amounts of
molecular oxygen, and need large amounts of energy from mitochondria. The ROS that are
normally produced during cellular respiration can cause many types of oxidative DNA
damage. Moreover, neurons are terminally differentiated post-mitotic cells; consequently,
unrepaired oxidative DNA lesions accumulate over time and eventually can cause neuronal
death. It is generally accepted that a wide spectrum of nonbulky oxidative DNA lesions is
repaired by the BER pathway that is not deficient in XP. To summarize, current theories
suggest that NER involved in the repair some types of oxidative DNA damage, and a lack
of its repair function results in DNA damage accumulation, which is thought to be the
reason for neurodegeneration in XP CGs.

The most easily oxidized target in DNA is the guanine base (Figure 5A) [76,77]. The
major two-electron guanine oxidation product of this reaction is 8-oxoguanine (8-oxoG, also
known as 8-oxo-7,8-dihydro-2′-deoxyguanosine), which is easily oxidized than the guanine
moiety, thus yielding four-electron guanine oxidation products spiroimino-dihydantoin
(Sp), 5-guanidinohydantoin (Gh). As we mention above, these kinds of nonbulky oxidative
lesions are almost exclusively repaired by the BER pathway [3,4,77].

During BER, DNA intermediates are bound by one or several BER enzymes (BER
mechanism is reviewed extensively, see [78–81] for example). Thus, a question arises: how
NER can be involved in oxidative damage repair? Do NER proteins stimulate the activity
of BER enzymes or compete for DNA? Another possibility is that NER works as a backup
system for BER; these are situations when a lesion cannot be repaired by BER or there are
too many lesions to be repaired by BER alone. There is a completely different hypothesis
too: some type of a bulky oxidative DNA lesion exists that is repaired only by NER, and
BER proteins do not participate in this repair [15].

The first answers were obtained in a study [66] showing that a minimal set of
NER proteins can remove oxidative DNA lesions from DNA in vitro. Subsequent long-
term studies on BER and NER processes demonstrated that these repair systems do not
work as isolated pathways and that the structure of an oxidative lesion influences the
role of NER proteins in the repair response to the oxidative damage. In some cases,
both pathways work cooperatively, and NER proteins stimulate the activity of key BER
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enzymes [1,3,5,82–91], but in other cases, the two pathways compete during recognition
of the same lesion [92–95]. The data about XPC function in glycosylase—BER oxidative
base lesion sensors—stimulation [96–98] raise questions about the relevance of these in-
teractions as far as they absence in XP-C CGs does not lead to neurological disease. It is
possible to speculate that XP-C individuals carry out normal TC-NER, so they can develop
neurological symptoms much later in comparison with other XP patients [66]. Anyway,
nonbulky oxidative DNA lesions cannot block transcription by RNA pol II [99]; thus, the
only way these lesions could cause neurodegeneration is through a progressive decrease in
the amount of the encoded proteins.

The text following an equation need not be a new paragraph. Please punctuate
equations as regular text.
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Figure 5. Chemical structures of common oxidative DNA lesions. (A) Guanine oxidation products. Products of two-
electron guanine oxidation are 8-oxo-7,8-dehydroguanine (8-oxoG) and 5-carboxamido-5-formamido-2-iminohydantoin
(2Ih). Four-electron guanine oxidation products are 5-guanidinohydantoin (Gh), spiroiminodihydantoin (Sp), 2,5-diamino-
4H-imidazol-4-one (Iz), and 2,2,4-triamino-5(2H)-oxazolone (Oz). (B) Formation of 8,5′-cyclo-2′-deoxyguanosine (cyclic
guanosine, cdG) through hydroxyl radical (HO•) oxidation under hypoxic conditions.

5.2. Cyclopurines Are Bulky Lesions and Exclusive NER Substrates

The following body of interesting data has been obtained regarding a specific class of
endogenous oxidative DNA lesions: 8,5′-cyclopurine-2′-deoxynucleosides (cyclopurines)



Int. J. Mol. Sci. 2021, 22, 6220 14 of 23

(Figure 5B). The cyclopurines contain a covalent bond between C8 of the base and C5
of 2′-deoxyribose [100,101]. Both lesions—8,5′-cyclo-2′-deoxyadenosine (cdA) and 8,5′-
cyclo-2′-deoxyguanosine (cdG)—exist as 5′R- and 5′S-diastereomers [102,103] and are
chemically very stable [104,105]. Lesions cdA and cdG are formed endogenously by an
attack of hydroxyl radicals on sugar moieties [106] and can be generated in DNA by G-
irradiation under anoxic conditions [107,108] or by transition metal ion–mediated Fenton
reactions [109]. Recently, two studies shed the light on cyclopurine formation in cellular
models at different oxygen tension levels [110,111]. XPA-deficient (EUE-siXPA) human
embryonic epithelial cell lines were found to accumulate higher levels of cyclopurines
under hypoxic (1% O2) compared to physioxic (5% O2) conditions, and Fe levels were
significantly higher in these cells too [110]. Diastereoisomeric ratios 5′R/5′S turned out
to be independent of oxygen concentration, being 0.32 for cdG and 2.94 for cdA in EUE-
siXPA cells (nearly equal to those in wild-type [EUE-pBD650] cells). The total amount
of cyclopurines measured in that study was 1.82–2.52 lesions/106 nucleotides. Higher
concentrations of cyclopurines are observed under hypoxic (1% O2) conditions in CSA-
and CSB-deficient fibroblasts as compared to their normal counterparts [110]. Because the
mammalian cell nucleus is a relatively poorly oxygenated compartment, a crucial role of
H2O2 in cyclopurine formation has been suggested [13,112].

Currently, cyclopurines are considered the best candidates for the DNA lesions re-
sponsible for neurological disease in XP patients. According to this prediction, XP patients
should show elevated levels of cyclopurine-type lesions in their brain neuron DNA. Re-
cently, this prediction was confirmed in an Xpa−/− mouse model, where cdA accumulation
with age was shown specifically in brain tissues [75]. A similar accumulation of cdA has
been documented in cell culture research: XP-C keratinocytes are inefficient at removing
(5′S)-cdA, (5′R)-cdG, and (5′S)-cdG over time [96] and CS-A human primary fibroblasts
show defective repair of (5′S)-cdA [113].

Both cdA diastereomers can block DNA replication process by polymerase δ [100]
and transcription by RNA polymerase II [101]. The blockage of RNA polymerase II and
a high number of stalled replication forks may serve as a trigger for apoptotic neuronal
death [35]. Moreover, cdA lesion in a transcription factor binding site can block the binding
of a transcription factor and inhibit gene expression in XP cells [114].

The next criterion for a candidate neurodegenerative DNA lesion in XP is that the
lesion should be a NER substrate. The authors [100] used HeLa cell extracts and circular
DNA substrates bearing 5′S- or 5′R-cdA to demonstrate that the cyclopurine residues are
repaired by the NER pathway. Cyclopurine repair efficiency was found to be 40–150-fold
lower than that of a 1,3-intrastrand d(GpTpG)-cisplatin crosslink, which is a well-repaired
NER substrate. Additionally, 5′R-cdA was corrected more efficiently (~3–4-fold) than the
S isomer. A study was published concurrently [101] that revealed a strong correlation
between defective NER and neurodegeneration in XP patients. The authors performed
complementation experiments using extracts from different NER-deficient cell lines and
demonstrated that the repair was mediated by NER. It is especially noteworthy that an
XP-A (XP12BE) cell line was used, which was derived from an XP-A patient (XP2OS) who
had severe neurological symptoms: progressive neurodegeneration beginning as a loss
of deep tendon reflexes and progressing to hearing loss, inability to walk, and eventually
difficulty swallowing [63].

Two research groups [100,101] tested the possibility that cyclopurines can be repaired
by BER. Both groups were unable to detect any evidence of such a repair pathway in
extracts from the rat brain and in human cell extracts. Experiments with purified human
DNA glycosylases revealed that NEIL1, NEIL2, and OGG1 fail to hydrolyze a duplex
containing S-cdA or S-cdG [115]. The presence of a covalent 8,5′ bond is the most likely
reason for the failure of BER to remove the lesion because even if a glycosylase can cleave
the glycosidic bond, the base will remain attached to the sugar phosphate backbone via
the 8,5′ bond [15]. The NER pathway repairs S-cdG slightly better than S-cdA in HeLa
cell extracts, and the repair efficiency depends on the base opposite to the lesion. The
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complex investigation with all four cyclopurines confirmed that R-isomers are repaired
better than S-isomers [116]. This isoform preference is due to greater distortions caused in
DNA backbone by the R-isomers compared to the S-isomers.

Taken together, the aforementioned cyclopurine data suggest that cyclopurine lesions
are responsible for the neurological disease in XP patients: (1) cyclopurines are formed
during endogenous processes; (2) cyclopurines accumulate with age especially in the
brain; (3) these lesions are exclusive NER substrates, and NER absence leads to damage
accumulation; and (4) cyclopurines can block transcription and replication.

6. A Mitochondrial Echo of the Nuclear DNA Repair Deficiency

Mitochondrial health is another piece of the XP neurodegeneration puzzle. Given that
mitochondria are the cell’s energy stations, they are indispensable for cellular function.
Energy production is driven by the activity of the electron transport chain (ETC) within
the mitochondria, which generates a proton gradient across mitochondrial membranes.
This proton gradient called mitochondrial membrane potential and its maintenance are
necessary for the functioning of ETC complexes and for normal oxidative phosphorylation.
Hyperpolarization or depolarization of the mitochondrial membrane is pathological be-
cause it underlies ETC dysfunction [65]. Indeed, the sensing of mitochondrial membrane
potential is indispensable for mitochondrial quality control and the subsequent elimination
of damaged mitochondria.

Mitochondrial dysfunction is believed to be associated with neurodegenerative disor-
ders. Mitochondrial autophagy (mitophagy) is a cellular pathway facilitating the degrada-
tion of damaged or unnecessary mitochondria. Mitophagy regulatory genes are mutated
in patients with juvenile or early-onset Parkinsonism. The loss of a protein that is master
regulator of transcription of mitochondrial biogenesis genes is a well-known feature of
Huntington’s disease [117]. Clinically speaking, the mitochondrial disease phenotype is
most commonly observed in brain or muscle tissue. Neurons and muscles—because of
their high energy demands—may be particularly vulnerable to changes in ATP production;
thus, mitochondrial alterations may entail neurodegeneration or myopathies even though
the mitochondrial defect may be present in all tissues [118]. Mitochondria constantly
divide, fuse, and travel throughout the neuron, from the cell body to nerve terminals and
synapses, where energy is especially needed. Aberrations in these mitochondrial dynamics
are associated with Alzheimer’s disease progression [19,119,120].

The clinical features of XP patients (XP-A CG), just as those of CS-B, share substantial
similarities with what is often observed in mitochondrial diseases. CSB-deficient cells show
mitophagy defects yielding increased mitochondrial content, increasing the membrane
potential and free-radical amounts, and raising oxygen consumption. On the other hand,
there is no evidence of a NER pathway in mitochondria, but the proteins CSA and CSB are
present inside mitochondria, where CSA is involved in mitochondrial BER and CSB may
takes part in a transcription process [17]. It was reported recently that in cells depleted of
CSA or CSB, the resultant mitochondrial dysfunction can be corrected by supplementation
with NAD+ precursors [16]. Therefore, it is proposed that: (1) the origin of mitochondrial
problems in CS is in the nucleus, where a DNA repair deficiency leads to damage accu-
mulation and an intensive poly(ADP-ribosyl)ation (PARylation) process with subsequent
NAD+ depletion that is observed in CS-affected cells [17] and (2) changes in the NAD+

level are one of the communication ways between a mitochondria and nucleus [18].
As mentioned above, XP-A patients have a well-pronounced pathological mitochon-

drial phenotype. At the same time, there is no evidence of XPA presence in mitochondria;
therefore, we cannot explain the mitochondrial deficiency by a direct link with an XPA
deficiency. Nevertheless, it has been demonstrated that XPA-deficient cells harbor impaired
mitophagy, yielding increased mitochondrial content, increased mitochondrial superoxide
production, and hyperpolarization of the mitochondrial membrane [20,118]. High and
prolonged ROS production has been reported for cells not only from XP-A but also from
XP-D and XP-C patients [65].
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Because mitophagy by the PINK1–Parkin (respectively PTEN-induced putative kinase
1 and E3 ubiquitin ligase) pathway is regulated by mitochondrial membrane potential,
the mitophagy impairment may be caused by a deficiency of uncoupling proteins (UCPs,
especially USP2), which regulate this membrane potential [19,121]. This suggestion is
confirmed in the work [118], where the authors clearly show that the overexpression of
UCP2 in XPA-deficient cells rescues the mitochondrial phenotype. Moreover, they checked
an upstream regulatory axis: UCP2 is tightly regulated by transcription factor PGC-1α
(peroxisome proliferator-activated receptorγ, coactivator 1), and PGC-1α activity is regu-
lated by SIRT1 (a protein belonging to NAD+-dependent class III of histone deacetylases).
They found that SIRT1 attenuation decreases mitophagy through the suppression of PGC-
1α and UCP2. In mammalian cells, deacetylase SIRT1 is a crucial epigenetic regulator
involved in cell metabolism, genomic stability maintenance, reprograming, aging, and
tumorigenesis [122]. SIRT1-mediated deacetylation of PGC-1α increases its transcriptional
activity [117]. Overall, SIRT1 may play a central role in mitophagy through the regulation
of UCP2 via PGC-1α [118].

The SIRT1 activity requires cellular NAD+ and is effectively influenced by cellu-
lar metabolic and redox states [123]. A major cellular NAD+-consuming enzyme is
PARP1 [124,125]. PARP1 is considered as one of damaged DNA sensors and key regu-
lators of DNA repair and other cellular processes. In response to DNA damage in higher
eukaryotes, nuclear proteins are modified by the poly(ADP-ribose) (PAR). PARylation is
initiated by the transfer of an ADP-ribose unit from NAD+ to a target protein, and then
PAR synthesis may proceed with successive additions of many ADP-ribose units giving
rise to a large chain of a branched polymer. The PAR is thought to be the third type of
nucleic acid, and some repair proteins can bind both free PAR and PAR attached to PARP1
noncovalently, as if it were DNA or RNA, via specific PAR-binding motifs [126].

Both PARP1 and SIRT1 use NAD+ for their activity and interact physically. Moreover,
there is a strong connection between acetylation and PARylation. Under stressful conditions,
PARP1 is acetylated, and this modification enhances its enzymatic activity. Nonetheless,
SIRT1 may then deacetylase PARP1 and inhibit the PARP1 enzymatic activity. Under
severe stress, PARP1 can become overactivated and may deplete cellular NAD, thereby
repressing SIRT1 activity [127,128] and suppressing SIRT1 transcription [129]. To prevent
this situation, SIRT1 is also capable negatively regulating the expression of the PARP1
gene [123].

Thus, if we add XPA, which is a target of modifications by both PARP1 and SIRT1,
to this sophisticated picture of reciprocal regulatory relations, we will see another link
between DNA repair and a stress response (Figure 6). SIRT1 favors NER by deacetylating
XPA and promoting subsequent XPA phosphorylation [118,130]. XPA has been found
to be PARylated rapidly following UV irradiation, and this modification facilitates XPA
recruitment to a site of DNA damage [131,132] but impairs its DNA-binding activity [132].
The XPA protein contains a conserved PAR-binding motif [132,133], that it is overlapped
with DDB2 and TFIIH binding domains [134–136]. Thus, we can propose that PAR binding
modulates the XPA interaction with these proteins and moreover influences (or even
manages) XPA involvement in NER. In addition, XPA physically interacts with PARP1
and further stimulates the PARP1 activity. PARylation may strengthen the XPA–PARP1
interaction and promotes additional PARylation events. This mutual influence is combined
with PARylation and is essential for the opening of chromatin and proficient NER [131,132].
When the XPA protein is mutated, this circle of reciprocal regulatory relations can be broken
partially or completely (depending on the type of mutation) and therefore can contribute
to the deterioration of cellular functions and eventually to the clinical features of XP.
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To sum up, in XPA-deficient cells, a lack of NER activity lead to DNA damage ac-
cumulation. Under normal conditions, PARP1 activation is needed for cell homeostasis.
Massive DNA damage triggers overactivation of PARP1 catalytic activity resulting in
NAD+ intracellular depletion and the attenuation of SIRT1 activity. The inhibited SIRT1
cannot deacetylate PGC-1α, and its transcriptional activity stays switched off thus blocking
the SIRT1–PGC-1α–UCP2 axis and causing a subsequent mitophagy defect. After that,
the mitophagy defect leads to the accumulation of damaged mitochondria content that
produce more ROS, which cause more DNA damage and more PARP1 activation and so on
until cell death. As mentioned above, this pathological state could be reversed by PARP1
inhibition and restoration of the nuclear–mitochondrial crosstalk (particularly mitophagy)
via overexpression of UCP2 and/or supplementation with a NAD+ precursor [118] in
combination with antioxidant therapy [65].

7. Conclusions

Ideally, the design of therapeutic approaches requires that we understand relevant
events step by step from a single molecule to the cell, tissue, and finally, the whole organism.
Today, we know molecular mechanisms of DNA repair pathways in general and are
beginning to understand the mechanisms of their regulation. This review indicates how
much more there is to learn about the link between DNA repair deficiencies and real-world
clinical features. We hope that biochemical and biophysical approaches developed in the
future will help us to answer the question how to restore inadequate repair processes and to
avoid DNA damage accumulation especially in neurons, as in XP and age-related diseases.
Furthermore, it would be interesting to discover new therapeutic strategies against XP and
treatments of age-related mitochondrial dysfunction. Of course, in the cancer treatment
field, these research advances will be beneficial for the directed dysregulation of DNA
repair in cancer cells to enhance the efficiency of DNA-damaging agents.
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